The largest database of trusted experimental protocols

Salts

Salts are ionic compounds composed of positively charged cations and negatively charged anions.
They play a crucial role in various biological and chemical processes, including maintaining osmotic balance, facilitating enzyme reactions, and regulating cellular functions.
Salts can be derived from a wide range of inorganic and organic sources, and their physical and chemical properties can vary widely depending on the specific ions involved.
Researchers studying salts may utilize PubCompare.ai's AI-driven protocol comparison platform to enhance the reproducibility of their work, easily locating and comparing protocols from literature, pre-prints, and patens to identify the best methods and products.
Leveraging advanced AI, PubCompare.ai helps researchers optimaze their workflows and achieve more consistent, reliable results.

Most cited protocols related to «Salts»

In vivo maps from yeast nucleosome DNAs were prepared from log-phase cells grown in rich medium (YPD, six independent replicates) as described previously5 , as well as from cells grown in YP media supplemented with 2% galactose (three replicates) or 2.8% ethanol (four replicates) instead of glucose. The resulting DNAs were subjected to Illumina sequencing-by-synthesis. For the in vitro map, histone octamer was purified from chicken erythrocytes, assembled on purified yeast genomic DNA by salt gradient dialysis13 , digested with micrococcal nuclease and subjected to Illumina sequencing (two independent replicates). The resulting in vitro map has a lower concentration of nucleosomes along the DNA than obtained in vivo. This technical limitation was necessitated by our finding that reconstitutions at the in vivo stoichiometry on long genomic DNA resulted in insoluble chromatin that was inaccessible to micrococcal nuclease. We mapped the resulting reads to the genome and removed reads that mapped to multiple genomic locations. We extended the nucleosome reads of each experiment to the average nucleosome length in that experiment (always between 140-170 bp). For each map, we then calculated the normalized nucleosome occupancy at every base pair as the log-ratio between the number of reads that cover that base pair and the average number of reads per base pair across the genome. We then set the genomic mean in each sample to zero by subtracting the genome-wide mean from every base pair. The independent replicates for each experiment type were in excellent agreement, so we averaged the replicates within each type. The resulting tracks are termed normalized nucleosome occupancy throughout the manuscript. The detailed formulation of our sequence-based model for nucleosome positioning is given in the Methods and is similar to that described in ref. 17 , except that it was learned using only the in vitro data. For our data, results and model, see http://genie.weizmann.ac.il/pubs/nucleosomes08/, and GEO accession number GSE13622.
Publication 2008
Anabolism Base Pairing Cells Chickens Chromatin Cordocentesis Erythrocytes Ethanol Galactose Genie Genome Glucose Histones Micrococcal Nuclease Microtubule-Associated Proteins Nucleosomes Saccharomyces cerevisiae Salts
Each sample was prepared by combining 20 nM scaffold (p7560 or p8064, derived from M13mp18), 100 nM of each staple oligonucleotide, buffer and salts including 5 mM Tris, 1 mM EDTA (pH 7.9 at 20°C), and 22 mM MgCl2, except for the 30-helix-per-x-raster block, which was folded with 15 mM MgCl2. Folding was carried out by rapid heat denaturation followed by slow cooling from 80 to 61°C over 80 min, then 60 to 24°C over 173 h. Samples were electrophoresed on 2% agarose gels (0.5× TBE, 11 mM MgCl2, 0.5 μg/ml ethidium bromide) at 70 V for 4 h in an ice-water bath. Leading monomer bands were visualized with ultraviolet light, physically excised, crushed with a pestle (17 (link)) and filtered through a cellulose-acetate spin column for 3 min at 15 000 × g, 4°C.
Publication 2009
acetylcellulose Bath Buffers Edetic Acid Ethidium Bromide Gels Helix (Snails) Magnesium Chloride Oligonucleotides Salts Sepharose Staple, Surgical Strains Tromethamine Ultraviolet Rays
The cDNA library was size-fractionated on a 2% TAE low melt agarose gel (Lonza catalog # 50080), with a 100 bp ladder (Roche catalog # 14703220) run in adjacent lanes. Prior to loading on the gel, the ligated cDNA library was taken over a G50 Sephadex column to remove excess salts that interfere with loading the sample in the wells. After post-staining the gel in ethidium bromide, a narrow slice (∼2mm) of the cDNA lane centered at the 300 bp marker was cut. The slice was extracted using the QiaEx II kit (Qiagen catalog # 20021), and the extract was filtered over a Microcon YM-100 microconcentrator (Millipore catalog # 42409) to remove DNA fragments shorter than 100 bps. Filtration was performed by pipeting the extract into the upper chamber of a microconcentrator, and adding ultra pure water (Gibco catalog # 10977) to a volume of 500 uLs. The filter was spun at 500 X g until only 50 uLs remained in the upper chamber (about 20 minutes per spin) and then the upper chamber volume was replenished to 500 uLs. This procedure was repeated 6 times. The filtered sample was then recovered from the filter chamber according to the manufacturer's protocol. Fragment length distributions obtained after size selection were estimated from the spike-in sequences and are show in Supplementary Fig. 1.
Publication 2010
cDNA Library DNA, Complementary Ethidium Bromide Filtration Salts sephadex Sepharose

