The largest database of trusted experimental protocols

Argon

Argon is a chemical element with the atomic number 18 and the symbol Ar.
It is a colorless, odorless, and inert gas that makes up approximately 0.93% of the Earth's atmosphere.
Argon is widely used in a variety of industrial and scientific applications, including as a shielding gas in welding and cutting processes, as a component in lighting and display technologies, and as an inert atmosphere for various chemical reactions and processes.
Argon is also an important tool in argon-based research, where it is used to study a range of phenomena, such as plasma physics, material science, and environmental chemistry.
PubCompare.ai's AI-driven protocol comparisons can help researchers easily locate the best procedures from literature, pre-prints, and patents, streamlining the workflow and supporting more informed decisions in argon-based research.

Most cited protocols related to «Argon»

Transwell culture methods were adapted from our recently published method for mouse colonic spheroids[19 ]. Human spheroids (~1 well of a 24-well plate per Transwell) were dissociated, strained through a 40-μm filter, seeded onto Transwell membranes (Fisher Scientific, CoStar 3470) coated with 0.1% gelatin (earlier experiments) or Matrigel diluted 1:40 in PBS (later experiments) and provided 5% L-WRN CM (10 μM Y-27632 was included O/N and then removed during daily media changes). TER measurements[19 ] and mucus layer analyses[21 (link)] were performed as previously described. Z-stack images (1.1-μm, with an optimal interval of 0.55-μm) were generated with a Zeiss LSM510 Meta laser scanning confocal microscope (Carl Zeiss Inc., Thornwood, NY) equipped with Argon (Ex. 488 Em. BP 505–530) and HeNe1 (Ex. 543 Em. BP 560–615) lasers, a 63X, 1.4 numerical aperture Zeiss Plan Apochromat oil objective and LSM software. Rectal and ileal spheroid lines were infected with recombinant lentiviruses expressing an enhanced green fluorescent protein (EGFP) under the hPGK promoter [7 (link), 8 (link)] using a described protocol[8 (link)].
Publication 2014
Argon Colon Culture Techniques enhanced green fluorescent protein Gelatins Homo sapiens Ileum Lentivirus matrigel Microscopy, Confocal Mucus Mus Rectum Tissue, Membrane Y 27632

