Deuterium
It is used in a variety of scientific and medical applications, such as tracing metabolic pathways, studying chemical reactions, and enhancing the sensitivity of analytical techniques.
Deuterium-labeled compounds can provide valuable insights into the structure and dynamics of biological systems, while deuterium oxide (heavy water) has unique physical and chemical properties that make it a useful tool in research and clinical settings.
Proper identification and selection of deuterium-based protocols is crucial for reproducible and accurate deuterium studies.
PubCompare.ai's AI-powered platform can assist researchers in navigatiung the literature, pre-prints, and patents to locate the most relevant deuterium-related methods and produtcs, while providing insightful comparisons to help identify the optimal approaches.
Experince the difference that PubCompare.ai can make in your deuterium research workflows today.
Most cited protocols related to «Deuterium»
Practice shows that in some cases (e.g. as a result of buffer mismatch) the higher-angle positions of the scattering data may contain systematic deviations, which can be accounted for by subtraction/addition of a constant term to the experimental data. An option of background constant adjustment has been added to CRYSOL to allow for the correction of such over- or under-subtracted buffer signal. A linear least-squares minimization with boundaries (Lawson & Hanson, 1995 ▶ ) is used to find the scaling coefficient and the background constant value when fitting a theoretical curve to experimental data.
Typically, CRYSOL and CRYSON skip all H atoms present in the PDB files and instead make an assignment of the number of bound H atoms for each atomic group based on the chemical compound library (
If the input file is in PQR format, H++ makes minimal changes because it is assumed that the format is already suitable for electrostatic calculations. Changes made are as follows: atom names of all titratable amino acids are brought into accordance with the format adopted by the AMBER (29 ) package and consistency checks are performed. These checks ensure that the total charge of the system is an integer (within a ±0.05 unit charge tolerance per amino acid) and the atomic radii are between 0.5 and 3 Å. If any of the above checks fail, the sequence of residues is discontinuous or the atom names are different from the PDB standard and cannot be recognized, execution terminates.
For a structure submitted in the conventional PDB format, H++ deletes all HETATM records; that is, only those atoms that belong to amino acids or nucleotides are kept. This is the ‘clean-up’ step in
Total integrated (diffuse and specular) reflectance spectra were measured with an Ocean Optics USB2000 spectrophotometer and ISP-REF integrating sphere using a Spectralon white standard (Ocean Optics, Dunedin, FL). The light source provided diffuse light from all directions and the gloss trap was closed to collect both specular and diffuse reflectance. To ensure repeatable measures of reflectance from these profoundly black samples, we averaged 10 scans for each output file, and used an integration time of 40 μs. For each patch, we measured three spectra from three different positions within the patch and averaged them to produce a single spectrum for the patch. Two specimens per species were measured for all species except for Astrapia stephaniae and Parotia wahnesi, for which only one specimen was measured due to availability of material.
Directional reflectance spectra were measured with an Ocean Optics USB2000 spectrophotometer and Ocean Optics DH-2000Bal deuterium–halogen light source (Ocean Optics, Dunedin, FL, USA). The geometry of the directional reflectance measurements placed the detector at 0° normal to the plumage, which would be the specular direction for typically flat materials. A bifurcated illumination/detection optical fiber was held in an anodized aluminum block ~6 mm above and perpendicular to the plumage. A ~3-mm-diameter circle of light illuminated the plumage. Reflectance between 300 and 700 nm was recorded to obtain the species spectra for the patch. Measures of super black plumage reflectance were quite low and noisy, and signal processing was required. Negative values were converted to 0, and five spectra from each individual were averaged to produce an average spectrum for the patch. Loess smoothing was applied to produce a reflectance spectrum curve (Supplementary Fig.
The light source in our integrating sphere lacked near-ultraviolet light (300–400 nm), but the directional reflectance measures confirmed that none of these patches produced UV reflectance features. Reflectance, %R, was calculated as the area under the measured reflectance spectrum between 400 and 700 nm using Riemann sums and was normalized by the number of wavelength bins measured and 100% reflectance of the white standard.
Most recents protocols related to «Deuterium»
Example 10
Sprague Dawley rats are fasted for 40 hours, after which the diet is replaced with free fatty acid deficient chow to increase SCD-1 activity. Rats are then euthanized using CO2 asphyxiation and their livers removed. Livers are weighed and minced. Microsomes are isolated by homogenization with a polytron and several centrifugation steps. Following final centrifugation, the resulting pellet is resuspended in buffer and protein concentration is determined. Aliquots are stored at −80° C.
Rat liver microsomes are incubated with deuterium labeled stearoyl coenyzme A in the presence of putative inhibitor to test the compound's ability to inhibit the conversion of stearoyl-coenzyme A to oleoyl coenzyme A. The reaction is terminated using acetonitrile. Free fatty acids are extracted and the sample is then acidified with formic acid before final extraction with chloroform. The organic layer is transferred and evaporated under nitrogen gas. Samples are then reconstituted and analyzed by LC/MS/MS. The ability to inhibit the conversion of stearoyl-CoA to oleoyl-CoA is expressed as an IC50.
analyzed using a new “continuous measurement” HX module
for Mass Spec Studio 2.0.28 (link),31 (link) This module was built
as an extension to the classic peptide HX-MS module (HX-DEAL) to reuse
the existing model-based deuterium uptake calculations and apply them
on data acquired using the continuous pullback method. A custom processing
routine was created (“Continuous HX-MS”), which aggregates
MS1 data over the predefined ion-mobility (IM) range of each peptide
and measures deuterium uptake at continuous intervals in time. During
data processing, the measured retention times in the data file are
transformed to the true HX reaction times by applying the experimental
and hardware specifications in the parameters section of the new processing
routine (e.g., time increment, flowrate, notch position,
start/stop infusion time, etc.). The continuous % D values for each peptide as well as their transformed reaction
times are exportable in.csv format via the “raw”
output option inside the Export Wizard.
Transmission measurements were performed using a dedicated setup. The light of a Hamamatsu L15094 D2 lamp is focused with a toroidal mirror onto the entrance slit of a McPherson 234/302 monochromator. The light is separated into its spectral components by the grating and is focused onto the exit slit. By rotating the grating the exit wavelength can be selected. The exit slit cuts out a small portion of the spectrum effectively creating a narrow wavelength light source with a linewidth down to 0.1 nm. The linewidth can be changed by changing the entrance/exit slit width (0.01–2.50 mm). This light travels through the crystal, and is recorded by a Hamamatsu R6835 head-on CsI photomultiplier tube (PMT) which is mounted close to the crystal.
Although conceptually simple, measuring a wavelength-dependent absolute absorption is burdened with several experimental challenges. These are connected with geometrical changes in the beam paths due to the presence of the sample (beam shifts and astigmatism), strong spectral intensity modulations and overall intensity instabilities in the VUV source (deuterium lamp). These lead to an overall systematic error on the following transmission measurements of ± 5%.