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2010
Dialysis Gelatins Lysine methacrylic acid Phosphates Pigs Saline Solution Salts Skin Technique, Dilution
The Luria-Bertani (LB) media (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) is obtained from Fisher Scientific (Pittsburgh, PA). The supplemented minimal media contains M9 minimal salts (6.8 g/L Na2PO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl) from Sigma, 2 mM MgSO4 (Fischer Scientific), 100 μM CaCl2 (Fischer Scientific), 0.4% glucose (Sigma), 0.05 g/L leucine (Acros Organics, Belgium), 5 μg/mL chloramphenicol (Acros Organics), and an adjusted pH of 7.4. The expression system is a ColE1 vector with chloramphenicol resistance (derived from pProTet, Clontech). The expression cassette contains a σ70 constitutive promoter (BioBrick J23100), the RBS sequence, followed by the mRFP1 fluorescent protein reporter. XbaI and SacI restriction sites are located before the RBS and after the start codon. An RBS with a desired sequence is inserted into the expression vector using standard cloning techniques. Pairs of complementary oligonucleotides are designed with XbaI and SacI overhangs and the vector is digested with XbaI and SacI restriction enzymes (NEB, Ipswich, MA). Ligation of the annealed oligonucleotides with cut vector results in a nicked plasmid, which is transformed into E. coli DH10B cells. Sequencing is used to verify a correct clone.
The AND gate genetic circuit is composed of three plasmids: pBACr-AraT7940, pBR939b, and pAC-SalSer914 with kanamycin, ampicillin, and chloramphenicol resistance markers, respectively. The PBAD promoter maximum expression level was modified by inserting designed synthetic RBSs on plasmid pBACr-AraT7940. Plasmid pBACr-AraT7940 was digested with BamHI and ApaLI enzymes and pairs of oligonucleotides were designed to contain the desired RBS sequence and corresponding overhangs. Ligation, transformation, selection, and sequencing proceeded as described above.
Publication 2009
Ampicillin Cells Chloramphenicol Chloramphenicol Resistance Clone Cells Cloning Vectors Codon, Initiator DNA Restriction Enzymes Enzymes Escherichia coli Gene Circuits Glucose Kanamycin Leucine Ligation Mrfp1 protein Oligonucleotides Plasmids Saccharomyces cerevisiae Salts Sodium Chloride Sulfate, Magnesium

Most recents protocols related to «Salts»

Not available on PMC !

Example 10

Compound I Form F was obtained via slurry of Compound I calcium salt hydrate Form A in MEK at room temperature.

A. X-Ray Powder Diffraction

XRPD was performed with a Panalytical X'Pert3 Powder XRPD on a Si zero-background holder. The 20 position was calibrated against a Panalytical Si reference standard disc. The XRPD diffractogram for Compound I Form F is shown in FIG. 16 and summarized in Table 21.

TABLE 21
XRPD signals for crystalline Compound I Form F
Angle (degrees
XRPD Peaks2-Theta ± 0.2)Intensity %
19.14100.0
29.0689.3
35.348.5
47.548.2
510.623.7
611.918.5

Compound I Form F is characterized by the following elemental analysis Table:

CompoundCompound
Batch #CaI:Ca ratioNaI:Na ratio
114%1:25%1:1  
2 7%1:13%1:0.8

Patent 2024
14-3-3 Proteins Calcium, Dietary Powder Salts X-Ray Diffraction

Example 14

Compound I calcium salt EtOH solvate Form C was obtained via slurry of Compound I calcium salt amorphous form in EtOH/H2O (9:1, v:v) at room temperature.

