The largest database of trusted experimental protocols
> Chemicals & Drugs > Element > Phosphorus

Phosphorus

Phosphorus is a essential mineral that plays a crucial role in various physiological processes within the human body.
It is a key component of bones, teeth, and cell membranes, and also participates in energy production, nutrient transport, and cellular signaling.
Adequate phosphorus intake is necessary for maintening strong bones, proper kidney function, and overall health.
However, an imbalance in phosphorus levels can lead to a range of medical conditions, such as kidney stones, osteoporosis, and hypophosphatemia.
Researchers and clinicians often need to access reliable information on phosphorus metabolism, regulation, and associated disorders to optimize patient care and advance scientific understanding.
PubCompare.ai can streamline this process by providing easy access to the latest protocols, research, and comparisons related to phosphorus, helping to ensure reproducible and accurate results in phosphorus-related studies.

Most cited protocols related to «Phosphorus»


Calculations. Both S&R and L&R are pretty straightforward to implement, and both require first determining which atoms are in contact, and then calculating the overlap between each atom and its neighbors. Finding contacts is done using cell lists, which means the contact calculation is an
O(
N) operation. Both algorithms then treat each atom independently, making also the second part of the calculation
O(
N). In addition, this second part is trivially parallelizable.
For L&R, instead of slicing the whole protein in one go, each atom is sliced individually. The L&R calculation is thus parameterized by the number of slices per atom, i.e. small atoms have thinner slices than large atoms.
The Fibonacci spiral gives a good approximation to an even distribution of points on the sphere (
Swinbank & Purser, 2006 (link)), allowing efficient generation of an arbitrary number of S&R test points. The cell lists provide the first of the two lattices in the double cubic lattice optimization for this algorithm (
Eisenhaber
et al., 1995
), the second lattice (for the test points) is not implemented in FreeSASA, for now.
The correctness of the implementations was tested by first inspecting the surfaces visually. In the two atom case, results were verified against analytical calculations. Another verification came from comparing the results of high precision SASA calculations using the two independent algorithms. In addition, using the L&R algorithm gives identical results to NACCESS when the same resolution and atomic radii are used.
Radius assignment. An important step of the calculation is assigning a radius to each atom. The default in FreeSASA is to use the
ProtOr radii by
Tsai
et al. (1999)
. The library recognizes the 20 standard amino acids (plus Sec and Pyl), and the standard nucleotides (plus a few nonstandard ones). Tsai
et al. do not mention phosphorus and selenium; these atoms are assigned a radius of 1.8 and 1.9 Å respectively.
By default, hydrogen atoms and HETATM records are ignored in Protein Data Bank (PDB) files. If included, the library recognizes three common HETATM entries: the acetyl and NH
2 capping groups, and water, and assigns ProtOr radii to these. Otherwise the van der Waals radius of the element is used, taken from the paper by
Mantina
et al. (2009)
. For elements outside of the 44 main group elements treated by Mantina
et al., or if completely different radii are desired, users can provide their own configuration.
Users can specify their own atomic radii either through the API or by providing a configuration file. The library ships with a few sample configuration files, including one that provides a subset of the NACCESS parameterization, and one with the default ProtOr parameters. In addition, scripts are provided to automatically generate ProtOr configurations from PDB CONECT entries, such as those in the Chemical Component Dictionary (
Westbrook
et al., 2015
). These can then be appended to the default configuration.
Full text: Click here
Publication 2016
Amino Acids cDNA Library Cells Cuboid Bone Hydrogen Nucleotides Phosphorus Proteins Radius Sasa Selenium
