Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Example 8
An adhesive layer (product name: OCA #8146 from 3M company) was interposed between the prepared film and a PET substrate to obtain a multilayer film. It was folded to have a radius of curvature of 3 mm, which was left at a low temperature of −20° C. for 72 hours, and then unfolded. The extent of wrinkles was visually observed. In such event, if no wrinkles were visually observed, it was evaluated as o. If wrinkles were visually observed slightly, it was evaluated as Δ. If wrinkles were visually observed readily, it was evaluated as x.
As can be seen from Table 1 above, the polyamide-imide films of Examples 1a to 4a had an MOR value of 75% or more. Thus, they maintained the modulus at least at a certain level even under the harsh conditions of high temperatures.
Since the display device is an electronic device, it generates heat during its use and it is to be used in a hot place as well, it is essential to secure mechanical properties at least at a certain level at high temperatures. Specifically, when a film is applied to a cover window for a display device, if the MOR value is 75% or more, no problem arises when a display device is fabricated.
In addition, the polyamide-imide films of Examples 1a to 4a were all excellent in the TSR value, ELR value, MO1a value, TS1a value, EL1a value, MO2a value, TS2a value, and EL2a value, in addition to the MOR value. That is, the polymer films of Examples 1a to 4a had high mechanical properties such as tensile strength, elongation at break, and modulus at room temperature and maintained the excellent mechanical properties even after the treatment under the severe conditions of high temperatures for a certain period of time.
Further, the polyamide-imide films of Examples 1a to 4a were all excellent in the evaluation of flexural resistance.
In contrast, since the films of Comparative Examples 1a to 3a had a low MOR value of 72% or less, when the film is applied to cover window for display device, it would have defects in appearance stability. In addition, the films of Comparative Examples 1a and 2a failed in the evaluation of flexural resistance. Thus, they are unsuitable for application to foldable display device or flexible display device.
As can be seen from Table 2 above, the polyamide-imide films of Examples 1b to 8b had a dMO value of 1% to 8%. Thus, they maintained the modulus at least at a certain level even under the harsh conditions of low temperatures.
In the case where the polyamide-imide film is applied to a cover window for a display device and to a display device, it may be used in an extremely cold environment. Thus, it is essential to secure mechanical properties at least at a certain level even in such an extremely cold environment. Specifically, when the polyamide-imide film is applied to a cover window for a display device and to a display device, if the dMO value is within 1% to 8%, no problem arises.
In addition, the polyamide-imide films of Examples 1b to 8b were all excellent in the dTS value, dEL value, MO1b value, TS1b value, EL1b value, MO2b value, TS2b value, and EL2b value, in addition to the dMO value. That is, the polymer films of Examples 1b to 8b had high mechanical properties such as tensile strength, elongation at break, and modulus at room temperature and maintained the excellent mechanical properties even after the treatment under the severe conditions of low temperatures for a certain period of time.
Further, the polyamide-imide films of Examples 1b to 8b were all excellent in the folding characteristics at low temperatures.
In contrast, since the films of Comparative Examples 1b and 2b had a low dMO value of 1% or less, when it is applied to a cover window for a display device, it would not be balanced with other layers, resulting in cracks, which is defective in terms of the appearance stability. In addition, the films of Comparative Examples 1b and 2b failed in the evaluation of flexural resistance at low temperatures. Thus, they are unsuitable for application to a foldable display device or a flexible display device.
Example 1
A long board for surfing is purchased which includes a removable fin. The fin is removed and replaced with the apparatus described herein. The same screws that were holding the original fin in place can be used to secure the replacement fin. The replacement fin has a built in camera system. The upper part of the fin contains a computer-processing unit, a power supply, and a data storage drive. A surfer powers on the camera system and begins recording at the beginning of the day and captures footage for the entirety of the time that surfing occurs. The surfer, at the end of the day, removes the fin containing the camera system, downloads the video captured, and charges the camera using the data/charging port.
Example 1
A double cloth, plain weave webbing was produced on a needle loom. Each side of the webbing was constructed of 48 ends of 1600 d, 1000 filament ultra-high molecular weight polyethylene yarns and 24 ends of 1000 d, 192 filament polyester yarns along the edges of the webbing, and 12±2 ppi of 1600 d, 1000 filament ultra-high molecular weight polyethylene yarns. The stuffer yarns were 1500 d, 3×4 Kevlar® cord, and 14 cords (168 yarns) were positioned between the front and back sides of the webbing. Binder yarns of 1600 d, 1000 filament ultra-high molecular weight polyethylene yarn binder were woven between the front and back to secure the sides together. A polyester catch cord (1000 d/192/1.5 z) was used to bind the edges of the webbing.
The webbing had a width of approximately 1.0 inches, a thickness of approximately 0.14 inches and a weight of approximately 58 g/linear yard. The tensile strength of the webbing was approximately 8,000 lbs.
Example 3
Example 1
One unit of a “Gold” token represents 100 g of metal gold contained in a secure box, for example as described above, equipped with an electronic circuit (such as a wallet node device) capable of reporting a theft by violation of the envelope or movement detection using the GPS module.
Notifications