A. X-Ray Powder Diffraction

XRPD on Compound I calcium salt EtOH solvate Form C was performed with a Panalytical X'Pert3 Powder XRPD on a Si zero-background holder. The 2 theta position was calibrated against a Panalytical Si reference standard disc. The XRPD diffractogram for Compound I calcium salt EtOH solvate Form C is shown in FIG. 20 and summarized in Table 25.

TABLE 25
XRPD signals for Compound I calcium
salt EtOH solvate Form C
XRPD Angle (degrees Intensity
Peaks2-Theta ± 0.2)%
14.2100.0
25.043.2
35.713.5

Patent 2024
Calcium, Dietary Ethanol Powder Roentgen Rays Salts

Example 24

Compound I calcium salt cyclopentyl methyl ether (CPME) solvate Form A was obtained via slurry of Compound I calcium salt Form A in IPA/CPME (1:1, v/v) at room temperature.

A. X-Ray Powder Diffraction

XRPD was performed with a Panalytical X'Pert3 Powder XRPD on a Si zero-background holder. The 20 position was calibrated against a Panalytical Si reference standard disc. The XRPD diffractogram for Compound I calcium salt CPME solvate Form A is shown in FIG. 33 and summarized in Table 41.

TABLE 41
Compound I calcium salt
CPME solvate Form A
Angle (degrees
XRPD Peaks2-Theta ± 0.2)Intensity %
15.5100
216.64.38
311.03.86

Patent 2024
Calcium, Dietary Ethyl Ether Powder Salts Sodium Chloride, Dietary X-Ray Diffraction

Example 23

Compound I calcium salt 1,2-dimethoxyethane solvate Form B was obtained via slurry of Compound I calcium salt hydrate Form A in 1,2-dimethoxyethane at room temperature.

A. X-Ray Powder Diffraction

XRPD was performed with a Panalytical X'Pert3 Powder XRPD on a Si zero-background holder. The 20 position was calibrated against a Panalytical Si reference standard disc. The XRPD diffractogram for Compound I calcium salt 1,2-dimethoxy ethane solvate Form B is shown in FIG. 32 and summarized in Table 40.

TABLE 40
Compound I calcium salt
1,2-dimethoxyethane solvate Form B
Angle (degrees
XRPD Peaks2-Theta ± 0.2)Intensity %
14.6100.0
27.743.7
39.130.4
413.727.4
512.123.7
622.920.6
710.119.2
816.518.0
917.014.4
1021.913.6
1119.911.8
1220.711.6
1315.110.7
1423.810.4

Patent 2024
1,2-dimethoxyethane Calcium, Dietary Ethane Powder Salts Sodium Chloride, Dietary X-Ray Diffraction

Example 11

Compound I calcium salt hydrate Form G was obtained via fast cooling of Compound I calcium salt hydrate Form A solution in EtOH:H2O (v:v, 90:10).

A. X-Ray Powder Diffraction:

XRPD was performed with a Panalytical X'Pert3 Powder XRPD on a Si zero-background holder. The 2 theta position was calibrated against a Panalytical Si reference standard disc. The XRPD diffractogram for Compound I calcium salt hydrate Form G is shown in FIG. 17 and summarized in Table 22.

TABLE 22
XRPD signals for crystalline Compound I
calcium salt hydrate Form G
XRPD Angle (degrees Intensity
Peaks2-Theta ± 0.2)%
15.9100.0
214.867.3
314.763.9
46.058.4
58.817.4
611.814.6
711.98.8
826.66.5

Patent 2024
14-3-3 Proteins Calcium, Dietary Ethanol Powder Salts X-Ray Diffraction

