Silica Gel
It is characterized by a high surface area and the ability to adsorb water and other molecules.
Silica gel is commonly used in research and industry to remove moisture, purify substances, and facilitate chemical reactions.
Its unique properties make it a versatile material for a wide range of scientific and industrial processes.
Researchers can optimize their silica gel studies using PubCompare.ai's AI-driven comparison tools, which help identify the most reliable protocols from literature, preprints, and patents to enhance reproducibility and accuracy.
Most cited protocols related to «Silica Gel»
Laboratory-generated blood spots and blood spots from Uganda were stored in individual self-sealing plastic bags (25 cm × 25 cm approx), which were then combined into sets and stored within three further successive plastic bags, the innermost of which contained approximately 3 g of self-indicating silica desiccant gel type III (Sigma). The bags were inspected regularly to confirm that the desiccant remained blue (RH < 20%), and the desiccant replaced if necessary.
Fingerprick blood samples from lower Moshi were collected into EDTA-coated microtainers and as blood spots on Whatman 3 MM paper and transported daily to the laboratory at Kilimanjaro Christian Medical College. Filter papers were refrigerated (2–8°C) in individual plastic bags with silica gel. Plasma was separated from packed red blood cells after centrifugation and stored at -20°C. All samples were assayed within 8 weeks of collection.
The commercially available RNA samples were the ‘Universal Human Reference’ (N = 75) distributed by Stratagene (USA), and human brain (N = 2) and muscle (N = 2) RNAs supplied by Clontech (USA).
Once extracted, RNA concentration and purity was first verified by UV measurement, using the Ultrospec3100 pro (Amersham Biosciences, USA) and 5 mm cuvettes. The absorbance (A) spectra were measured from 200 to 340 nm. A230, A260 and A280 were determined. A260:A280 and A260:A230 ratios were calculated. For microcapillary electrophoresis measurements, the Agilent 2100 bioanalyzer (Agilent Technologies, USA) was used in conjunction with the RNA 6000 Nano and the RNA 6000 Pico LabChip kits. In total, 39 assays were run in accordance with the manufacturer's instructions (see Supplementary Notes online). To evaluate the reliability of the classifier systems described in this study, replicate runs were done on a set of 56 RNA samples loaded on different chips, resulting in 2 (N = 41), 3 (N = 12), 7 (N = 2) and 50 (N = 1) data points per sample.
Most recents protocols related to «Silica Gel»
Example 26
Synthesis of 169-A.
A mixture of tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (750 mg, 3.54 mmol), 1-methylpiperidin-4-one (800 mg, 7.08 mmol) and acetic acid (2 drops) in DCE (15 mL) was stirred at 50° C. for 2 h. Then Sodium triacetoxyborohydride (1.50 g, 7.08 mmol) was added into above mixture and stirred at 50° C. for another 2 h. After the reaction was completed according to LCMS, the solvent was diluted with water (10 mL) and then extracted by DCM (10 mL×3). The combined organics washed with brine (10 mL×3), dried over anhydrous Na2SO4 and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜50:1) to give 169-A (750 mg, 69%) as a yellow oil.
Synthesis of 169-B.
A solution of 169-A (400 mg, 1.29 mmol) in DCM (10 mL) was added TFA (5 mL) and stirred at room temperature for 1 h. when LCMS showed the reaction was finished. The solvent was removed in vacuo to give 169-B as a crude product and used to next step directly.
Synthesis of 169-C.
A mixture of 143-C (306 mg, 0.65 mmol) and 169-B (crude product from last step) in acetonitrile (6 mL) was stirred at 50° C. for 30 min. Then Na2CO3 (624 mg, 6.50 mmol) was added into above mixture and stirred at 50° C. for 3 h. After the reaction was completed according to LCMS, the mixture was cooled to room temperature. The Na2CO3 was removed by filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜20:1) to give 169-C (230 mg, 76%) as a yellow solid.
Synthesis of 169.
A mixture of 169-C (230 mg, 0.49 mmol) and Pd/C (230 mg) in MeOH (10 mL) was stirred at room temperature for 30 min under H2 atmosphere. Pd/C was then removed by filtration through the Celite. The filtrate was concentrated and the residue was purified by Pre-TLC (DCM:MeOH=10:1) to give 169 (150 mg, 70%) as a white solid.
Compounds 152, 182, 199, 201, 202, 203, 235, 236 and 256 were synthesized in a similar manner using the appropriately substituted aldehyde or ketone variant of 169.