Network analysis was conducted with the microbial communities of the soil samples from the Biocon experiment located at the Cedar Creek Ecosystem Science Reserve in Minnesota (45°N, 93°W). Plots were established in 1997 on a secondary successional grassland on a sandy outwash soil after removing the previous vegetation (41 (link)). The main Biocon field experiment has 296 (of a total of 371) evenly distributed plots (2 by 2 m) in six 20-meter-diameter rings, three for an aCO2 concentration of 368 µmol/mol and three for an eCO2 concentration of 560 µmol/mol using a FACE system (42 (link)). In this study, 24 plots (12 for aCO2 and 12 for eCO2, all with 16 species and no additional N supply) were used. The experimental analyses of these plots (e.g., soil chemistry, plants, GeoChip hybridization, and data preprocessing) are described elsewhere (29 (link)). Since this study focused on the impact of eCO2 on ecosystem functional processes, only the genes involved in the cycling of nutrient such as carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) were used for network analysis. Because we are more interested in the network interactions among different microbial functional groups, only the representative commonly used signature genes for various functional gene groups were selected for the network analysis. In most cases, only those genes detected in half or more than half of the total samples (majority rule) were kept for subsequent network constructions.
Publication 2010
Carbon Crossbreeding Ecosystem Face Genes Microbial Community Nitrogen Nutrients Phosphorus Plants Sulfur
The w3DNA server reports three sets of rigid-body parameters: (i) the six base-pair parameters describing the spatial arrangements of associated bases—three angles called Buckle, Propeller, and Opening and three displacements called Shear, Stretch, and Stagger; (ii) the six base-pair-step parameters specifying the configurations of spatially adjacent base pairs—two bending angles called Tilt and Roll, the dimeric rotation angle Twist, two in-plane dislocations termed Shift and Slide, and the vertical displacement Rise; and (iii) the six parameters that relate the positions of successive base pairs relative to a local helical frame—the angles Inclination and Tip and the distances x-displacement and y-displacement describing the orientation and translation of the base planes with respect to the helical axis, and the rotation about and displacement along the helical axis, referred to as Helical Twist and Helical Rise (1 (link),10 ). The numerical values describe the deviations of the base pairs in a given structure from the planar Watson–Crick base pairs in an ideal B-DNA helix, where the base-pair parameters, the dimeric bending components, and in-plane dislocations of adjacent base pairs are null (11 (link)). A fourth set of rigid-body variables—the dinucleotide Tilt, Roll, Twist, Shift, Slide, and Rise—specifies the arrangements of adjacent bases along individual strands. The computations of rigid-body parameters use the mathematical definitions of El Hassan and Calladine (5 (link)). The identification of the helical axis between adjacent base pairs follows the methodology introduced by Babcock et al. (13 (link)).
The reported output also includes the areas of overlap of adjacent bases and base pairs and the positioning of phosphorus atoms within each base-pair step. The former values quantify the stacking of neighboring base pairs, and the latter discriminate between A and B double-helical steps (17 (link)). The base-pairing information is complemented by more conventional structural data, such as the identities and lengths of hydrogen bonds, the distances and angles between atoms in hydrogen-bonded and adjacent nucleotides, the torsion angles along the chain backbone, the amplitude and phase angle of sugar pseudorotation (i.e. puckering geometry), the glycosyl torsions orienting the sugars and bases, and the widths of the major and minor grooves.
Publication 2009
Carbohydrates Dinucleoside Phosphates Epistropheus Helix (Snails) Human Body Hydrogen Hydrogen Bonds Joint Dislocations Muscle Rigidity Nucleotides Phosphorus Reading Frames Sugars Vertebral Column
There are several methods available to measure respiration of living samples, which can be globally divided into two groups: O2-dependent quenching of porphyrin-based phosphors (Seahorse Bioscience XF respirometer and Luxcel MitoXpress) and amperometric O2 sensors (Clark electrodes, including the widely adopted Oroboros system)1 ,42 (link). Historically, the amperometric approach has been the main method used to assess mitochondrial respiration in C. elegans. For the amperometric approach, nematodes are delivered into a single respiratory chamber, which is separated from two half-cells by O2-permeable material. In this way, only O2 can diffuse from the assay medium through the membrane. When a small voltage is applied to the half-cells, O2 is reduced by electrons at the cathode yielding hydrogen peroxide. Subsequently, H2O2 oxidizes the Ag (silver) of the Ag/AgCl anode, which results in an electrical current that is proportional to the O2 pressure – and thus concentration – in the experimental respiratory chamber.
