Acids
They are widely found in nature and play crucial roles in various biological and chemical processes.
Acids can be organic (e.g., acetic acid, citric acid) or inorganic (e.g., sulfuric acid, hydrochloric acid), and they can be classified based on their strength, structure, or source.
The study of acids is fundamental to the fields of chemistry, biochemistry, and physiology, as they are involved in numerous essential functions, such as pH regulation, metabolism, and catalysis.
Researchers can utilize PubCompare.ai to efficiently locate and analyze the best protocols for working with acids from the literature, preprints, and patents, optimizing their research workflow and enhancing reproducibility in acids analysis through AI-driven protocol comparisons.
Most cited protocols related to «Acids»
Most recents protocols related to «Acids»
Example 12
There has been a growing interest in the fabrication of nanofibers derived from natural polymers due to their ability to mimic the structure and function of extracellular matrix. Electrospinning is a simple technique to obtain nano-micro fibers with customized fiber topology and composition (
The current study aimed to improve and maintain nano-fibrous and porous structure of the electrospun membranes by introducing a new post electrospinning chemical treatment. Membrane thickness was tripled in this research in order to increase the general tearing strength. Scanning electron micrograph (SEM) examination (
Chitosan membranes treated by TEA/tboc showed better nano-fiber morphology characteristics than membranes neutralized by saturated Na2CO3 solution before and after being soaked in PBS. Retention of the nanofibrous structure for guided tissue regeneration applications may be of benefit for enabling nutrient exchange between soft gingival tissue and bone compartments and for mimicking the natural nanofibrillar components of the extracellular matrix during regeneration.
Example 1
A secondary battery pouch film is produced, after the drying process temperature of the two-component type solvent-based emulsion having a start temperature of 175° C. to 190° C. is set to 100° C.
A secondary battery pouch film is produced, after the process temperature of the two-component type solvent-based emulsion having a start temperature lowered to 135° C. to 150° C. is set to 100° C.
Example 2
A secondary battery pouch film is produced, after the drying process temperature of the two-component type solvent-based emulsion having a start temperature of 175° C. to 190° C. is set to 120° C.
A secondary battery pouch film is produced, after the process temperature of the two-component type solvent-based emulsion having a start temperature lowered to 135° C. to 150° C. is set to 120° C.
Example 3
A secondary battery pouch film is produced, after the drying process temperature of the two-component type solvent-based emulsion having a start temperature of 175° C. to 190° C. is set to 135° C.
A secondary battery pouch film is produced, after the process temperature of the two-component type solvent-based emulsion having a start temperature lowered to 135° C. to 150° C. is set to 135° C.
Example 4
A secondary battery pouch film is produced, after the drying process temperature of the two-component type solvent-based emulsion having a start temperature of 175° C. to 190° C. is set to 150° C.
A secondary battery pouch film is produced, after the process temperature of the two-component type solvent-based emulsion having a start temperature lowered to 135° C. to 150° C. is set to 150° C.
Example 5
A secondary battery pouch film is produced, after the drying process temperature of the two-component type solvent-based emulsion having a start temperature of 175° C. to 190° C. is set to 165° C.
Example 6
A secondary battery pouch film is produced, after the drying process temperature of the two-component type solvent-based emulsion having a start temperature of 175° C. to 190° C. is set to 180° C.
Example 7
A secondary battery pouch film is produced, after the drying process temperature of the two-component type solvent-based emulsion having a start temperature of 175° C. to 190° C. is set to 200° C.
Example 8
A secondary battery pouch film is produced, after the process temperature of the two-component type solvent-based emulsion having a start temperature lowered to 135° C. to 150° C. is set to 165° C.
Example 9
A secondary battery pouch film is produced, after the process temperature of the two-component type solvent-based emulsion having a start temperature lowered to 135° C. to 150° C. is set to 180° C.
Example 10
A secondary battery pouch film is produced, after the process temperature of the two-component type solvent-based emulsion having a start temperature lowered to 135° C. to 150° C. is set to 200° C.
Evaluation of Properties
Evaluation of Initial Peel Strength
-
- (1) An experimental sample is prepared by cutting the secondary battery pouch film to have a size of 1.5 cm by 15 cm in width and length, respectively.
- (2) The metal layer and the sealant layer are peeled off, and the peel strength is measured.