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2009
4-benzylideneamino-2,2,6,6-tetramethylpiperidine-1-oxyl Argon Chlorides Conferences Lithium lithium bromide methylethyl ketone Solvents Vacuum
The fluorescence signals were measured from the microarray slides using a ScanArray Express® instrument (Perkin-Elmer Life Sciences, Boston, MA). The excitation lasers were: Blue Argon 488 nm for R110; Green HeNe 543.8 nm for Tamra; Yellow HeNe 594 nm for Texas Red and Red HeNe 632.8 nm for Cy5. The fluorescence signal intensities were determined using the QuantArray®analysis 3.1 software (Perkin-Elmer Life Sciences, Boston, MA). The QuantArray file was exported to the SNPSnapper v4.0 software ) for genotype assignment. Raw data as fluorescence signals and signal ratios are provided as supplementary material, see Additional file 2: Rawdata.txt. Genotypes were assigned based on scatter plots with the logarithm of the sum of both fluorescence signals (SignalAllele1+SignalAllele2) plotted on the y-axis, and the fluorescence signal fraction, obtained by dividing the fluorescence signals from one allele by the sum of the fluorescence signal from both SNP alleles (SignalAllele2/ (SignalAllele1+SignalAllele2), on the x-axis [11 (link)]. The result file with the assigned genotypes and the corresponding signal ratios were exported as a text file and used to calculate Silhouettes scores using the ClusterA program. ClusterA is implemented in Microsoft Visual Basic 6.0, and can be run on PCs with the Microsoft Windows operating system. The ClusterA program also provides the mean, variance and F-statistic for the input data.
Full text: Click here
Publication 2005
Alleles Argon Epistropheus Fluorescence Genotype Microarray Analysis pyranine
The remainder of the thawed urine sample was filtered through a 0.2 μm Nylon filter (Whatman GmbH, Dassel, Germany) into a 250 μL polypropylene crimp vial (Agilent Technologies). This filtered sample was analysed directly by anion-exchange HPLC/ICPMS. Additionally, a portion (90 μL) of the filtered sample was removed from the HPLC vial and 10 μL of H2O2 were added, to convert any trivalent- and thio-arsenicals to their pentavalent and/or oxygenated forms, and the mixture was allowed to stand for at least two hours at a temperature > 23°C before analysis by anion-exchange HPLC/ICPMS.
The anion-exchange HPLC conditions (identical for both non-oxidised and oxidised urine samples) were: PRP-X100 column (4.6 mm × 150 mm, 5 μm particles; Hamilton Company, Reno USA) at 40°C with a mobile phase of 20 mM aqueous phosphoric acid adjusted with aqueous ammonia to pH 6 at a flow rate of 1 mL min−1. Injection volume was 20 μL. A carbon source (1% CO2 in argon) was introduced directly to the plasma, as previously described for selenium,14 (link) to provide a 4-5-fold increase in sensitivity. The CO2 was introduced via the T-piece of the high matrix sample introduction kit and the optional gas was set to 0.17 L min−1. Under these chromatographic conditions, As(III) elutes near the void volume, very close to AB and most other cationic arsenic species. This void-volume peak was assigned as AB + As(III) in the non-oxidised sample, and as AB in the oxidised sample (Fig. 1), based on the premise that AB is the only arsenic cation found in significant quantities in urine (see below).15 The total iAs content [As(III) + As(V)] was obtained from the As(V) peak in the oxidised sample. For all HPLC runs, peaks were quantified against the respective standard. Calibration was usually performed in the range 0.10 to 20.0 μg As L−1 (six-point calibration curve); limit of detection was 0.1 μg As L−1 for iAs [As(V) peak], MA, DMA and AB, and the intra-assay coefficient of variation was better than 5 % for all species.
The premise that AB was essentially the only cationic arsenic species in the urine samples was tested by performing cation-exchange HPLC/ICPMS on 188 samples that had shown a significant peak at the void volume during anion-exchange HPLC/ICPMS of the oxidized samples. A Zorbax 300-SCX column (4.6 mm × 150 mm, 5 μm particles; Agilent Technologies) at 30°C was used with a mobile phase of 10 mM pyridine at pH 2.3 (adjusted with formic acid) at a flow rate of 1.5 mL min−1. The injection volume was 10 μL. ICPMS was used as a detector with the settings described above for anion-exchange HPLC/ICPMS.
Publication 2012
Ammonia Anions Argon Arsenic Arsenicals Biological Assay Carbon Chromatography formic acid High-Performance Liquid Chromatographies Hypersensitivity Nylons Peroxide, Hydrogen Phosphoric Acids Plasma Polypropylenes pyridine Selenium Urination Urine
MS data have been acquired using an HPLC coupled to an IT-TOF mass spectrometer (Shimadzu Europe GmbH, Duisburg, Germany) using electrospray ionization in positive mode and were evaluated using the vendor’s software LCMSSolution version 3.60.361 with Formula Predictor version 1.13. The compounds were separated on a Kinetex C18 column (2.6 µm, 100×3 mm, phenomenex, Torrance, USA) using a gradient ranging from 5 to 80% acetonitrile in water over 25 min (0.1% formic acid added as modifier). Precursor ions corresponding to [M+H]+ were isolated in the ion trap, fragmented by collision induced dissociation (CID) using argon as collision gas (collision energy set to 150%, collision gas to 100%, and q(Frequency) to 45.0 kHz), and separated in the TOF analyzer. MS/MS scans were averaged and converted to the mzXML format using the vendor’s software. For the calculation of sum formulae, the monoisotopic mass averaged from at least three scans has been used. The Δ values indicated in the text are the deviations of the theoretical masses of the discussed fragments and the experimentally determined masses in ppm.
Full text: Click here
Publication 2012
acetonitrile Argon formic acid High-Performance Liquid Chromatographies Radionuclide Imaging Tandem Mass Spectrometry

Most recents protocols related to «Argon»

Example 5

Three sets of samples were prepared with polyamide 12 from RTP. 10,000 cSt PDMS, 23 wt % polyamide 12 relative to the weight of PDMS and polyamide combined, 1 wt % AEROSIL® R812S silica nanoparticles relative to the weight of the polyamide, and optionally surfactant (wt % relative to the weight of the polyamide) were placed in a glass kettle reactor. The headspace was purged with argon and the reactor was maintained under positive argon pressure. The components were heated to over 220° C. over about 60 minutes with 300 rpm stirring. At temperature, the rpm was increased to 1250 rpm. The process was stopped after 90 minutes and allowed to cool to room temperature while stirring. The resultant mixture was filtered and washed with heptane. A portion of the resultant particles was screened (scr) through a 150-μm sieve. Table 3 includes the additional components of the mixture and properties of the resultant particles.