Apart from the detection modality, differences of the XF respirometric method appear at the level of number of worms per assay, replicates, multiple, or real-time measurements and the ability to inject compounds during an experiment (Table 1). The Clark electrode approach requires thousands (~2000-5000) of worms in a single chamber to obtain an estimation of the oxygen consumption rate43 (link). Performing multiple measurements, biological replicates and comparing conditions provide the biggest challenges within the Clark electrode method as the traditional set-up only allows the measurements of one sample at a time. In contrast, a XF96 respirometer requires ~10-20 worms per well to acquire a reproducible oxygen consumption rate, measurements can be easily and quickly (in the order of minutes) repeated in an automated way and since XF respirometers can analyse whole plates at the same time, about 96 conditions/replicates can be tested at once. An additional difference is the presence of drug-injection ports that can be programmed to inject compounds in all 96 wells at time points that are specified a priori during an XF respirometer experiment. Clark electrode systems also allow injection of compounds, and even offer flexibility with respect to the timing, dosing and number of additions as compounds are injected manually during the course of the assay. However, precise timing of manual additions between replicate experiments may be challenging.
More similar to the Seahorse XF respirometer method is the Luxcel MitoXpress O2 consumption assay, which relies on O2-dependent quenching of porphyrin-based phosphor. The MitoXpress kits provide a way of performing real-time analysis of cellular respiration, via an oxygen-quenching fluorophore system. Worms are placed into the wells of a 96- or 384-well plate, the kit reagents are added, and measurements are made in a fluorometric plate reader. Multiple conditions and replicates can be tested side-by-side in the wells of a single plate, but repeated measurements over time are more challenging as there is typically no automatized mixing system integrated in the plates or plate-readers to restore basal O2 levels. In addition, single estimation of the OCR takes >90 minutes, while careful estimations of the OCR in the XF respirometer approach takes only 2-5 minutes of measuring time. Finally, the use of compounds to assess multiple aspects of mitochondrial function related to oxygen consumption is limited since compounds need to be injected manually immediately prior to the start of the experiment.
Publication 2016
Biological Assay Biopharmaceuticals Cell Respiration Cells DNA Replication Electricity Electrons Fluorometry Helminths Mitochondria Nematoda Oxygen Consumption Permeability Peroxide, Hydrogen Pharmaceutical Preparations Phosphorus Porphyrins Pressure Respiration Respiratory Rate Seahorses Silver Tissue, Membrane
For targeting with the crossing scheme, the targeting vector, which was modified to contain the appropriate homology arms (here 3-5 kb arms were used but smaller arms are likely to suffice), was introduced at a random genomic locations by P-element-mediated transformation (Rainbow Transgenics, Bestgene or in house). Transformants (not necessarily mapped or homozygosed) were crossed to hs-FLP, hs-I-SceI flies (Bloomington stock number 25679 or 25680) and the resulting larvae were heat-shocked at 48 and 72 hours after egg laying (AEL) for 1 hour at 37°C. Approximately 200 adult females with mottled red eyes (indicating the presence of the targeting vector and the transgene carrying hs-FLP and hs-I-SceI) were crossed in pools of 15 (this number was chosen to maximise the number of progeny for the vial size we use) to ubiquitin-Gal4[3xP3-GFP] males and the progeny was screened for the presence of red-eyed flies. The ubiquitin-Gal4[3xP3-GFP] transgene was subsequently removed by selecting against the presence of GFP in the ocelli. In most, but not all, cases screening was stopped after a homologous recombinant was confirmed. Gene targeting by direct injection was performed as for P-element-mediated transformation, except that the injection mix contained the targeting vector (700 ng/μl) and vasa-FUS (300 ng/μl). DNA was prepared with the PureLink Midi prep Kit (Invitrogen, K2100-16). For each targeting experiment, 3000 embryos were injected by Rainbow Transgenics. The resulting flies were crossed to white1118 flies and red-eyed flies were selected from the progeny. For CRISPR-aided homologous recombination, the injection mix contained the targeting vector (600 ng/μl), vasa-FUS (200 ng/μl), U6-target-gRNA (150 ng/μl) and vasa-Cas9 (150 ng/μl), all as supercoiled plasmids. We have obtained evidence that, using this method, 500 bp homology arms might suffice.
Publication 2013
Animals, Transgenic Arm, Upper Cloning Vectors Clustered Regularly Interspaced Short Palindromic Repeats Diptera Embryo Genome Homologous Recombination Larva Males Phosphorus Plasmids Transgenes Ubiquitin Woman

