Ions
These charged particles can be positive (cations) or negative (anions), and they contribute to essential functions such as nerve impulse transmission, muscle contraction, and fluid balance regulation.
Ions are also involved in the structure and function of proteins, enzymes, and other biomolecules.
Understanding the role of ions in physiological and pathological conditions is a key focus of medical research, as imbalances in ion concentrations can lead to a wide range of health issues.
This MeSH term provides a comprehensive overview of the importance of ions in the human body and their impact on overall health and well-being.
Most cited protocols related to «Ions»
Most recents protocols related to «Ions»
Example 2
As discussed herein above, the disclosed methods improve the antiseptic properties of a dental implant without using charged metallic ions via conversion of the nitrogen moieties in titanium nitride surface to a positively charged quaternary ammonium via a Menschutkin reaction.
To prepare the antibacterial quaternized TiN surface, an implant which has been coated with TiN was used. The implant was cleaned to improve yield. The implant was washed with two solvents in sequence, acetone and isopropanol, to remove any dust particulate and other residue. The native oxide layer was removed by sonicating in 1:10 HCl:deionized water for 1 minute. This treatment additionally removes any residue that may not have been removed by the solvents. Acetonitrile was used as the solvent; however, any solvent may be used with preference for polar solvents giving improved reaction times (Stanger K., et al. J Org Chem. 2007 72(25):9663-8; Harfenist M., et al. J Am Chem Soc 1957 79(16):4356-4358). An excess of allyl bromide was added to the solvent and continuously stirred. The sample was then submerged in the solution, and full reaction of the surface occurred within about 60 minutes, as confirmed by contact angle measurement. A reference was also measured by submerging in solvent for the duration with no reactant to ensure any changes in surface properties was due to the quaternization.
Without wishing to be bound by a particular theory, the increased hydrophobicity of the treated surfaces can be due to the presence of the allyl groups on the surface which will impart some hydrophobicity. The contact angle measurements provide information on whether or not a reaction has occurred and whether it has saturated.
The biocidal activity was tested using live bacteria cultures from a patient's mouth, which provides the full flora to act against rather than targeting an individual strain of bacteria. The bacteria was incubated on the sample surface using several bacteria film thicknesses. The thickness is defined by keeping the same interaction surface area while varying the volume of bacteria solution added. Across two separate patients and several separate growths, within 4 hours 40-50% reduction in bacteria unit counts were observed for quaternized TiN as compared to traditional Titanium implants, outperforming traditional TiN coatings.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed invention belongs. Publications cited herein and the materials for which they are cited are specifically incorporated by reference.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the scope or spirit of the disclosure. Other aspects of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.
Example 8
Characterization of Absorption, Distribution, Metabolism, and Excretion of Oral [14C]Vorasidenib with Concomitant Intravenous Microdose Administration of [13C315N3]Vorasidenib in Humans
Metabolite profiling and identification of vorasidenib (AG-881) was performed in plasma, urine, and fecal samples collected from five healthy subjects after a single 50-mg (100 μCi) oral dose of [14C]AG-881 and concomitant intravenous microdose of [13C3 15N3]AG-881.
Plasma samples collected at selected time points from 0 through 336 hour postdose were pooled across subjects to generate 0—to 72 and 96-336-hour area under the concentration-time curve (AUC)-representative samples. Urine and feces samples were pooled by subject to generate individual urine and fecal pools. Plasma, urine, and feces samples were extracted, as appropriate, the extracts were profiled using high performance liquid chromatography (HPLC), and metabolites were identified by liquid chromatography-mass spectrometry (LC-MS and/or LC-MS/MS) analysis and by comparison of retention time with reference standards, when available.
Due to low radioactivity in samples, plasma metabolite profiling was performed by using accelerator mass spectrometry (AMS). In plasma, AG-881 was accounted for 66.24 and 29.47% of the total radioactivity in the pooled AUC0-72 h and AUC96-336 h plasma, respectively. The most abundant radioactive peak (P7; M458) represented 0.10 and 43.92% of total radioactivity for pooled AUC0-72 and AUC96-336 h plasma, respectively. All other radioactive peaks accounted for less than 6% of the total plasma radioactivity and were not identified.