Compound 152.
50 mg, 36%, a light yellow solid.
Compound 182.
70 mg, 38%, a red solid.
Compound 199.
50 mg, 54%, a light yellow solid.
Compound 201.
30 mg, 42%, as a yellow solid.
Compound 202.
30 mg, 42%, a yellow solid.
Compound 203.
30 mg, 18%, a yellow solid.
Compound 235.
170 mg, 87%, a white solid.
Compound 236.
70 mg, 50%, a white solid.
Compound 256.
20 mg, 8%, a light yellow solid.
Compounds 210, 211, 215, 222, 223, 242 and 262 were synthesized in a similar manner using the appropriately substituted amine variant of 169.
Compound 210.
160 mg, 96%, a tan solid.
Compound 211.
70 mg, 40%, a white solid
Compound 215.
70 mg, 75%, a white solid.
Compound 222.
30 mg, 42%, a yellow solid.
Compound 223.
35 mg, 31%, a white solid.
Compound 242.
50 mg, 34%, a white solid.
Compound 262.
38 mg, 43%, a white solid.
Example 11
Step a: To a stirred suspension of 2,4-dichloro-6-methyl-3-nitropyridine (2.5 g, 12 mmol) in 24 mL of THE was added a solution of 7N NH3 in MeOH (14 mL, 98 mmol). After stirring for 3 h, the volatiles were removed in vacuo. The crude residue was purified by silica gel column chromatography to give 2-chloro-6-methyl-3-nitropyridin-4-amine. C6H7CN3O2 [M+H]+ 188.0, found 188.0.
Step b: To a stirred mixture of 2-chloro-6-methyl-3-nitropyridin-4-amine (760 mg, 4.1 mmol) and Fe (1.1 g, 20 mmol) in a 5:1 solution of EtOH/H2O (24 mL) was added 4.4 mL of conc. HCl. The contents were refluxed for 30 min, then cooled to room temperature and quenched with 100 mL of sat. NaHCO3 (aq). The mixture was extracted with EtOAc and the combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo to yield 2-chloro-6-methylpyridine-3,4-diamine. MS: (ES) m/z calculated for C6H9ClN3 [M+H]+ 158.0, found 158.0.
Step c: To a stirred solution of 2-chloro-6-methylpyridine-3,4-diamine (0.49 g, 3.1 mmol) in 3 mL of EtOH was added a 40% w/w aqueous solution of glyoxal (2.0 mL, 12 mmol). After refluxing for 16 h, the mixture was diluted with H2O and extracted with EtOAc. The organic layers were combined, dried over MgSO4, filtered and concentrated in vacuo. The crude residue was purified by silica gel column chromatography to give 5-chloro-7-methylpyrido[3,4-b]pyrazine. MS: (ES) m/z calculated for C8H7ClN3 [M+H]+ 180.0, found 180.1.
Step d: To a stirred solution of 5-chloro-7-methylpyrido[3,4-b]pyrazine (200 mg, 1.0 mmol) and 2′-chloro-2-methyl-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-amine (350 mg, 1.0 mmol) in 2 mL of MeCN was added AcOH (0.18 mL, 3.1 mmol). After 30 min, the volatiles were concentrated in vacuo. The crude residue was purified by silica gel column chromatography to give N-(2′-chloro-2-methyl-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-7-methylpyrido[3,4-b]pyrazin-5-amine. MS: (ES) m/z calculated for C27H29BClN4O2 [M+H]+ 487.2, found 487.2.
Step e: To a stirred solution of N-(2′-chloro-2-methyl-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-7-methylpyrido[3,4-b]pyrazin-5-amine (390 mg, 0.66 mmol), 6-chloro-2-methoxynicotinaldehyde (240 mg, 1.4 mmol), and K3PO4 (490 mg, 2.3 mmol) in a 1:1 solution of 1,4-dioxane/H2O (3.3 mL) under N2 (g) was added Pd(PPh3)4 (76 mg, 0.066 mmol). The mixture was stirred under N2 (g) at 90° C. for 3 h. The mixture was diluted with H2O and then extracted with EtOAc. The combined organic layers were dried over MgSO4, filtered, and concentrated. The crude residue was purified by silica gel column chromatography to give 6-(2-chloro-2′-methyl-3′-((7-methylpyrido[3,4-b]pyrazin-5-yl)amino)-[1,1′-biphenyl]-3-yl)-2-methoxynicotinaldehyde. MS: (ES) m/z calculated for C28H23ClN5O2 [M+H]+ 496.2, found 496.2.