Evaluation of Hydrofluoric Acid Resistance
-
- (1) After the secondary battery pouch film is cut to have a size of 10 cm by 20 cm, two surfaces on both sides thermally adhered to each other.
- (2) A manufacturing solution (electrolyte+water (10,000 ppm (about 1%) of concentration of water in the solution)) is put inside the secondary battery pouch having the two surfaces adhering to each other, thermal adhering is performed, and a pack is manufactured.
- (3) The pack is stored at a high-temperature condition (85° C.) for 24 hours.
- (4) The electrolyte inside the pack is removed, and the sample is prepared (width 1.5 cm and length 15 cm) in the same manner as in the evaluation of initial peel strength.
- (5) The peel strength between the metal layer and the sealant layer is measured.
Evaluation of Electrolyte Resistance
-
- (1) An experimental sample is prepared by cutting the secondary battery pouch film to have a size of 1.5 cm by 15 cm in width and length, respectively.
- (2) The prepared sample is impregnated with a standard electrolyte (1.0 M LiPF6(EC/DEC/EMC: 1/1/1)) and is stored at a high temperature condition (85° C.) for 24 hours.
- (3) After the electrolyte is washed off, the metal layer and the sealant layer are peeled off, and the peel strength is measured.
Evaluation of Formability
-
- (1) A sample is prepared by cutting the produced secondary battery pouch film to have a size of 15 cm by 15 cm.
- (2) The prepared samples are formed by using a test die (size of 3 cm×4 cm) manufactured by Youlchon Chemical, Co., Ltd.
- (3) Evaluation of formability is repeatedly performed by changing the setting of the forming depth and is performed until ten or more samples are not broken.
- (4) A forming depth, in ten or more samples are not broken, is measured.
Evaluation of Penetration Strength
-
- (1) A sample having a width of 35 mm and a length of 600 mm is produced from the secondary battery pouch film.
- (2) The penetration strength is measured at intervals of about 40 mm in a direction from the outer layer toward the inner layer.
- (3) After the strength is measured ten times, an average value thereof is recorded.
In this case, the higher the formability, a forming process range may be wider during manufacturing of a battery. It is appropriate that the electrolyte resistance strength is equal to or higher than 90% of the initial peel strength, and the hydrofluoric acid resistance strength should be equal to or higher than 5 N/15 mm. Since the electrolyte resistance strength and the hydrofluoric acid resistance strength are much affected by the initial peel strength, it is appropriate that the initial peel strength is equal to or higher than 14 N/15 mm.
Table 2 shows evaluation of physical properties based on the curing start temperature and the drying process temperature.
As known from the above, when an emulsion having a start temperature of 175° C. to 190° C. (Comparative Examples 1, 2, 3, and 4) is applied, the initial peel strength is relatively very low to be 10 N or lower when the drying process temperature is 150° C. or lower. The low initial peel strength resulted in a phenomenon where the sealant layer and the metal layer are completely separated from each other during evaluation of the electrolyte resistance strength and the hydrofluoric acid resistance strength.
When the drying process temperature is 165° C. to 200° C. (Comparative Examples 5, 6, and 7), the initial peel strength, the electrolyte resistance strength, and the hydrofluoric acid resistance strength are all good. However, the penetration strength increased to 24 N or higher. As well, a result that the formability does not reach 6.5 mm is obtained.
When the emulsion having a start temperature lowered to 135° C. to 150° C. is applied, the initial peel strength is 10 N/15 mm or lower only when the drying process temperature is 100° C. (Example 1), and the initial peel strength is 12 N/15 mm or higher in a drying process condition of 120° C. or higher (Examples and Comparative Examples 8 to 10). It is confirmed that a decrease in start temperature improves the adhesiveness even at a low drying process temperature.
However, the hydrofluoric acid resistance strength does not reach 5 N/15 mm in the 120° C. condition (Example 2), and the initial peel strength, the electrolyte resistance strength, and the hydrofluoric acid resistance strength are all good in conditions of 135° C. or higher (Examples 3 and 4 and Comparative Examples 8 to 10).
Similar to Comparative Examples 1 to 7, results of an increase in penetration strength in a condition of 165° C. to 200° C. (Comparative Examples 8, 9, 10) and the result of formability smaller than 6.5 mm is obtained.