TABLE 3
Max
ReactorScreened Particle SizeNot Screened Particle Size
Temp.(μm or unitless)(μm or unitless)
SampleSurfactant(° C.)D10D50D90SpanD10D50D90Span
5-1none22316.737.477.31.6216.938.71222.72
5-22.5%22644.267.71050.9041.468.11311.32
CALFAX ®
DB-45
5-31%22619.243.395.81.7719.448.82073.84
docusate
sodium

FIGS. 16 and 17 are the volume density particle size distribution for the particles screened and not screened, respectively.

This example illustrates that the inclusion of surfactant and the composition of said surfactant can be another tool used to tailor the particle characteristics.

Full text: Click here
Patent 2024
Aerosil Argon DB 19 Docusate Sodium Figs Heptane nylon 12 Nylons Pressure Silicon Dioxide Surface-Active Agents

Example 1

95 g of manganese (purity: 99.95%; purchased from Taewon Scientific Co., Ltd.) and 5 g of high-purity graphite (purity: 99.5%; purchased from Taewon Scientific Co., Ltd.) were placed in a water-cooled copper crucible of an argon plasma arc melting apparatus (manufactured by Labold AG, Germany, Model: vacuum arc melting furnace Model LK6/45), and melted at 2,000 K under an argon atmosphere. The melt was cooled to room temperature at a cooling rate of 104 K/min to obtain an alloy ingot. The alloy ingot was crushed to a particle size of 1 mm or less by hand grinding. Thereafter, the obtained powders were magnetically separated using a Nd-based magnet to remove impurities repeatedly, and the Mn4C magnetic powders were collected. The collected Mn4C magnetic powders were subjected to X-ray diffraction (XRD) analysis (measurement system: D/MAX-2500 V/PO, Rigaku; measurement condition: Cu—Kα ray) and energy-dispersive X-ray spectroscopy (EDS) using FE-SEM (Field Emission Scanning Electron Microscope, MIRA3 LM).

FIGS. 2(a) and 2 (b) show an X-ray diffraction pattern and an energy-dispersive X-ray spectroscopy graph of the Mn4C magnetic material produced according to Example 1 of the present disclosure, respectively.

As can be seen in FIG. 2(a), the Mn4C magnetic material showed diffraction peaks of (111), (200), (220), (311) and (222) crystal planes at 2θ values of 40°, 48°, 69°, 82° and 88°, respectively, in the XRD analysis. Thus, it can be seen that the XRD patterns of the Mn4C magnetic material produced according to Example 1 are well consistent with the patterns of the cubic perovskite Mn4C. In addition, the Mn4C magnetic material shows several very weak diffraction peaks that can correspond to Mn23C6 and Mn. That is, the diffraction peak intensity at 2θ values of 43° and 44°, which correspond to Mn and Mn23C6 impurities, is as very low as about 2.5% of the diffraction intensity of the peak corresponding to the (111) plane. Through this, it can be seen that the powders obtained in Example 1 have high-purity Mn4C phase. The lattice parameter of the Mn4C is estimated to be about 3.8682 Å.

FIG. 2(b) shows the results of analyzing the atomic ratio of Mn:C in the powder by EDS. The atomic ratio of Mn:C is 80.62:19.38, which is very close to 4:1 within the experimental uncertainties. Thus, it can be seen that the powder is also confirmed to be Mn4C.

The M-T curve of the field aligned Mn4C powder obtained in Example 1 was measured under an applied field of 4 T and at a temperature ranging from 50 K to 400 K. Meanwhile, the M-T curve of the randomly oriented Mn4C powder was measured under an applied field of 1 T. The Curie temperature of Mn4C was measured under 10 mT while decreasing temperature from 930 K at a rate of 20 K/min.