Most recents protocols related to «Phosphorus»

Example 4

To evaluate the ability of hydroxyapatite formation by the bioceramic compositions, samples with a mean particle size of 1.5 μm were stored in a solution of simulated body fluid (SBF) pH 7.25 at 37° C. and evaluated at 1, 3, 5, 7, 10 and 20 days using the mass/volume ratio of 1.5 mg/mL. After 20 days the disks were washed with water and dried at 60° C. The amount of hydroxyapatite was determined by the phosphorus (P) content in the samples by dispersive energy X-ray fluorescence spectrometry. The mass percentage found is related to hydroxyapatite formation. The results are presented in Table 5.

TABLE 5
Percentages by weight of phosphorus obtained by area mapping
by X-ray fluorescence of the bioceramic compositions 1 to 6.
Days
Element P (%)
Samples12351020
CB 10.0810.0750.0800.1310.2030.213
CB 20.0620.0710.0750.0820.1010.123
CB 30.0550.0510.0630.0790.0880.095
CB 40.0790.0850.0940.0990.1250.182
CB 50.0820.0900.1050.1220.1430.196
CB 60.0950.1050.1320.1600.1840.208

While some embodiments are shown and described herein, one skilled in the art will appreciate that modifications and variations are possible in light of the above teachings.

Full text: Click here
Patent 2024
Biological Assay Body Fluids CB 184 Durapatite Fluorescence Light Phosphorus Roentgen Rays Spectrometry, X-Ray Emission Teaching
Not available on PMC !

Example 1

An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their percent composition in the crude oil fractions) are given in Table 1 below.

TABLE 1
Stream NameBoiling RangeNi (ppm)V (ppm)S (wt. %)N (ppm)
Hydrocarbon3.414.521.6444
Feed
Light StreamLess than<1<10.213
370° C.
Heavy StreamGreater than 4.414.21.4431
370° C.

Details of the un-hydrotreated heavy stream are shown below in Table 2, where the heavy stream is designated EX-1(A).

The same Arab light crude oil used in Example 1 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3(A), results are designated CE-1. Specifically, the temperature was 675° and the TOS was 75 seconds.

TABLE 4
3(A)3(B)3 (Combined)CE-1
(wt. %)(wt. %)(wt. %)(wt. %)
Dry Gas9.876.438.0610.80
Light Olefins39.1151.6743.4634.89
Ethylene11.8210.0610.6910.41
Propylene18.3425.7621.0516.51
Butylene8.9615.8411.727.96
Gasoline Range33.1224.6028.3824.21
Products
Coke4.926.615.5113.86
Conversion91.1494.4689.8687.38

As can be seen in Table 4, the combined yields of total light olefins from the present methods are significantly higher than the yields from the comparative methods. Further, each of examples 3(A), 3(B), and 3(Combined) show significantly decreased levels of coke formation relative to the comparative example CE-1.

Example 2

The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an Hz/oil ratio 1200:1(v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.

The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below and are designated EX-2.

