Argon
It is a colorless, odorless, and inert gas that makes up approximately 0.93% of the Earth's atmosphere.
Argon is widely used in a variety of industrial and scientific applications, including as a shielding gas in welding and cutting processes, as a component in lighting and display technologies, and as an inert atmosphere for various chemical reactions and processes.
Argon is also an important tool in argon-based research, where it is used to study a range of phenomena, such as plasma physics, material science, and environmental chemistry.
PubCompare.ai's AI-driven protocol comparisons can help researchers easily locate the best procedures from literature, pre-prints, and patents, streamlining the workflow and supporting more informed decisions in argon-based research.
Most cited protocols related to «Argon»
Most recents protocols related to «Argon»
Example 5
Three sets of samples were prepared with polyamide 12 from RTP. 10,000 cSt PDMS, 23 wt % polyamide 12 relative to the weight of PDMS and polyamide combined, 1 wt % AEROSIL® R812S silica nanoparticles relative to the weight of the polyamide, and optionally surfactant (wt % relative to the weight of the polyamide) were placed in a glass kettle reactor. The headspace was purged with argon and the reactor was maintained under positive argon pressure. The components were heated to over 220° C. over about 60 minutes with 300 rpm stirring. At temperature, the rpm was increased to 1250 rpm. The process was stopped after 90 minutes and allowed to cool to room temperature while stirring. The resultant mixture was filtered and washed with heptane. A portion of the resultant particles was screened (scr) through a 150-μm sieve. Table 3 includes the additional components of the mixture and properties of the resultant particles.
This example illustrates that the inclusion of surfactant and the composition of said surfactant can be another tool used to tailor the particle characteristics.
Example 1
95 g of manganese (purity: 99.95%; purchased from Taewon Scientific Co., Ltd.) and 5 g of high-purity graphite (purity: 99.5%; purchased from Taewon Scientific Co., Ltd.) were placed in a water-cooled copper crucible of an argon plasma arc melting apparatus (manufactured by Labold AG, Germany, Model: vacuum arc melting furnace Model LK6/45), and melted at 2,000 K under an argon atmosphere. The melt was cooled to room temperature at a cooling rate of 104 K/min to obtain an alloy ingot. The alloy ingot was crushed to a particle size of 1 mm or less by hand grinding. Thereafter, the obtained powders were magnetically separated using a Nd-based magnet to remove impurities repeatedly, and the Mn4C magnetic powders were collected. The collected Mn4C magnetic powders were subjected to X-ray diffraction (XRD) analysis (measurement system: D/MAX-2500 V/PO, Rigaku; measurement condition: Cu—Kα ray) and energy-dispersive X-ray spectroscopy (EDS) using FE-SEM (Field Emission Scanning Electron Microscope, MIRA3 LM).
As can be seen in
The M-T curve of the field aligned Mn4C powder obtained in Example 1 was measured under an applied field of 4 T and at a temperature ranging from 50 K to 400 K. Meanwhile, the M-T curve of the randomly oriented Mn4C powder was measured under an applied field of 1 T. The Curie temperature of Mn4C was measured under 10 mT while decreasing temperature from 930 K at a rate of 20 K/min.
According to the Néel theory, the ferrimagnets that contain nonequivalent substructures of magnetic ions may have a number of unusual forms of M-T curves below the Curie temperature, depending on the distribution of magnetic ions between the substructures and on the relative value of the molecular field coefficients. The anomalous M-T curves of Mn4C, as shown in
According to one embodiment of the present disclosure, the saturation magnetization of Mn4C increases linearly with increasing temperature within the range of 50 K to 590 K and remains stable at temperatures below 50 K. The increases in anomalous magnetization of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which are partially oxidized into the manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is about 870 K. The positive temperature coefficient (about 0.0072 Am2/kgK) of magnetization in Mn4C is potentially important in controlling the thermodynamics of magnetization in magnetic materials.
The Curie temperature Te of Mn4C is measured to be about 870 K, as shown in
As shown in
The magnetic properties of Mn4C measured are different from the previous theoretical results. A corner MnI moment of 3.85μB antiparallel to three face-centered MnII moments of 1.23μB in Mn4C was expected at 77 K. The net moment per unit cell was estimated to be 0.16μB. In the above experiment, the net moment in pure Mn4C at 77 K is 0.26μB/unit cell, which is much larger than that expected by Takei et al. It was reported that the total magnetic moment of Mn4C was calculated to be about 1μB, which is almost four times larger than the 0.258μB per unit cell measured at 4.2 K, as shown in
The thermomagnetic behaviors of Mn4C are related to the variation in the lattice parameters of Mn4C with temperature. It is known that the distance of near-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms. Ferromagnetic coupling of Mn atoms is possible only when the Mn—Mn distance is large enough.
Thus, it can be seen that the abnormal increase in magnetization of Mn4C with increasing temperature occurs due to the variation in the lattice parameters of Mn4C with temperature.
The powder produced in Example 1 was annealed in vacuum for 1 hour at each of 700 K and 923 K, and then subjected to X-ray spectroscopy, and the results thereof are shown in
The magnetization reduction of Mn4C at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by the XRD patterns of the powders after annealing Mn4C at elevated temperatures.
These results prove that the metastable Mn4C decomposes into stable Mn23C6 at temperatures above 590 K. The presence of Mn4C in the powder annealed at 923 K indicates a limited decomposition rate of Mn4C, from which the Tc of Mn4C can be measured. Both Mn23C6 and Mn are weak paramagnets at ambient temperature and elevated temperatures. Therefore, the magnetic transition of the Mn4C magnetic material at 870 K is ascribed to the Curie point of the ferrimagnetic Mn4C.