Top products related to «Salts»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.
Sourced in United States, Germany, United Kingdom, India, Italy, France, Spain, China, Canada, Sao Tome and Principe, Poland, Belgium, Australia, Switzerland, Macao, Denmark, Ireland, Brazil, Japan, Hungary, Sweden, Netherlands, Czechia, Portugal, Israel, Singapore, Norway, Cameroon, Malaysia, Greece, Austria, Chile, Indonesia
NaCl is a chemical compound commonly known as sodium chloride. It is a white, crystalline solid that is widely used in various industries, including pharmaceutical and laboratory settings. NaCl's core function is to serve as a basic, inorganic salt that can be used for a variety of applications in the lab environment.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in Germany, United States, Italy, India, China, United Kingdom, France, Poland, Spain, Switzerland, Australia, Canada, Brazil, Sao Tome and Principe, Ireland, Belgium, Macao, Japan, Singapore, Mexico, Austria, Czechia, Bulgaria, Hungary, Egypt, Denmark, Chile, Malaysia, Israel, Croatia, Portugal, New Zealand, Romania, Norway, Sweden, Indonesia
Acetonitrile is a colorless, volatile, flammable liquid. It is a commonly used solvent in various analytical and chemical applications, including liquid chromatography, gas chromatography, and other laboratory procedures. Acetonitrile is known for its high polarity and ability to dissolve a wide range of organic compounds.
Sourced in United States, United Kingdom, Germany, France, Canada, Switzerland, Italy, Australia, Belgium, China, Japan, Austria, Spain, Brazil, Israel, Sweden, Ireland, Netherlands, Gabon, Macao, New Zealand, Holy See (Vatican City State), Portugal, Poland, Argentina, Colombia, India, Denmark, Singapore, Panama, Finland, Cameroon
L-glutamine is an amino acid that is commonly used as a dietary supplement and in cell culture media. It serves as a source of nitrogen and supports cellular growth and metabolism.
Sourced in Germany, United States, India, United Kingdom, Italy, China, Spain, France, Australia, Canada, Poland, Switzerland, Singapore, Belgium, Sao Tome and Principe, Ireland, Sweden, Brazil, Israel, Mexico, Macao, Chile, Japan, Hungary, Malaysia, Denmark, Portugal, Indonesia, Netherlands, Czechia, Finland, Austria, Romania, Pakistan, Cameroon, Egypt, Greece, Bulgaria, Norway, Colombia, New Zealand, Lithuania
Sodium hydroxide is a chemical compound with the formula NaOH. It is a white, odorless, crystalline solid that is highly soluble in water and is a strong base. It is commonly used in various laboratory applications as a reagent.
Sourced in United States, Germany, United Kingdom, Italy, India, France, Spain, China, Belgium, Sao Tome and Principe, Canada, Denmark, Poland, Australia, Ireland, Israel, Singapore, Macao, Switzerland, Brazil, Mexico, Hungary, Netherlands, Egypt, Japan, Sweden, Indonesia, Czechia, Chile
Potassium chloride (KCl) is an inorganic compound that is commonly used as a laboratory reagent. It is a colorless, crystalline solid with a high melting point. KCl is a popular electrolyte and is used in various laboratory applications.
Sourced in Germany, United States, Italy, India, United Kingdom, China, France, Poland, Spain, Switzerland, Australia, Canada, Sao Tome and Principe, Brazil, Ireland, Japan, Belgium, Portugal, Singapore, Macao, Malaysia, Czechia, Mexico, Indonesia, Chile, Denmark, Sweden, Bulgaria, Netherlands, Finland, Hungary, Austria, Israel, Norway, Egypt, Argentina, Greece, Kenya, Thailand, Pakistan
Methanol is a clear, colorless, and flammable liquid that is widely used in various industrial and laboratory applications. It serves as a solvent, fuel, and chemical intermediate. Methanol has a simple chemical formula of CH3OH and a boiling point of 64.7°C. It is a versatile compound that is widely used in the production of other chemicals, as well as in the fuel industry.

More about "Salts"

ionic compounds, cations, anions, osmotic balance, enzyme reactions, cellular functions, inorganic sources, organic sources, physical properties, chemical properties, PubCompare.ai, AI-driven platform, protocol comparison, literature, pre-prints, patents, workflows, reproducibility, reliable results, sodium chloride, potassium chloride, sodium hydroxide, fetal bovine serum, dimethyl sulfoxide, bovine serum albumin, penicillin/streptomycin, acetonitrile, L-glutamine, cell biology, biochemistry, analytical chemistry