TABLE 2
EX-1(A)EX-2
Kinematic viscosity at 100° C. (mm2/s)6
Density (g/ml)0.9650.8402
Nitrogen (ppm)120868.5
Sulfur (wt. %)3.10.007
Ni (ppm)10<1
V (ppm)32<1
Aromatics68.625.6

The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization of the product is given in Table 5 below.

TABLE 5
CE-13(B)
Temp. ° C.645645
T.O.S.(s)7575
Steaming Cond.810° C. for 6 hours
CAT/OIL6.488.00
Conversion (%)82.7794.46
Yields (wt. %)
H2 (wt. %)0.600.93
C1 (wt. %)4.823.71
C2 (wt. %)2.741.79
C2═ (wt. %)8.0710.06
C3 (wt. %)2.262.25
C3═ (wt. %)17.1625.76
iC4 (wt. %)0.671.58
nC4 (wt. %)0.550.69
t2C4═ (wt. %)2.393.92
1C4═ (wt. %)1.672.78
iC4═ (wt. %)3.596.01
c2C4═ (wt.%)1.903.14
1,3-BD (wt. %)0.010.63
Total Gas (wt. %)46.4463.25
Gasoline (wt. %)18.0924.60
LCO (wt. %)9.843.95
HCO (wt. %)7.381.59
Coke (wt. %)18.246.61
Groups (wt. %)
H2—C2 (dry gas)16.2416.49
C3—C4 (LPG)30.1946.77
C2═−C4═ (Light34.7952.30
olefins)
C3═+C426.7142.24
C4═ (Butenes)9.5516.48
Molar Ratios
mol/mol)
C2═/C23.156.03
C3═/C37.9711.97
C4═/C48.067.52
iC4═/C40.380.36
iC4═/iC45.513.94

As can be seen in Table 5, utilizing a hydrotreated heavy stream as the feed to the catalytic reactor results in higher conversion; greater yield of C2, C3, and C4 olefins; greater yield of gasoline; and significantly decreased coke formation, among other advantages.

Example 3

The respective fractions of Arab light crude were cracked at the conditions described below. A catalyst with the composition shown in Table 3 below as used in all of the reactions.

TABLE 3
ComponentWeight %Notes
ZSM-520Phosphorus impregnated at 7.5 wt. %
P2O5 on zeolite
USY21Lanthanum impregnated at 2.5 wt. %
La2O3 on zeolite
Alumina8Pural SB from Sasol
Clay49Kaolin
Silica2Added as colloidal silica Ludox TM-40

An Advanced Cracking Evaluation (ACE) unit was used to simulate a commercial FCC process. The reaction was run two times with fresh catalyst to simulate two separate FCC reaction zones in parallel.

Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B). The weight ratio of catalyst to hydrocarbons was 8.

It should be understood that time-on-stream (TOS) is directly proportional to residence time.

The light stream from Example 1 was fed to the advanced cracking evaluation unit. A time-on-stream (TOS) of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 675° C. was used.

The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization is shown in both Table 4 and Table 5.

The streams of Examples 3(A) and 3(B) were combined to form a single stream. The single stream simulates the output of processing a whole crude according to the methods of the present disclosure.

Example 3(Combined) is a weighted average of Examples 3(A) and 3(B). Example 3(A) represented 53 wt. % of Example 3(Combined). Example 3(B) represented 44 wt. % of Example 3 (Combined).

Full text: Click here
Patent 2024
Adjustment Disorders Alkenes Arabs butylene Catalysis Clay Cocaine Distillation ethylene GAS6 protein, human Gravity Hutterite cerebroosteonephrodysplasia syndrome Hydrocarbons Kaolin Lanthanum Light Molar Neoplasm Metastasis Nitrogen Oxide, Aluminum Petroleum phosphoric anhydride Phosphorus Pressure propylene Regeneration Silicon Dioxide Simulate composite resin Sulfur Viscosity Vision Zeolites

Example 1

An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their wt. % composition in the crude oil) are given in Table 1 below.