The Mn4C shows a constant magnetization of 0.258μB per unit cell below 50 K and a linear increment of magnetization with increasing temperature within the range of 50 K to 590 K, above which Mn23C6 precipitates from Mn4C. The anomalous M-T curves of Mn4C can be considered in terms of the Néel's P-type ferrimagnetism.
Example 4
3D design software and 3D drawing software were used to construct a 3D cylinder model with a diameter of 40 mm and a height of 15 mm, which was converted into an STL file and imported into SLM building software. The model was auto-sliced by the software and imported into an SLM printing system. After heating the substrate to 150° C., the René 104 nickel-based superalloy powder was added to a powder supply tank and then laid. Argon was introduced into the working chamber until the oxygen content was less than 0.1%. Then the printing procedure was carried out, and the steps of laying the powder and scanning the powder by laser were repeated until the printing was completed to obtain a cylinder.
The René 104 nickel-based superalloy powder has a particle size of 15-53 μm, a D10 of 17.5 μm, a D50 of 29.3 μm, and a D90 of 46.9 μm.
The process parameters for SLM are as follows: a laser power of 250 W, a spot diameter of 0.12 mm, a scanning speed of 500 mm/s, a scanning pitch of 0.12 mm, and a thickness of the laid powder layer being 0.03 mm.
The scanning strategy for SLM is a stripe scanning strategy. In the stripe scanning strategy, a layer-by-layer scanning method from bottom to top is adopted, the laser scanning direction is rotated by 67° between adjacent layers, the stripe width is 5 mm, and the overlap between stripes is 0.10 mm. (no contour+solid scanning method is adopted)
The stress relief annealing parameters are as follows: a temperature of 420° C. held for 90 min, and cooling within the furnace.
The SPS parameters are as follows: a graphite mold with a diameter of 40 mm, a heating rate of 60° C./min, a cooling rate of 60° C./min, a sintering pressure of 45 MPa, and a sintering temperature of 1020° C. held for 15 min.
Before and after post-treatments of the fabricated parts, the densities are 98.34% and 99.02%, respectively, and the mechanical properties at room temperature are 987 MPa and 1065 MPa.
Example 7
Dissolution of oxidized cellulose having a degree of oxidation of 0.39 in a solution including 1% by weight of LiCl in NMP.
About 20 mL of NMP was added to the reactor vessel under argon followed by sparging thereof for approximately 1 hour with helium. About 11 mg of oxidized cellulose having a degree of oxidation of about 0.39 was added to the reactor vessel, which was initially heated to a temperature from about 143° C. to about 148° C. for approximately 2 hours. The reactor vessel was then cooled to about 100° C. and about 0.20 grams of LiCl was added to the mixture to form a 1% LiCl in NMP solution. The mixture was then heated to about 93° C. for about 8 minutes, then cooled to ambient temperature. The solution was stirred at ambient temperature for approximately 24 hours, and discharged from the reactor vessel. The oxidized cellulose was observed to have undergone complete dissolution.
Example 7
This comparative example is used to describe the advantage of the presented invention compared to the known grafting onto copolymerization. The desired product should give the identical product as it is shown in Example 4.
A 50 ml three neck round bottomed flask fitted with a cooling condenser was degassed under high vacuum (1−3 mbar) and flushed with argon. Polyhydridomethylsiloxane-co-polydimethylsiloxane (5.0 g, Mn 2900 g/mol) and 5 mL dried Toluene were introduced into it and heated up to 90° C. 0.05 mL solution 2% H2PtCl6 in anhydrous isopropanol was added. 8.4 g propoxylated 1-(allyloxy)propan-2-ol (Mn 813 g/mol) and and 5 mL dried Toluene were added to the mixture. The reaction was stirred at 130° C. after completion of addition for 24 hours. Then, the toluene was removed by heating the reaction mixture under vacuum and the crude copolymer was obtained.
The crude product was diluted in pentane and methanol and then dried under vacuum again. The obtained product (yield 90%) was a slightly milky, brown, viscous liquid. The molecular weight and structure of the product was confirmed by GPC and NMR spectroscopy.
Top products related to «Argon»
More about "Argon"
This noble gas has a wide range of industrial and scientific applications, including use as a shielding gas in welding and cutting processes, a component in lighting and display technologies, and an inert atmosphere for various chemical reactions and processes.
Argon-based research is an important field, with argon being utilized to study a variety of phenomena, such as plasma physics, material science, and environmental chemistry.
Researchers can leverage powerful tools like the NIS-Elements AR software, Sephadex® G-25, and the Acquity UPLC system to conduct their argon-based studies more efficiently and accurately.
The NIS-Elements AR software, for example, is a comprehensive imaging and analysis platform that can be used in conjunction with argon-based experiments, providing advanced features for data acquisition, processing, and visualization.
Similarly, the LSM 710 and LSM 880 microscopes are valuable tools for argon-based research, offering high-resolution imaging capabilities.
PubCompare.ai's AI-driven protocol comparisons can further enhance the reproducibility and accuracy of argon-based research by helping researchers easily locate the best procedures from literature, pre-prints, and patents.
This streamlines the workflow and supports more informed decisions, ultimately advancing the field of argon-based science and technology.
By incorporating these insights and leveraging the power of tools like Silica gel 60 and the NIS-Elements AR 4.2 software, researchers can unlock new possibilities in argon-based investigations, driving innovation and progress in this important area of study.
A typo: 'Sephadex® G-25' may be misspelled as 'Sephadex® G-25'.