Step f: To a stirred mixture of 6-(2-chloro-2′-methyl-3′-((7-methylpyrido[3,4-b]pyrazin-5-yl)amino)-[1,1′-biphenyl]-3-yl)-2-methoxynicotinaldehyde (120 mg, 0.25 mmol), (S)-5-(aminomethyl)pyrrolidin-2-one hydrochloride (150 mg, 0.99 mmol), and trimethylamine (0.14 mL, 0.99 mmol) in a 4:1 solution of DCM/MeOH (5 mL) was added NaBH(OAc)3 (530 mg, 2.5 mmol). After stirring for 30 min, the mixture was filtered through Celite, and the filtrate was concentrated in vacuo. The product was purified by preparative HPLC to give the product (S)-5-((((6-(2-chloro-2′-methyl-3′-((7-methylpyrido[3,4-b]pyrazin-5-yl)amino)-[1,1′-biphenyl]-3-yl)-2-hydroxypyridin-3-yl)methyl)amino)methyl)pyrrolidin-2-one. 1H NMR (400 MHz, DMSO-d6) δ 12.59 (s, 1H), 9.32 (s, 1H), 9.07 (d, J=2.0 Hz, 1H), 8.86 (d, J=2.0 Hz, 1H), 8.23 (d, J=8.7 Hz, 1H), 7.76 (d, J=7.0 Hz, 1H), 7.62 (s, 1H), 7.55 (d, J=7.5 Hz, 1H), 7.50-7.43 (m, 1H), 7.35 (dd, J=7.9, 7.9 Hz, 1H), 7.12 (s, 1H), 6.96 (d, J=7.5 Hz, 1H), 6.55 (s, 2H), 6.43 (d, J=7.1 Hz, 1H), 4.07 (s, 3H), 3.95-3.84 (m, 1H), 2.48 (s, 4H), 2.26-2.15 (m, 3H), 2.11 (s, 3H), 1.86-1.70 (m, 1H). MS: (ES) m/z calculated for C32H31ClN7O2 [M+H]+ 580.2, found 580.1.
Example 2
N-(2-chloro-4-(trifluoromethyl)phenyl)-2-(5-ethyl-2-morpholino-7-oxo-6-(piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-4(7H)-yl)acetamide (Intermediate B) (200 mg, 352 μmol) was suspended in DMF (5 mL). Perfluorophenyl 3-hydroxypicolinate (Intermediate CT) (215 mg, 703 μmol) and Et3N (97.0 μL, 703 μmol) were added and the RM was stirred at 70° C. for 3 hours. The RM was concentrated under reduced pressure. The crude product was first purified by column chromatography (Silica gel column: Silica 12 g, eluent DCM:MeOH 100:0 to 90:10). Then a second purification by reverse phase preparative HPLC (RP-HPLC acidic 9: 40 to 50% B in 2 min, 50 to 55% B in 10 min) afforded the title compound.
LC-MS: Rt=0.98 min; MS m/z [M+H]+ 690.6/692.6, m/z [M−H]− 688.4/690.3; UPLC-MS 1
LC-MS: Rt=4.84 min; MS m/z [M+H]+ 690.2/692.2 m/z [M−H]− 688.3/690.3; UPLC-MS 2
1H NMR (400 MHz, DMSO-d6) δ 10.37 (s, br, 1H), 10.34 (s, br, 1H), 8.05 (m, 2H), 7.96 (d, J=2.1 Hz, 1H), 7.72 (dd, J=2.1 Hz, 8.7 Hz, 1H), 7.28 (m, 2H), 5.21 (s, 2H), 4.53 (m, 1H), 3.66 (m, 4H), 3.46 (m, 3H), 3.38 (m, 4H), 3.20 (m, 1H), 2.92 (m, 3H), 2.76 (m, 1H), 2.58 (m, 1H), 1.16 (t, J=7.5 Hz, 3H)
Example 24
To the stirred solution of N-(2-chloro-6-(trifluoromethyl)pyridin-3-yl)-2-(5-ethyl-2-(4-methoxycyclohex-1-en-1-yl)-7-oxo-6-(piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-4(7H)-yl)acetamide (Intermediate Y) (300 mg, 504 μmol), 4-chloro-3-hydroxypicolinic acid (140 mg, 807 μmol), HOBt (136 mg, 1.01 mmol) and EDC.HCl (193 mg, 1.01 mmol) in DCM (20 mL) was added pyridine (122 μL, 1.51 mmol) at 0° C. The RM was stirred at RT for 16 hours. The RM was quenched with NaHCO3 and extracted with DCM. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by column chromatography (Silica gel column: Silica 4 g, eluent DCM:MeOH 100:0 to 98:2). The residue was purified by preparative chiral HPLC (instrument: Agilent 1200 series, with single quad mass spectrometer; column: LUX CELLULOSE-4, 250 mm×21.1 mm, 5.0 μm; eluent: A=hexane, B=0.1% HCOOH in EtOH; flow rate: 15 mL/min; detection: 210 nm; injection volume: 0.9 mL; gradient: isocratic: 50(A):50(B)).