The penetration strength increased to 20 N or higher at a condition of 135° C. to 150° C. (Examples 3 and 4), but has the best of the formability of 6.5 mm or more.
Therefore, only in a drying process temperature condition corresponding to the start temperature, all the properties of the initial peel strength, the electrolyte resistance strength, the hydrofluoric acid resistance strength are appropriate. When the drying process temperature is above 150° C., and particularly 165° C. or higher as found in an experiment, the penetration strength of the secondary battery pouch film significantly increases, and thus the formability decreases.
Therefore, in order to appropriately obtain all the physical properties, it is preferable to lower the drying process temperature to 150° C. or below, and to this end, it is preferable to lower the start temperature of the solvent-based emulsion to 150° C. or below.
According to the exemplary embodiments of the invention, when the secondary battery pouch film is manufactured, the primer layer composition that is interposed between the metal layer and the melt-extrusion resin layer or the sealant layer is made of a two-component curing-type organic solvent-based emulsion composition containing acid-modified polypropylene and a curing agent, wherein the curing start temperature and the drying process temperature are adjusted, and thermal lamination is not performed. Thereby, good formability, as well as good initial peel strength, hydrofluoric acid resistance, electrolyte resistance, etc. may be achieved.
The present invention was made under Project ID 20007148 from the Ministry of Trade, Industry and Energy, Korea Evaluation Institute of Industrial Technology under research project “Development of Technology of Materials and Components—Materials and Components Packaging Type”, research title “Performance Evaluation of Medium and Large Size Secondary Battery Pouch and Empirical Research for Application to Demand Companies” granted to Youl Chon Chemical Co., Ltd. For the period 2019 Sep. 1-2021 Feb. 28.
While the present invention has been described with respect to the specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Example 1
The effect of Tu on the electrochemical behavior of a chalcopyrite electrode was studied in a conventional 3-electrode glass-jacketed cell. A CuFeS2 electrode was using as working electrode, a saturated calomel electrode (SCE) was used as reference, and a graphite bar was used as counter-electrode. The CuFeS2 electrode was polished using 600 and 1200 grit carbide paper. All experiments were conducted at 25° C. using a controlled temperature water bath. The electrolyte composition was 500 mM H2SO4, 20 mM Fe2SO4 and 0-100 mM Tu. Before starting any measurement, solutions were bubbled with N2 for 30 minutes to reduce the concentration of dissolved 02. Open circuit potential (OCP) was recorded until changes of no more than 0.1 mV/min were observed. After a steady OCP value was observed, electrochemical impedance spectroscopy (EIS) was conducted at OCP using a 5 mV a.c. sinusoidal perturbation from 10 kHz to 10 mHz. Linear polarization resistance (LPR) tests were also conducted using a scan rate of 0.05 mV/s at ±15 mV from OCP.
Linear potential scans were conducted at electrode potentials ±15 mV from the OCP measured at each Tu concentration. All scans showed a linear behavior within the electrode potential range analyzed. An increase in the slope of the experimental plots was observed with increasing Tu concentration. The slope of these curves was used to estimate the value of the polarization resistance (Ret) at each concentration. These values were then used to estimate the values of the dissolution current density using equation 1:
A column leach of different acid-cured copper ores was conducted with Tu added to the leach solution. A schematic description of the column setup is shown in
The specific mineralogical composition of these ores are provided in Table 1. The Cu contents of Ore A, Ore B, and Ore C were 0.52%, 1.03%, and 1.22% w/w, respectively. Prior to leaching, ore was “acid cured” to neutralize the acid-consuming material present in the ore.
That is, the ore was mixed with a concentrated sulfuric acid solution composed of 80% concentrated sulfuric acid and 20% de-ionized water and allowed to sit for 72 hours. For one treatment using Ore C, Tu was added to the sulfuric acid curing solutions.
The initial composition of the leaching solutions included 2.2 g/L Fe (i.e. 40 mM, provided as ferric sulfate) and pH 2 for the control experiment, with or without 0.76 g/L Tu (i.e. 10 mM). The initial load of mineral in each column was 1.6 to 1.8 kg of ore. The superficial velocity of solution through the ore column was 7.4 L m−2 h−1. The pH was adjusted using diluted sulfuric acid. These two columns were maintained in an open-loop or open cycle configuration (i.e. no solution recycle) for the entire leaching period.