FIGS. 3(a) to 3(c) show the M-T curves of the Mn4C magnetic material, produced according to Example 1 of the present disclosure, under magnetic fields of 4 T, 1 T, and 10 mT, respectively.

FIG. 3 shows magnetization-temperature (M-T) curves indicating the results of measuring the temperature-dependent magnetization intensity of the Mn4C magnetic material, produced in Example 1, using the vibrating sample magnetometer (VSM) mode of Physical Property Measurement System (PPMS®) (Quantum Design Inc.).

According to the Néel theory, the ferrimagnets that contain nonequivalent substructures of magnetic ions may have a number of unusual forms of M-T curves below the Curie temperature, depending on the distribution of magnetic ions between the substructures and on the relative value of the molecular field coefficients. The anomalous M-T curves of Mn4C, as shown in FIG. 3(a), can be explained to some extent by the Néel's P-type ferrimagnetism, which appears when the sublattice with smaller moment is thermally disturbed more easily. For Mn4C with two sublattices of MnI and MnII, as shown in FIG. 1, the MnI sublattice might have smaller moment.

FIG. 3(a) shows the temperature dependence of magnetization of the Mn4C magnetic material produced in Example 1. The magnetization of Mn4C measured at 4.2K is 6.22 Am2/kg (4 T), corresponding to 0.258μB per unit cell. The magnetization of the Mn4C magnetic material varies little at temperatures below 50 K, and is quite different from that of most magnetic materials, which undergo a magnetization deterioration with increasing temperature due to thermal agitation. Furthermore, the magnetization of the Mn4C magnetic material increases linearly with increasing temperature at temperatures above 50 K. The linear fitting of the magnetization of Mn4C at 4 T within the temperature range of 100 K to 400 K can be written as M=0.0072T+5.6788, where M and T are expressed in Am2/kg and K, respectively. Thus, the temperature coefficient of magnetization of Mn4C is estimated to be about ˜2.99*10−4μB/K per unit cell. The mechanisms of the anomalous thermomagnetic behaviors of Mn4C may be related to the magnetization competition of the two ferromagnetic sublattices (MnI and MnII) as shown in FIG. 1.

FIG. 3(b) shows the M-T curves of the Mn4C powders at temperatures within the range of 300 K to 930 K under 1 T. The linear magnetization increment stops at 590 K, above which the magnetization of Mn4C starts to decrease slowly first and then sharply at a temperature of about 860 K. The slow magnetization decrement at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by further heat-treatment of Mn4C as described below.

According to one embodiment of the present disclosure, the saturation magnetization of Mn4C increases linearly with increasing temperature within the range of 50 K to 590 K and remains stable at temperatures below 50 K. The increases in anomalous magnetization of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which are partially oxidized into the manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is about 870 K. The positive temperature coefficient (about 0.0072 Am2/kgK) of magnetization in Mn4C is potentially important in controlling the thermodynamics of magnetization in magnetic materials.

The Curie temperature Te of Mn4C is measured to be about 870 K, as shown in FIG. 3(c). Therefore, the sharp magnetization decrement of Mn4C at temperatures above 860 K is ascribed to both the decomposition of Mn4C and the temperature near the Tc of Mn4C.

FIG. 4 is a graph showing the magnetic hysteresis loops of the Mn4C magnetic material, produced according to Example 1 of the present disclosure, at 4.2 K, 200 K and 400 K. The magnetic hysteresis loops were measured by using the PPMS system (Quantum Design) under a magnetic field of 7 T while the temperature was changed from 4 K to 400 K.

As shown in FIG. 4, the positive temperature coefficient of magnetization was further proved by the magnetic hysteresis loops of Mn4C as shown in FIG. 4. The Mn4C shows a much higher magnetization at 400 K than that at 4.2 K. Moreover, the remanent magnetization of Mn4C varies little with temperature and is Δ3.5 Am2/kg within the temperature range of 4.2 K to 400 K. The constant remanent magnetization of Mn4C within a wide temperature range indicates the high stability of magnetization against thermal agitation. The coercivities of Mn4C at 4.2 K, 200 K, and 400 K were 75 mT, 43 mT, and 33 mT, respectively.