The majority of the radioactivity recovered in feces was associated with unchanged AG-881 (55.5% of the dose), while no AG-881 was detected in urine. In comparison, metabolites in excreta accounted for approximately 18% of dose in feces and for approximately 4% of dose in urine. M515, M460-1, M499, M516/M460-2, and M472/M476 were the most abundant metabolites in feces, and each accounted for approximately 2 to 5% of the radioactive dose, while M266 was the most abundant metabolite identified in urine and accounted for a mean of 2.54% of the dose. The remaining radioactive components in urine and feces each accounted for <1% of the dose.
Overall, the data presented indicate [14C]AG-881 underwent moderate metabolism after a single oral dose of 50-mg (100 μCi) and was eliminated in humans via a combination of metabolism and excretion of unchanged parent. AG-881 metabolism involved the oxidation and conjugation with glutathione (GSH) by displacement of the chlorine at the chloropyridine moiety. Subsequent biotransformation of GSH intermediates resulted in elimination of both glutamic acid and glycine to form the cysteinyl conjugates (M515 and M499). The cysteinyl conjugates were further converted by a series of biotransformation reactions such as oxidation, S-dealkylation, S-methylation, S-oxidation, S-acetylation and N-dealkylation resulting in the formation multiple metabolites.
A summary of the metabolites observed is included in Table 2
Example 1
95 g of manganese (purity: 99.95%; purchased from Taewon Scientific Co., Ltd.) and 5 g of high-purity graphite (purity: 99.5%; purchased from Taewon Scientific Co., Ltd.) were placed in a water-cooled copper crucible of an argon plasma arc melting apparatus (manufactured by Labold AG, Germany, Model: vacuum arc melting furnace Model LK6/45), and melted at 2,000 K under an argon atmosphere. The melt was cooled to room temperature at a cooling rate of 104 K/min to obtain an alloy ingot. The alloy ingot was crushed to a particle size of 1 mm or less by hand grinding. Thereafter, the obtained powders were magnetically separated using a Nd-based magnet to remove impurities repeatedly, and the Mn4C magnetic powders were collected. The collected Mn4C magnetic powders were subjected to X-ray diffraction (XRD) analysis (measurement system: D/MAX-2500 V/PO, Rigaku; measurement condition: Cu—Kα ray) and energy-dispersive X-ray spectroscopy (EDS) using FE-SEM (Field Emission Scanning Electron Microscope, MIRA3 LM).
As can be seen in
The M-T curve of the field aligned Mn4C powder obtained in Example 1 was measured under an applied field of 4 T and at a temperature ranging from 50 K to 400 K. Meanwhile, the M-T curve of the randomly oriented Mn4C powder was measured under an applied field of 1 T. The Curie temperature of Mn4C was measured under 10 mT while decreasing temperature from 930 K at a rate of 20 K/min.
According to the Néel theory, the ferrimagnets that contain nonequivalent substructures of magnetic ions may have a number of unusual forms of M-T curves below the Curie temperature, depending on the distribution of magnetic ions between the substructures and on the relative value of the molecular field coefficients. The anomalous M-T curves of Mn4C, as shown in
According to one embodiment of the present disclosure, the saturation magnetization of Mn4C increases linearly with increasing temperature within the range of 50 K to 590 K and remains stable at temperatures below 50 K. The increases in anomalous magnetization of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which are partially oxidized into the manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is about 870 K. The positive temperature coefficient (about 0.0072 Am2/kgK) of magnetization in Mn4C is potentially important in controlling the thermodynamics of magnetization in magnetic materials.
The Curie temperature Te of Mn4C is measured to be about 870 K, as shown in
As shown in
The magnetic properties of Mn4C measured are different from the previous theoretical results. A corner MnI moment of 3.85μB antiparallel to three face-centered MnII moments of 1.23μB in Mn4C was expected at 77 K. The net moment per unit cell was estimated to be 0.16μB. In the above experiment, the net moment in pure Mn4C at 77 K is 0.26μB/unit cell, which is much larger than that expected by Takei et al. It was reported that the total magnetic moment of Mn4C was calculated to be about 1μB, which is almost four times larger than the 0.258μB per unit cell measured at 4.2 K, as shown in
The thermomagnetic behaviors of Mn4C are related to the variation in the lattice parameters of Mn4C with temperature. It is known that the distance of near-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms. Ferromagnetic coupling of Mn atoms is possible only when the Mn—Mn distance is large enough.