TABLE 1
Boiling Ni VS N
Stream NameRange(ppm)(ppm)(wt. %)(ppm)
Hydrocarbon4.414.21.6444
Feed
Light StreamLess than <1<10.8136
540° C.
Heavy StreamGreater than4.414.20.8308
540° C.

The same Arab light crude oil used in Example 3 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3.

TABLE 4
EX-3CE-1
Constituent(wt. %)(wt. %)
H20.680.72
C16.476.86
C23.103.23
C2 = (ethylene)10.8510.41
C31.671.65
C3 = (propylene)18.2016.51
iC40.460.42
nC40.410.56
t2C4 =2.221.93
1C4 =1.651.40
iC4 =3.573.09
c2C4 =1.791.54
1,3-BD1.110.99
Butenes9.227.96
Total Gas52.1749.31
Dry Gas10.2410.80
Total Light Olefins38.2734.89
Gasoline27.9224.21
LCO8.439.43
HCO2.043.20
Coke9.4413.86
Total Gas + Coke61.6163.17

As can be seen in Table 4, the yield of total light olefins from the inventive EX-3 is significantly higher than the yield of light olefins in the comparative CE-1. Additionally, EX-3 shows significantly lower coke formation than the comparative CE-1.

Example 2

The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an H2/oil ratio 1200:1 (v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.

The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below.

TABLE 2
Kinematic viscosity at 100° C.67.6 mm2/s
Density at 60° C.0.9 g/cm3
Sulfur (wt. %)0.36
Ni (ppm)1
V (ppm)3
Fe (ppm)<1
Na (ppm)<10

Example 3

A catalyst with the composition shown in Table 3 below as used in all of the reactions.

TABLE 3
ComponentWeight %Notes
ZSM-520Phosphorus impregnated at 7.5 wt. % P2O5
on zeolite
USY21Lanthanum impregnated at 2.5 wt. % La2O3
on zeolite
Alumina8Pural SB from Sasol
Clay49Kaolin
Silica2Added as colloidal silica Ludox TM-40

An Advanced Cracking Evaluation (ACE) unit was used to simulate a down-flow FCC reaction zone with multiple inlet points. The ACE unit emulates commercial FCC process.

Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B).

The light stream from Example 1 was combined with the hydrotreated heavy stream from Example 2 to form a combined feed stream. The combined feed stream was fed to the ACE unit. A time-on-stream (TOS) of 75 seconds and a temperature of 675° C. was used. Fresh catalyst was steamed deactivated at 810° C. for 6 hours to resemble the equilibrium catalyst in the actual process. The steam deactivated catalyst was used in this reaction. It should be understood that TOS is directly proportional to residence time.

Full text: Click here
Patent 2024
43-63 Adjustment Disorders Alkenes Arabs BD-38 butylene Catalysis Clay Cocaine Distillation ethylene Gravity Hydrocarbons Kaolin Lanthanum Light Neoplasm Metastasis Nitrogen Oxide, Aluminum Petroleum phosphoric anhydride Phosphorus Pressure propylene Regeneration Silicon Dioxide Steam Sulfur Viscosity Vision Zeolites