Example 24a: The product containing fractions were concentrated at 40° C. and washed with n-pentane (5×10 mL), decanted and dried to give the title compound as an off-white solid—first eluting stereoisomer.
Chiral HPLC (C-HPLC 2): Rt=10.764 min
LC-MS: Rt=1.08 min; MS m/z [M+H]+ 750.5/752.5, m/z [M−H]− 748.4/750.4; UPLC-MS 1
LC-MS: Rt=5.29 min; MS m/z [M+H]+ 750.2/752.2, m/z [M−H]− 748.2/750.2; UPLC-MS 2
1H NMR (400 MHz, DMSO-d6) δ 10.68 (s, br, 2H), 8.56 (d, J=8.1 Hz, 1H), 7.98 (d, J=5.6 Hz, 1H), 7.94 (d, J=8.1 Hz, 1H), 7.50 (d, J=5.1 Hz, 1H), 6.72 (m, 1H), 5.34 (s, 2H), 4.53 (m, 1H), 3.52 (m, 4H), 3.28 (m, 4H), 2.98 (m, 3H), 2.80 (m, 1H), 2.63 (m, 1H), 2.55 (m, 1H), 2.46 (m, 1H), 2.16 (m, 2H), 1.95 (m, 1H), 1.68 (m, 1H), 1.17 (t, J=7.3 Hz, 3H)
Example 24b: The product containing fractions were concentrated at 40° C. and washed with n-pentane (5×10 mL), decanted and dried to give the title compound as an off-white solid—second eluting stereoisomer.
Chiral HPLC (C-HPLC 2): Rt=18.800 min
LC-MS: Rt=1.08 min; MS m/z [M+H]+ 750.1/752.1, m/z [M−H]− 748.2/750.2; UPLC-MS 1
LC-MS: Rt=5.30 min; MS m/z [M+H]+ 750.1/752.1, m/z [M−H]− 748.2/750.2; UPLC-MS 2
1H NMR (400 MHz, DMSO-d6) δ 10.83 (s, br, 1H), 10.55 (s, br, 1H), 8.56 (d, J=8.2 Hz, 1H), 8.06 (d, J=5.3 Hz, 1H), 7.92 (d, J=8.2 Hz, 1H), 7.55 (d, J=5.3 Hz, 1H), 6.72 (m, 1H), 5.35 (s, 2H), 4.54 (m, 1H), 3.54 (m, 4H), 3.28 (m, 3H), 3.25 (m, 1H), 2.99 (m, 3H), 2.81 (m, 1H), 2.62 (m, 1H), 2.41 (m, 2H), 2.16 (m, 2H), 1.96 (m, 1H), 1.66 (m, 1H), 1.18 (t, J=7.3 Hz, 3H)
Example 25
N-(2-chloro-6-(trifluoromethyl)pyridin-3-yl)-2-(5-ethyl-2-(4-methoxycyclohex-1-en-1-yl)-7-oxo-6-(piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-4(7H)-yl)acetamide.HCl (Intermediate Y) (120 mg, 190 μmol) and DIPEA (166 μL, 950 μmol) were dissolved in DCM (5 mL) and then 3-hydroxypicolinoyl chloride (Intermediate CV) (59.9 mg, 380 μmol) was added at 0° C. and stirred for 2 hours. 3-hydroxypicolinoyl chloride (Intermediate CV) (59.9 mg, 380 μmol) was added again and the reaction was continued under stirring for 12 hours. The RM was diluted with DCM and washed with water and aq NaHCO3 (2×20 mL), washed with water and brine, dried over Na2SO4, filtered and concentrated. The crude product was combined with another experiment and purified by column chromatography (Silica gel column: Silica 4 g, eluent DCM:MeOH 100:0 to 99:1) then further purified by reverse phase preparative HPLC (RP-HPLC acidic 10: 40 to 50% B in 2 min, 50 to 60% B in 8 min) to give the title compound as an off-white solid.