The magnetic properties of Mn4C measured are different from the previous theoretical results. A corner MnI moment of 3.85μB antiparallel to three face-centered MnII moments of 1.23μB in Mn4C was expected at 77 K. The net moment per unit cell was estimated to be 0.16μB. In the above experiment, the net moment in pure Mn4C at 77 K is 0.26μB/unit cell, which is much larger than that expected by Takei et al. It was reported that the total magnetic moment of Mn4C was calculated to be about 1μB, which is almost four times larger than the 0.258μB per unit cell measured at 4.2 K, as shown in FIG. 4.

FIG. 5 is an enlarged view of the temperature-dependent XRD patterns of the Mn4C magnetic material produced according to Example 1 of the present disclosure.

The thermomagnetic behaviors of Mn4C are related to the variation in the lattice parameters of Mn4C with temperature. It is known that the distance of near-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms. Ferromagnetic coupling of Mn atoms is possible only when the Mn—Mn distance is large enough. FIG. 5 shows the diffraction peaks of the (111) and (200) planes of Mn4C at temperatures from 16 K to 300 K. With increasing temperature, both (111) and (200) peaks of Mn4C shifted to a lower degree at temperatures between 50 K and 300 K, indicating an enlarged distance of Mn—Mn atoms in Mn4C. No peak shift is obviously observed for Mn4C at temperatures below 50 K. The distance of nearest-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms and thus has a large effect on the magnetic properties of the compounds.

Thus, it can be seen that the abnormal increase in magnetization of Mn4C with increasing temperature occurs due to the variation in the lattice parameters of Mn4C with temperature.

The powder produced in Example 1 was annealed in vacuum for 1 hour at each of 700 K and 923 K, and then subjected to X-ray spectroscopy, and the results thereof are shown in FIG. 6.

The magnetization reduction of Mn4C at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by the XRD patterns of the powders after annealing Mn4C at elevated temperatures. FIG. 6 shows the structural evolution of Mn4C at elevated temperatures. When Mn4C is annealed at 700 K, a small fraction of Mn4C decomposes into a small amount of Mn23C6 and Mn. The presence of manganosite is ascribed to the spontaneous oxidation of the Mn precipitated from Mn4C when exposed to air after annealing. The fraction of Mn23C6 was enhanced significantly for Mn4C annealed at 923 K, as shown in FIG. 6.

These results prove that the metastable Mn4C decomposes into stable Mn23C6 at temperatures above 590 K. The presence of Mn4C in the powder annealed at 923 K indicates a limited decomposition rate of Mn4C, from which the Tc of Mn4C can be measured. Both Mn23C6 and Mn are weak paramagnets at ambient temperature and elevated temperatures. Therefore, the magnetic transition of the Mn4C magnetic material at 870 K is ascribed to the Curie point of the ferrimagnetic Mn4C.

The Mn4C shows a constant magnetization of 0.258μB per unit cell below 50 K and a linear increment of magnetization with increasing temperature within the range of 50 K to 590 K, above which Mn23C6 precipitates from Mn4C. The anomalous M-T curves of Mn4C can be considered in terms of the Néel's P-type ferrimagnetism.

Full text: Click here
Patent 2024
Alloys Argon Atmosphere Biological Evolution Cells Copper Cuboid Bone Debility Energy Dispersive X Ray Spectroscopy Face Fever fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether Graphite Ions Magnetic Fields Manganese perovskite Physical Processes Plasma Powder Radiography Scanning Electron Microscopy Spectrum Analysis Vacuum Vision X-Ray Diffraction

Example 4

3D design software and 3D drawing software were used to construct a 3D cylinder model with a diameter of 40 mm and a height of 15 mm, which was converted into an STL file and imported into SLM building software. The model was auto-sliced by the software and imported into an SLM printing system. After heating the substrate to 150° C., the René 104 nickel-based superalloy powder was added to a powder supply tank and then laid. Argon was introduced into the working chamber until the oxygen content was less than 0.1%. Then the printing procedure was carried out, and the steps of laying the powder and scanning the powder by laser were repeated until the printing was completed to obtain a cylinder.

The René 104 nickel-based superalloy powder has a particle size of 15-53 μm, a D10 of 17.5 μm, a D50 of 29.3 μm, and a D90 of 46.9 μm.