Example 4

The antibacterial efficacy of unaltered and experimental (doped) dental adhesive resins against non-disrupted cariogenic (caries producing) biofilms was further assessed in terms of relative luminescence units (RLUs) using a real-time luciferase-based bioluminescence assay. Toward this end, experimental dental adhesive resins containing either N—TiO2 NPs (5%-30%, v/v), N—F—TiO2 NPs (30%, v/v) and N—Ag—TiO2 NPs (30%, v/v) were synthesized by dispersing the nanoparticles in OBSP adhesive resin using a sonicator (4 cycles of 1 min, intervals of 15-sec between cycles; Q700, QSonica, USA). Two non-antibacterial (OBSP, and Scotchbond Multipurpose, 3M ESPE, USA) and one antibacterial (Clearfil SE Protect, Kuraray, Noritake Dental Inc., Japan) commercially available dental adhesive resins were also tested for antibacterial functionalities. Streptococcus mutans biofilms were grown (UA 159-ldh, JM 10; 37° C., microaerophilic) on the surfaces of disk-shaped specimens (n=18/group, d=6.0 mm, t=0.5 mm) for either 24 or 48 hours with or without continuous visible light irradiation (405±15 nm). One set of specimens was fabricated with OBSP and was treated with Chlorhexidine 2% (2 min) that served as our control group. Results for the antibacterial efficacies of both unaltered and experimental dental adhesive resins containing either doped or co-doped TiO2 NPs under continuous visible light irradiation for either 24 or 48 hours, demonstrated that all groups tested displayed similar antibacterial behaviors under continuous visible light irradiation. Such findings suggest that under the conditions investigated (wavelength and power intensity), visible light irradiation had a very strong antibacterial behavior that took place independently of the antibacterial activity of the substrate where biofilms were grown (either antibacterial or not). Such impact made impossible the determination of the materials' real antibacterial efficacies under such light irradiation conditions.

Experiments were then conducted under dark conditions; bacteria were grown in dark conditions for either 24 and 48 hours. The results indicated that the TiO2-containing adhesive resins were more antibacterial than commercially available non-antibacterial dental adhesive resins (such as OptiBond Solo Plus and Scotchbond Multipurpose). The experimental dental adhesive resins containing 30% (v/v) of nanoparticles (N—TiO2 NPs, N—F—TiO2 NPs and N—Ag—TiO2 NPs) displayed antibacterial efficacies in dark conditions that were similar to Clearfil SE Protect (Fluoride-releasing material, Kuraray, Noritake Dental Inc., Japan). S. mutans biofilms grown on specimens treated with chlorhexidine 2% (2 min) displayed the lowest RLU values amongst all groups investigated, thereby confirming the strong antibacterial behavior of non-immobilized chlorhexidine. In addition, the antibacterial effect was demonstrated to be concentration-dependent, wherein experimental adhesive resins containing higher concentrations of antibacterial nanoparticles (either doped or co-doped) displayed stronger antibacterial effects against non-disrupted S. mutans biofilms. Since long intra-oral irradiation periods (24-hour and 48-hour) are impractical and clinically not feasible, associated with the fact that these materials are intended to be used in the oral cavity's dark conditions, these results were considered of paramount importance and clinically relevant for the commercialization pathway of recently developed antibacterial and bioactive nano-filled dental adhesive resins.

Optical and mechanical properties of both unaltered and experimental dental adhesive resins containing 5%-30% (v/v, 5% increments) of N—TiO2 NPs were assessed in terms of color stability and biaxial flexure strength. Color stability (n=5) and biaxial flexure strength (n=8) specimens (d=6.0 mm, t=0.5 mm) were fabricated and tested using a color analysis software (ScanWhite, Darwin Syst., Brazil) and an Instron universal testing machine (cross-head rate=1.27 mm/min), respectively. Color stability measurements were performed immediately after specimen fabrication and after water storage (1, 2, 3, 4, 5, 6 months; 37° C.). The color stability results demonstrated that specimens fabricated using either unaltered or experimental dental adhesive resins containing N—TiO2 NPs (5%-30%, v/v) were subjected to color changes induced by long-term water storage. The highest color variations were observed at two months of water storage (37° C.) for specimens pertaining to experimental groups containing either 5% or 10% of N—TiO2 NPs. Specimens fabricated with unaltered OptiBond Solo Plus have demonstrated color variations that were similar to the color variations observed for the experimental group containing 20% N—TiO2 NPs. Specimens fabricated with 30% N—TiO2 NP-containing dental adhesive resins have shown the least amount of color variation throughout the investigation time (6-mo), and therefore, were considered as the most color stable amongst all materials investigated. From the esthetic standpoint, the human eye can only detect differences in color above a certain threshold (ΔE≥3).

