The photoelectron momentum distributions with respect to the molecular axis shown in Fig. 2 were generated in the following way. Initially, the ions were assigned to the one of the two breakup channels, direct and indirect, by requiring the magnitude of the ion momentum to be within 3.5–17 a.u. and 37–46 a.u., respectively. This gating ensure that the ion comes from the breakup of the dimer along II(1/2)g state (Fig. 1a ). The ionization of atomic neon as well as dissociation over the other potential curves43 (link) would result in the ion momentum smaller than 3 a.u. Subsequently, only ionization events have been considered, where ion and electron momentum vectors lie within slices along the polarization plane, defined by the conditions |px| < 0.55 a.u. for electrons as well as |px| < 3.5 a.u. and |px| < 12.0 a.u. for ions from the direct and indirect dissociation channels, respectively (the x-direction is the light propagation direction). These conditions ensure that the angle between a momentum vector and the polarization plane does not exceed 45° in the worst case. For the majority of events this angle is, however, smaller than 30°. Both, electron and ion momentum vectors were projected onto the polarization plane. The projection of the ion momentum defines the k|| direction, whereas the two components, k|| and k⊥, of the electron projection are plotted in Fig. 2 . This type of molecular frame transformation avoids nodes along the dimer axis. It does not conserve the product k·R , but the loss of contrast in the interference patterns is negligible. Another type of transformation, a natural one, where the ion momentum vector, not its projection, defines the k|| direction is presented in the Supplementary Note 3 and Supplementary Fig. 4 .
Full text: Click here