The racemate was purified by preparative chiral HPLC (instrument: Agilent 1200 series, with single quad mass spectrometer; column: CELLULOSE-4, 250 mm×21.2 mm; eluent: A=hexane, B=0.1% HCOOH in MeOH:EtOH 1:1; flow rate: 20 mL/min; detection: 210 nm; injection volume: 0.9 mL; gradient: isocratic 60(A):40(B)).
Example 25a: First eluting stereoisomer, off-white solid.
Chiral HPLC (C-HPLC 1): Rt=10.070 min
LC-MS: Rt=0.98 min; MS m/z [M+H]+ 716.5/718.6, m/z [M−H]− 714.3/716.3; UPLC-MS 1
LC-MS: Rt=4.76 min; MS m/z [M+H]+ 716.2/718.2, m/z [M−H]− 714.2/716.2; UPLC-MS 2
1H NMR (400 MHz, DMSO-d6) δ 10.46 (s, br, 2H), 8.56 (d, J=8.5 Hz, 1H), 8.05 (m, 1H), 7.90 (d, J=8.4 Hz, 1H), 7.28 (m, 2H), 6.72 (m, 1H), 5.30 (s, 2H), 4.54 (m, 1H), 3.47 (m, 4H), 3.27 (s, 3H), 3.21 (m, 1H), 2.96 (m, 3H), 2.79 (m, 1H), 2.59 (m, 3H), 2.43 (m, 1H), 2.14 (m, 1H), 1.95 (m, 1H), 1.67 (m, 1H), 1.17 (t, J=7.2 Hz, 3H)
Example 25b: Second eluting stereoisomer, off-white solid.
Chiral HPLC (C-HPLC 1): Rt=16.023 min
LC-MS: Rt=0.96 min; MS m/z [M+H]+ 716.3/718.3, m/z [M−H]− 714.3/716.3; UPLC-MS 1
LC-MS: Rt=4.77 min; MS m/z [M+H]+ 716.2/718.2, m/z [M−H]− 714.2/716.2; UPLC-MS 2
1H NMR (400 MHz, DMSO-d6) δ 10.39 (s, br, 2H), 8.56 (d, J=8.0 Hz, 1H), 8.06 (m, 1H), 7.93 (d, J=8.1 Hz, 1H), 7.28 (m, 2H), 6.72 (m, 1H), 5.32 (s, 2H), 4.54 (m, 1H), 3.46 (m, 4H), 3.27 (s, 3H), 3.20 (m, 1H), 2.96 (m, 3H), 2.79 (m, 1H), 2.59 (m, 3H), 2.41 (m, 1H), 2.14 (m, 1H), 1.95 (m, 1H), 1.68 (m, 1H), 1.17 (t, J=7.1 Hz, 3H)
Example 125
Methyl 4-((5-(benzyloxy)-2-methoxyphenyl)(ethyl)amino)butanoate (184). 5-(Benzyloxy)-N-ethyl-2-methoxyaniline (146) (0.681 g, 2.65 mmol), DIEA (0.92 mL, 5.3 mmol), and methyl 4-iodobutyrate (0.72 mL, 5.3 mmol) in DMF (5 mL) were stirred at 70° C. for 5 days. The reaction mixture was cooled to rt, diluted with EtOAc (60 mL), washed with water (4×50 mL), brine (75 mL), dried over Na2SO4 and evaporated. The residue was purified by chromatography on a silica gel column (2.5×30 cm bed, packed with CHCl3), eluant: 5% MeOH in CHCl3 to get compound 184 (0.72 g, 76%) as a dark amber oil.