Thus, it can be seen that the abnormal increase in magnetization of Mn4C with increasing temperature occurs due to the variation in the lattice parameters of Mn4C with temperature.
The powder produced in Example 1 was annealed in vacuum for 1 hour at each of 700 K and 923 K, and then subjected to X-ray spectroscopy, and the results thereof are shown in
The magnetization reduction of Mn4C at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by the XRD patterns of the powders after annealing Mn4C at elevated temperatures.
These results prove that the metastable Mn4C decomposes into stable Mn23C6 at temperatures above 590 K. The presence of Mn4C in the powder annealed at 923 K indicates a limited decomposition rate of Mn4C, from which the Tc of Mn4C can be measured. Both Mn23C6 and Mn are weak paramagnets at ambient temperature and elevated temperatures. Therefore, the magnetic transition of the Mn4C magnetic material at 870 K is ascribed to the Curie point of the ferrimagnetic Mn4C.
The Mn4C shows a constant magnetization of 0.258μB per unit cell below 50 K and a linear increment of magnetization with increasing temperature within the range of 50 K to 590 K, above which Mn23C6 precipitates from Mn4C. The anomalous M-T curves of Mn4C can be considered in terms of the Néel's P-type ferrimagnetism.
Example 16
Direct analysis of chemicals in animal tissue using probes of the invention was performed as shown in
Lipid profiles were obtained for human prostate tissues (1 mm2×15 μm,
Example 3
Penicillium roqueforti spores were suspended in water. Four DEE chemical compositions were evaluated: (1) 0.06 M copper (II) ions in water, (2) 1 wt.-% surfactant and 10 wt.-% PCSR, (3) 1 wt.-% surfactant and 1 wt.-% PCSR, and (4) 0.5 wt.-% bleach. OxiClean was used as the PCSR and Tween 80 as the surfactant. Clorox was used as bleach. Each DEE composition was added to 0.1 mg/ml suspension of mold spores and exposed to 2.45 GHz microwave for 10 s. After exposure, the cells were centrifuged, washed to remove the DEE chemicals and then plated on Petrifilm and cultured. With the DEE composition 0.06 M copper (II) ions in water and 1 wt.-% surfactant and 10 wt.-% sodium percarbonate, a 6-7 log reduction in P. roqueforti spores (6-7 log kill levels) was realized.
Top products related to «Ions»
More about "Ions"
These charged atoms or molecules play crucial roles in nerve impulse transmission, muscle contraction, fluid balance regulation, and the structure and function of proteins, enzymes, and other biomolecules.
Cations, or positively charged ions, and anions, or negatively charged ions, work together to maintain homeostasis and support vital physiological functions.
Imbalances in ion concentrations, which can be detected and analyzed using advanced mass spectrometry techniques like the Q Exactive, Q Exactive HF, and LTQ Orbitrap XL, can lead to a wide range of health issues, making the study of ions a key focus of medical research.
The EASY-nLC 1000 and Proteome Discoverer software, along with the Xcalibur platform, are commonly used in ion-related research to separate, identify, and quantify various ionic species and their interactions with biomolecules.
Understanding the role of ions in both normal and pathological conditions is crucial for developing effective treatments and maintaining overall health and well-being.
Ions, such as sodium, potassium, calcium, and chloride, are essential for processes like nerve impulse propagation, muscle contraction, and fluid balance.
Imbalances in these ions can result in conditions like hypertension, arrhythmias, and electrolyte disorders.
Researchers leverage advanced mass spectrometry techniques and bioinformatics tools like Proteome Discoverer 1.4 to study the complex interplay of ions and their impact on human physiology and pathology.
This comprehensive overview highlights the importance of ions in the human body and the ongoing research efforts to understand their crucial roles in maintaining optimal health.
By studying the intricate mechanisms involving ions, scientists can develop better diagnostic and therapeutic strategies to address a wide range of health concerns.