The results of leaching tests on the Ore A, Ore B and Ore C are shown in
Referring to
The averages for the last 7 days reported in
“Bottle roll” leaching experiments in the presence of various concentrations of Tu were conducted for coarse Ore A and Ore B. The tests were conducted using coarsely crushed (100% passing ½ inch) ore.
Prior to leaching, the ore was cured using a procedure similar to what was performed on the ore used in the column leaching experiments. The ore was mixed with a concentrated sulfuric acid solution composed of 80% concentrated sulfuric acid and 20% de-ionized water and allowed to settle for 72 hours to neutralize the acid-consuming material present in the ore. For several experiments, different concentrations of Tu were added to the ore using the sulfuric acid curing solutions.
The bottles used for the experiments were 20 cm long and 12.5 cm in diameter. Each bottle was loaded with 180 g of cured ore and 420 g of leaching solution, filling up to around one third of the bottle's volume.
The leaching solution from each bottle was sampled at 2, 4, 6 and 8 hours, and then every 24 hours thereafter. Samples were analyzed using atomic absorption spectroscopy (AAS) for their copper content.
The conditions for the bottle roll experiments are listed in Table 2. Experiments #1 to #6 were conducted using only the original addition of Tu into the bottles. For experiments #7 to #11, Tu was added every 24 hours to re-establish the Tu concentration.
A positive effect of Tu on copper leaching was observed. For the coarse ore experiments, a plateau was not observed until after 80 to 120 hours. Tu was added periodically to the coarse ore experiments, yielding positive results on copper dissolution.
The effect of different concentrations of Tu in the leach solution on the leaching of coarse ore (experiments #1 to #11 as described in Table 2) is shown in
For ore B, Tu was periodically added every 24 hours to re-establish the thioruea concentration in the system and thus better emulate the conditions in the column leach experiments. As may be observed from
As may be observed from
Interestingly, solutions containing 100 mM Tu did not appear to be much more effective on copper extraction than those containing no Tu, and even worse at some time points. This is consistent with the results of Deschenes and Ghali, which reported that solutions containing 200 mM Tu (i.e. 15 g/L) did not improve copper extraction from chalcopyrite. Tu is less stable at high concentrations and decomposes. Accordingly, it is possible that, when initial Tu concentrations are somewhat higher than 30 mM, sufficient elemental sulfur may be produced by decomposition of Tu to form a film on the chalcopyrite mineral and thereby assist in its passivation. It is also possible that, at high Tu dosages, some copper precipitates from solution (e.g. see
Example 2
N-(2-chloro-4-(trifluoromethyl)phenyl)-2-(5-ethyl-2-morpholino-7-oxo-6-(piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-4(7H)-yl)acetamide (Intermediate B) (200 mg, 352 μmol) was suspended in DMF (5 mL). Perfluorophenyl 3-hydroxypicolinate (Intermediate CT) (215 mg, 703 μmol) and Et3N (97.0 μL, 703 μmol) were added and the RM was stirred at 70° C. for 3 hours. The RM was concentrated under reduced pressure. The crude product was first purified by column chromatography (Silica gel column: Silica 12 g, eluent DCM:MeOH 100:0 to 90:10). Then a second purification by reverse phase preparative HPLC (RP-HPLC acidic 9: 40 to 50% B in 2 min, 50 to 55% B in 10 min) afforded the title compound.