Methyl 4-(ethyl(5-hydroxy-2-methoxyphenyl)amino)butanoate (186). Ester 184 (0.72 g, 2.0 mmol) was stirred under reflux with 6 mL of water and 6 mL of conc HCl for 1.5 hrs and then evaporated to dryness to give acid 185 as a brown gum. The crude acid was dissolved in 50 mL of methanol containing 1 drop (cat.) of methanesulfonic acid ant the solution was kept for 2 hrs at rt. After that the mixture was concentrated in vacuum and the residue was mixed with 20 mL of saturated NaHCO3. The product was extracted with EtOAc (3×40 mL). The extract was washed with brine (40 mL), dried over Na2SO4 and evaporated. The residue was purified by chromatography on a silica gel column (2.5×30 cm bed, packed with CHCl3), eluant: 5% MeOH in CHCl3 to get compound 186 (0.444 g, 83%) as a brown oil.
N-(6-(dimethylamino)-9-(4-(ethyl(4-methoxy-4-oxobutyl)amino)-2-hydroxy-5-methoxyphenyl)-3H-xanthen-3-ylidene)-N-methylmethanaminium chloride (187). To a stirred suspension of tetramethylrhodamine ketone 101 (0.234 g, 0.830 mmol) in 10 mL of dry chloroform was added oxalyl chloride (72 μL, 0.82 mmol) upon cooling to 0-5° C. The resulting red solution was stirred for 0.5 h at 5° C., and the solution of compound 186 (0.222 g, 0.831 mmol) in dry chloroform (5 mL) was introduced. The reaction was allowed to heat to rt, stirred for 72 h, diluted with CHCl3 (100 mL and washed with sat. NaHCO3 solution (2×30 mL) The organic layer was extracted with 5% HCl (3×25 mL). The combined acid extract was washed with CHCl3 (2×15 mL; discarded), saturated with sodium acetate and extracted with CHCl3 (5×30 mL). The extract was washed with brine (50 mL), dried over Na2SO4 and evaporated. The crude product was purified by chromatography on silica gel column (2×50 cm bed, packed with CHCl3/MeOH/AcOH/H2O (100:20:5:1)), eluant: CHCl3/MeOH/AcOH/H2O (100:20:5:1) to give the product 187 (0.138 g, 29%) as a purple solid.
4-((4-(6-(dimethylamino)-3-(dimethyliminio)-3H-xanthen-9-yl)-5-hydroxy-2-methoxyphenyl)(ethyl)amino)butanoate (188). Methyl ester 187 (0.136 g, 0.240 mmol) was dissolved in 5 mL of 1M KOH (5 mmol). The reaction mixture was kept at rt for 1.5 hrs and the acetic acid (1 mL) was added. The mixture was extracted with CHCl3 (4×30 mL), and combined extract was washed with brine (20 mL), filtered through the paper filter and. The crude product was purified by chromatography on silica gel column (2×50 cm bed, packed with MeCN/H2O (4:1)), eluant: MeCN/H2O/AcOH/(4:1:1) to give the product 188 (0.069 g, 98%) as a purple solid.
N-(6-(dimethylamino)-9-(4-((4-(2,5-dioxopyrrolidin-1-yloxy)-4-oxobutyl)(ethyl)amino)-2-hydroxy-5-methoxyphenyl)-3H-xanthen-3-ylidene)-N-methylmethanaminium chloride (189). To a solution of the acid 188 (69 mg, 0.12 mmol) in DMF (2 mL) and DIEA (58 μL, 0.33 mmol) was added N-hydroxysuccinimide trifluoroacetate (70 mg, 0.33 mmol). The reaction mixture was stirred for 30 min, diluted with chloroform (100 mL) and washed with water (5×50 mL), brine (50 mL), filtered through paper and concentrated in vacuum. The crude product was purified by precipitation from CHCl3 solution (5 mL) with ether (20 mL) to give compound 189 (55 mg, 67%) as a purple powder.
Example 54
4,7-Dichloro-8-methylquinoline (53 mg, 0.25 mmol), imidazole (43 mg, 0.63 mmol), potassium t-butoxide (42 mg, 0.38 mmol), Bis(triphenylphosphine)palladium(II) dichloride (9 mg, 0.013 mmol) and DMF (3 mL) were placed in a vial under N2. The mixture was heated at 110° C. for 2 h. After cooling down to room temperature, the crude is diluted by EtOAc (20 mL) and washed by water (5 mL×2) and brine (5 mL×2). The organic phase is concentrated and purified by column chromatography on silica gel to give 7-chloro-4-(1H-imidazol-1-yl)-8-methylquinoline as a solid. (MS: [M+1]+ 244.0)
The following compounds are prepared essentially by the same method described above to prepare I-421.