The process parameters for SLM are as follows: a laser power of 250 W, a spot diameter of 0.12 mm, a scanning speed of 500 mm/s, a scanning pitch of 0.12 mm, and a thickness of the laid powder layer being 0.03 mm.

The scanning strategy for SLM is a stripe scanning strategy. In the stripe scanning strategy, a layer-by-layer scanning method from bottom to top is adopted, the laser scanning direction is rotated by 67° between adjacent layers, the stripe width is 5 mm, and the overlap between stripes is 0.10 mm. (no contour+solid scanning method is adopted)

The stress relief annealing parameters are as follows: a temperature of 420° C. held for 90 min, and cooling within the furnace.

The SPS parameters are as follows: a graphite mold with a diameter of 40 mm, a heating rate of 60° C./min, a cooling rate of 60° C./min, a sintering pressure of 45 MPa, and a sintering temperature of 1020° C. held for 15 min.

Before and after post-treatments of the fabricated parts, the densities are 98.34% and 99.02%, respectively, and the mechanical properties at room temperature are 987 MPa and 1065 MPa.

Full text: Click here
Patent 2024
Argon ARID1A protein, human Fungus, Filamentous Graphite Nickel Oxygen Powder Pressure

Example 7

Dissolution of oxidized cellulose having a degree of oxidation of 0.39 in a solution including 1% by weight of LiCl in NMP.

About 20 mL of NMP was added to the reactor vessel under argon followed by sparging thereof for approximately 1 hour with helium. About 11 mg of oxidized cellulose having a degree of oxidation of about 0.39 was added to the reactor vessel, which was initially heated to a temperature from about 143° C. to about 148° C. for approximately 2 hours. The reactor vessel was then cooled to about 100° C. and about 0.20 grams of LiCl was added to the mixture to form a 1% LiCl in NMP solution. The mixture was then heated to about 93° C. for about 8 minutes, then cooled to ambient temperature. The solution was stirred at ambient temperature for approximately 24 hours, and discharged from the reactor vessel. The oxidized cellulose was observed to have undergone complete dissolution.

Full text: Click here
Patent 2024
Argon Blood Vessel Helium Oxidized Cellulose

Example 7

This comparative example is used to describe the advantage of the presented invention compared to the known grafting onto copolymerization. The desired product should give the identical product as it is shown in Example 4.

[Figure (not displayed)]

A 50 ml three neck round bottomed flask fitted with a cooling condenser was degassed under high vacuum (1−3 mbar) and flushed with argon. Polyhydridomethylsiloxane-co-polydimethylsiloxane (5.0 g, Mn 2900 g/mol) and 5 mL dried Toluene were introduced into it and heated up to 90° C. 0.05 mL solution 2% H2PtCl6 in anhydrous isopropanol was added. 8.4 g propoxylated 1-(allyloxy)propan-2-ol (Mn 813 g/mol) and and 5 mL dried Toluene were added to the mixture. The reaction was stirred at 130° C. after completion of addition for 24 hours. Then, the toluene was removed by heating the reaction mixture under vacuum and the crude copolymer was obtained.

The crude product was diluted in pentane and methanol and then dried under vacuum again. The obtained product (yield 90%) was a slightly milky, brown, viscous liquid. The molecular weight and structure of the product was confirmed by GPC and NMR spectroscopy.

Full text: Click here
Patent 2024
Argon Isopropyl Alcohol Methanol Milk, Cow's Neck pentane polydimethylsiloxane Polymers Spectroscopy, Nuclear Magnetic Resonance Toluene Vacuum Viscosity

Top products related to «Argon»