LC-MS: Rt=0.98 min; MS m/z [M+H]+ 690.6/692.6, m/z [M−H]− 688.4/690.3; UPLC-MS 1
LC-MS: Rt=4.84 min; MS m/z [M+H]+ 690.2/692.2 m/z [M−H]− 688.3/690.3; UPLC-MS 2
1H NMR (400 MHz, DMSO-d6) δ 10.37 (s, br, 1H), 10.34 (s, br, 1H), 8.05 (m, 2H), 7.96 (d, J=2.1 Hz, 1H), 7.72 (dd, J=2.1 Hz, 8.7 Hz, 1H), 7.28 (m, 2H), 5.21 (s, 2H), 4.53 (m, 1H), 3.66 (m, 4H), 3.46 (m, 3H), 3.38 (m, 4H), 3.20 (m, 1H), 2.92 (m, 3H), 2.76 (m, 1H), 2.58 (m, 1H), 1.16 (t, J=7.5 Hz, 3H)
Example 24
To the stirred solution of N-(2-chloro-6-(trifluoromethyl)pyridin-3-yl)-2-(5-ethyl-2-(4-methoxycyclohex-1-en-1-yl)-7-oxo-6-(piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-4(7H)-yl)acetamide (Intermediate Y) (300 mg, 504 μmol), 4-chloro-3-hydroxypicolinic acid (140 mg, 807 μmol), HOBt (136 mg, 1.01 mmol) and EDC.HCl (193 mg, 1.01 mmol) in DCM (20 mL) was added pyridine (122 μL, 1.51 mmol) at 0° C. The RM was stirred at RT for 16 hours. The RM was quenched with NaHCO3 and extracted with DCM. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by column chromatography (Silica gel column: Silica 4 g, eluent DCM:MeOH 100:0 to 98:2). The residue was purified by preparative chiral HPLC (instrument: Agilent 1200 series, with single quad mass spectrometer; column: LUX CELLULOSE-4, 250 mm×21.1 mm, 5.0 μm; eluent: A=hexane, B=0.1% HCOOH in EtOH; flow rate: 15 mL/min; detection: 210 nm; injection volume: 0.9 mL; gradient: isocratic: 50(A):50(B)).
Example 24a: The product containing fractions were concentrated at 40° C. and washed with n-pentane (5×10 mL), decanted and dried to give the title compound as an off-white solid—first eluting stereoisomer.
Chiral HPLC (C-HPLC 2): Rt=10.764 min
LC-MS: Rt=1.08 min; MS m/z [M+H]+ 750.5/752.5, m/z [M−H]− 748.4/750.4; UPLC-MS 1
LC-MS: Rt=5.29 min; MS m/z [M+H]+ 750.2/752.2, m/z [M−H]− 748.2/750.2; UPLC-MS 2
1H NMR (400 MHz, DMSO-d6) δ 10.68 (s, br, 2H), 8.56 (d, J=8.1 Hz, 1H), 7.98 (d, J=5.6 Hz, 1H), 7.94 (d, J=8.1 Hz, 1H), 7.50 (d, J=5.1 Hz, 1H), 6.72 (m, 1H), 5.34 (s, 2H), 4.53 (m, 1H), 3.52 (m, 4H), 3.28 (m, 4H), 2.98 (m, 3H), 2.80 (m, 1H), 2.63 (m, 1H), 2.55 (m, 1H), 2.46 (m, 1H), 2.16 (m, 2H), 1.95 (m, 1H), 1.68 (m, 1H), 1.17 (t, J=7.3 Hz, 3H)
Example 24b: The product containing fractions were concentrated at 40° C. and washed with n-pentane (5×10 mL), decanted and dried to give the title compound as an off-white solid—second eluting stereoisomer.
Chiral HPLC (C-HPLC 2): Rt=18.800 min
LC-MS: Rt=1.08 min; MS m/z [M+H]+ 750.1/752.1, m/z [M−H]− 748.2/750.2; UPLC-MS 1
LC-MS: Rt=5.30 min; MS m/z [M+H]+ 750.1/752.1, m/z [M−H]− 748.2/750.2; UPLC-MS 2
1H NMR (400 MHz, DMSO-d6) δ 10.83 (s, br, 1H), 10.55 (s, br, 1H), 8.56 (d, J=8.2 Hz, 1H), 8.06 (d, J=5.3 Hz, 1H), 7.92 (d, J=8.2 Hz, 1H), 7.55 (d, J=5.3 Hz, 1H), 6.72 (m, 1H), 5.35 (s, 2H), 4.54 (m, 1H), 3.54 (m, 4H), 3.28 (m, 3H), 3.25 (m, 1H), 2.99 (m, 3H), 2.81 (m, 1H), 2.62 (m, 1H), 2.41 (m, 2H), 2.16 (m, 2H), 1.96 (m, 1H), 1.66 (m, 1H), 1.18 (t, J=7.3 Hz, 3H)
Example 25
N-(2-chloro-6-(trifluoromethyl)pyridin-3-yl)-2-(5-ethyl-2-(4-methoxycyclohex-1-en-1-yl)-7-oxo-6-(piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-4(7H)-yl)acetamide.HCl (Intermediate Y) (120 mg, 190 μmol) and DIPEA (166 μL, 950 μmol) were dissolved in DCM (5 mL) and then 3-hydroxypicolinoyl chloride (Intermediate CV) (59.9 mg, 380 μmol) was added at 0° C. and stirred for 2 hours. 3-hydroxypicolinoyl chloride (Intermediate CV) (59.9 mg, 380 μmol) was added again and the reaction was continued under stirring for 12 hours. The RM was diluted with DCM and washed with water and aq NaHCO3 (2×20 mL), washed with water and brine, dried over Na2SO4, filtered and concentrated. The crude product was combined with another experiment and purified by column chromatography (Silica gel column: Silica 4 g, eluent DCM:MeOH 100:0 to 99:1) then further purified by reverse phase preparative HPLC (RP-HPLC acidic 10: 40 to 50% B in 2 min, 50 to 60% B in 8 min) to give the title compound as an off-white solid.
The racemate was purified by preparative chiral HPLC (instrument: Agilent 1200 series, with single quad mass spectrometer; column: CELLULOSE-4, 250 mm×21.2 mm; eluent: A=hexane, B=0.1% HCOOH in MeOH:EtOH 1:1; flow rate: 20 mL/min; detection: 210 nm; injection volume: 0.9 mL; gradient: isocratic 60(A):40(B)).
Example 25a: First eluting stereoisomer, off-white solid.
Chiral HPLC (C-HPLC 1): Rt=10.070 min
LC-MS: Rt=0.98 min; MS m/z [M+H]+ 716.5/718.6, m/z [M−H]− 714.3/716.3; UPLC-MS 1
LC-MS: Rt=4.76 min; MS m/z [M+H]+ 716.2/718.2, m/z [M−H]− 714.2/716.2; UPLC-MS 2
1H NMR (400 MHz, DMSO-d6) δ 10.46 (s, br, 2H), 8.56 (d, J=8.5 Hz, 1H), 8.05 (m, 1H), 7.90 (d, J=8.4 Hz, 1H), 7.28 (m, 2H), 6.72 (m, 1H), 5.30 (s, 2H), 4.54 (m, 1H), 3.47 (m, 4H), 3.27 (s, 3H), 3.21 (m, 1H), 2.96 (m, 3H), 2.79 (m, 1H), 2.59 (m, 3H), 2.43 (m, 1H), 2.14 (m, 1H), 1.95 (m, 1H), 1.67 (m, 1H), 1.17 (t, J=7.2 Hz, 3H)
Example 25b: Second eluting stereoisomer, off-white solid.
Chiral HPLC (C-HPLC 1): Rt=16.023 min
LC-MS: Rt=0.96 min; MS m/z [M+H]+ 716.3/718.3, m/z [M−H]− 714.3/716.3; UPLC-MS 1
LC-MS: Rt=4.77 min; MS m/z [M+H]+ 716.2/718.2, m/z [M−H]− 714.2/716.2; UPLC-MS 2
1H NMR (400 MHz, DMSO-d6) δ 10.39 (s, br, 2H), 8.56 (d, J=8.0 Hz, 1H), 8.06 (m, 1H), 7.93 (d, J=8.1 Hz, 1H), 7.28 (m, 2H), 6.72 (m, 1H), 5.32 (s, 2H), 4.54 (m, 1H), 3.46 (m, 4H), 3.27 (s, 3H), 3.20 (m, 1H), 2.96 (m, 3H), 2.79 (m, 1H), 2.59 (m, 3H), 2.41 (m, 1H), 2.14 (m, 1H), 1.95 (m, 1H), 1.68 (m, 1H), 1.17 (t, J=7.1 Hz, 3H)
Example 125
Methyl 4-((5-(benzyloxy)-2-methoxyphenyl)(ethyl)amino)butanoate (184). 5-(Benzyloxy)-N-ethyl-2-methoxyaniline (146) (0.681 g, 2.65 mmol), DIEA (0.92 mL, 5.3 mmol), and methyl 4-iodobutyrate (0.72 mL, 5.3 mmol) in DMF (5 mL) were stirred at 70° C. for 5 days. The reaction mixture was cooled to rt, diluted with EtOAc (60 mL), washed with water (4×50 mL), brine (75 mL), dried over Na2SO4 and evaporated. The residue was purified by chromatography on a silica gel column (2.5×30 cm bed, packed with CHCl3), eluant: 5% MeOH in CHCl3 to get compound 184 (0.72 g, 76%) as a dark amber oil.