Sourced in Japan, United States, United Kingdom, Germany, Azerbaijan, Canada, Austria
NIS-Elements AR software is a comprehensive imaging and analysis platform designed for Nikon microscopes. It provides tools for image acquisition, processing, and analysis to support a wide range of microscopy techniques.
Sourced in United States, Sweden, United Kingdom, Germany, Japan
Sephadex® G-25 is a gel filtration medium used in size exclusion chromatography. It is a cross-linked dextran-based material that separates molecules based on their size and molecular weight. Sephadex® G-25 is commonly used for desalting, buffer exchange, and sample clean-up applications.
Sourced in Japan, United States, Germany, Azerbaijan
NIS-Elements AR is a software package designed for imaging and analysis in microscopy applications. It provides a comprehensive platform for acquiring, processing, and analyzing images from various types of microscopes. The software offers a range of tools and functionalities to support researchers and scientists in their laboratory work.
Sourced in Japan, United States, France, Canada, Germany, Czechia
NIS-Elements AR 3.2 is a software package developed by Nikon for microscope image acquisition, analysis, and processing. It provides a comprehensive suite of tools for researchers and scientists working with microscopy data.
Sourced in United States, United Kingdom, Germany, France, Japan, Singapore, China, Ireland
The Acquity UPLC system is a high-performance liquid chromatography (HPLC) instrument designed for analytical and preparative applications. The system utilizes ultra-high performance liquid chromatography (UPLC) technology to provide rapid and efficient separation of complex samples. The Acquity UPLC system is capable of operating at high pressures and flow rates, enabling the use of small particle size columns to achieve enhanced chromatographic resolution and sensitivity.
Sourced in Germany, United States, United Kingdom, Japan, Switzerland, France, China, Canada, Italy, Spain, Singapore, Austria, Hungary, Australia
The LSM 710 is a laser scanning microscope developed by Zeiss. It is designed for high-resolution imaging and analysis of biological and materials samples. The LSM 710 utilizes a laser excitation source and a scanning system to capture detailed images of specimens at the microscopic level. The specific capabilities and technical details of the LSM 710 are not provided in this response to maintain an unbiased and factual approach.
Sourced in Japan, United States, Germany
NIS-Elements AR 4.2 is a software package designed for the operation and analysis of microscope imaging data. It provides a comprehensive suite of tools for image acquisition, processing, and analysis, catering to the needs of researchers and scientists working in various fields of microscopy.
Sourced in Japan, United States, China, Germany, United Kingdom, Spain, Canada, Czechia
The S-4800 is a high-resolution scanning electron microscope (SEM) manufactured by Hitachi. It provides a range of imaging and analytical capabilities for various applications. The S-4800 utilizes a field emission electron gun to generate high-quality, high-resolution images of samples.
Sourced in Germany, United States, Japan, Italy, Switzerland, India, Egypt, Sweden, Canada, China, United Kingdom, Brazil
Silica gel 60 is a porous, amorphous form of silicon dioxide commonly used as a stationary phase in column chromatography. It has a high surface area and is effective at adsorbing a wide range of organic and inorganic compounds. Silica gel 60 is available in various particle sizes and pore sizes to suit different chromatographic applications.
Sourced in Germany, United States, United Kingdom, Japan, China, Switzerland, France, Austria, Canada, Australia
The LSM 880 is a laser scanning confocal microscope designed by Zeiss. It is a versatile instrument that provides high-resolution imaging capabilities for a wide range of applications in life science research.

More about "Argon"

Argon (chemical symbol: Ar) is an inert, colorless, and odorless gas that makes up approximately 0.93% of the Earth's atmosphere.
This noble gas has a wide range of industrial and scientific applications, including use as a shielding gas in welding and cutting processes, a component in lighting and display technologies, and an inert atmosphere for various chemical reactions and processes.
Argon-based research is an important field, with argon being utilized to study a variety of phenomena, such as plasma physics, material science, and environmental chemistry.
Researchers can leverage powerful tools like the NIS-Elements AR software, Sephadex® G-25, and the Acquity UPLC system to conduct their argon-based studies more efficiently and accurately.
The NIS-Elements AR software, for example, is a comprehensive imaging and analysis platform that can be used in conjunction with argon-based experiments, providing advanced features for data acquisition, processing, and visualization.
Similarly, the LSM 710 and LSM 880 microscopes are valuable tools for argon-based research, offering high-resolution imaging capabilities.
PubCompare.ai's AI-driven protocol comparisons can further enhance the reproducibility and accuracy of argon-based research by helping researchers easily locate the best procedures from literature, pre-prints, and patents.
This streamlines the workflow and supports more informed decisions, ultimately advancing the field of argon-based science and technology.
By incorporating these insights and leveraging the power of tools like Silica gel 60 and the NIS-Elements AR 4.2 software, researchers can unlock new possibilities in argon-based investigations, driving innovation and progress in this important area of study.
A typo: 'Sephadex® G-25' may be misspelled as 'Sephadex® G-25'.