Methyl 4-(ethyl(5-hydroxy-2-methoxyphenyl)amino)butanoate (186). Ester 184 (0.72 g, 2.0 mmol) was stirred under reflux with 6 mL of water and 6 mL of conc HCl for 1.5 hrs and then evaporated to dryness to give acid 185 as a brown gum. The crude acid was dissolved in 50 mL of methanol containing 1 drop (cat.) of methanesulfonic acid ant the solution was kept for 2 hrs at rt. After that the mixture was concentrated in vacuum and the residue was mixed with 20 mL of saturated NaHCO3. The product was extracted with EtOAc (3×40 mL). The extract was washed with brine (40 mL), dried over Na2SO4 and evaporated. The residue was purified by chromatography on a silica gel column (2.5×30 cm bed, packed with CHCl3), eluant: 5% MeOH in CHCl3 to get compound 186 (0.444 g, 83%) as a brown oil.
N-(6-(dimethylamino)-9-(4-(ethyl(4-methoxy-4-oxobutyl)amino)-2-hydroxy-5-methoxyphenyl)-3H-xanthen-3-ylidene)-N-methylmethanaminium chloride (187). To a stirred suspension of tetramethylrhodamine ketone 101 (0.234 g, 0.830 mmol) in 10 mL of dry chloroform was added oxalyl chloride (72 μL, 0.82 mmol) upon cooling to 0-5° C. The resulting red solution was stirred for 0.5 h at 5° C., and the solution of compound 186 (0.222 g, 0.831 mmol) in dry chloroform (5 mL) was introduced. The reaction was allowed to heat to rt, stirred for 72 h, diluted with CHCl3 (100 mL and washed with sat. NaHCO3 solution (2×30 mL) The organic layer was extracted with 5% HCl (3×25 mL). The combined acid extract was washed with CHCl3 (2×15 mL; discarded), saturated with sodium acetate and extracted with CHCl3 (5×30 mL). The extract was washed with brine (50 mL), dried over Na2SO4 and evaporated. The crude product was purified by chromatography on silica gel column (2×50 cm bed, packed with CHCl3/MeOH/AcOH/H2O (100:20:5:1)), eluant: CHCl3/MeOH/AcOH/H2O (100:20:5:1) to give the product 187 (0.138 g, 29%) as a purple solid.
4-((4-(6-(dimethylamino)-3-(dimethyliminio)-3H-xanthen-9-yl)-5-hydroxy-2-methoxyphenyl)(ethyl)amino)butanoate (188). Methyl ester 187 (0.136 g, 0.240 mmol) was dissolved in 5 mL of 1M KOH (5 mmol). The reaction mixture was kept at rt for 1.5 hrs and the acetic acid (1 mL) was added. The mixture was extracted with CHCl3 (4×30 mL), and combined extract was washed with brine (20 mL), filtered through the paper filter and. The crude product was purified by chromatography on silica gel column (2×50 cm bed, packed with MeCN/H2O (4:1)), eluant: MeCN/H2O/AcOH/(4:1:1) to give the product 188 (0.069 g, 98%) as a purple solid.
N-(6-(dimethylamino)-9-(4-((4-(2,5-dioxopyrrolidin-1-yloxy)-4-oxobutyl)(ethyl)amino)-2-hydroxy-5-methoxyphenyl)-3H-xanthen-3-ylidene)-N-methylmethanaminium chloride (189). To a solution of the acid 188 (69 mg, 0.12 mmol) in DMF (2 mL) and DIEA (58 μL, 0.33 mmol) was added N-hydroxysuccinimide trifluoroacetate (70 mg, 0.33 mmol). The reaction mixture was stirred for 30 min, diluted with chloroform (100 mL) and washed with water (5×50 mL), brine (50 mL), filtered through paper and concentrated in vacuum. The crude product was purified by precipitation from CHCl3 solution (5 mL) with ether (20 mL) to give compound 189 (55 mg, 67%) as a purple powder.