In at least one embodiment, dental composition specimens fabricated with at 30% N—TiO2 NPs displayed color variations that were either lower than or close to the human eye detection capability, thereby corroborating the long-term use of these highly esthetic experimental dental adhesive resins. In at least certain embodiments, the dental compositions contain at least 5% to 80% (v/v) of doped-TiO2 NPs as disclosed herein, such as at least 5% (v/v), at least 6% (v/v), at least 7% (v/v), at least 8% (v/v), at least 9% (v/v), at least 10% (v/v), at least 11% (v/v), at least 12% (v/v), at least 13% (v/v), at least 14% (v/v), at least 15% (v/v), at least 16% (v/v), at least 17% (v/v), at least 18% (v/v), at least 19% (v/v), at least 20% (v/v), at least 21% (v/v), at least 22% (v/v), at least 23% (v/v), at least 24% (v/v), at least 25% (v/v), at least 26% (v/v), at least 27% (v/v), at least 28% (v/v), at least 29% (v/v), at least 30% (v/v), at least 31% (v/v), at least 32% (v/v), at least 33% (v/v), at least 34% (v/v), at least 35% (v/v), at least 36% (v/v), at least 37% (v/v), at least 38% (v/v), at least 39% (v/v), at least 40% (v/v), at least 41% (v/v), at least 42% (v/v), at least 43% (v/v), at least 44% (v/v), at least 45% (v/v), at least 46% (v/v), at least 47% (v/v), at least 48% (v/v), at least 49% (v/v), at least 50% (v/v), at least 51% (v/v), at least 52% (v/v), at least 53% (v/v), at least 54% (v/v), at least 55% (v/v), at least 56% (v/v), at least 57% (v/v), at least 58% (v/v), at least 59% (v/v), at least 60% (v/v), at least 61% (v/v), at least 62% (v/v), at least 63% (v/v), at least 64% (v/v), at least 65% (v/v), at least 66% (v/v), at least 67% (v/v), at least 68% (v/v), at least 69% (v/v), at least 70% (v/v), at least 71% (v/v), at least 72% (v/v), at least 73% (v/v), at least 74% (v/v), at least 75% (v/v), at least 76% (v/v), at least 77% (v/v), at least 78% (v/v), at least 79% (v/v), or at least 80% (v/v), with the balance comprising the curable adhesive resin material, and optionally other components as described elsewhere herein.

The present results demonstrate that experimental dental adhesive resins containing varying concentrations of N—TiO2 NPs display biaxial flexure strengths that are either similar or better than the strength observed for specimens fabricated with the unaltered OBSP. No differences were observed among the flexure strengths of experimental groups, thereby indicating that the presently disclosed materials can behave very similar to commercially available materials when subjected to masticatory forces.

Specimens (d=6.0 mm, t=0.5 mm) of the unaltered resins and experimental dental adhesive resins containing 30% N—TiO2 NPs, 30% N—F—TiO2 NPs and 30% N—Ag—TiO2 NPs were fabricated and characterized using the state of the art scanning electron microscope. This dual focused ion-beam microscope (Dual-FIB SEM/EDS) is capable, through a destructive process, to characterize and map the chemical composition and distribution of elements in three dimensions. The 3-D characterization and localization of components clearly demonstrated that experimental materials containing co-doped nanoparticles (e.g., 30% v/v, N—F—TiO2 NPs) displayed an optimized dispersion of filler particles (part of the original composition) when compared to the filler particle distribution observed on specimens fabricated with the unaltered dental adhesive resin. The 3-D images demonstrated that the experimental adhesive resins had more filler particles per unit volume with a more homogeneous size distribution than the filler fraction and size distribution observed on OptiBond Solo Plus samples. In addition, results showed that larger and more agglomerated filler particles tend to result in a polymer matrix containing more pores per unit volume. This finding was corroborated by the pore-size distribution calculated for the unaltered samples and experimental dental adhesive resin samples, where it is possible to observe that the quantity and sizes of pores formed in experimental materials were smaller when compared to the unaltered OptiBond Solo Plus samples.

In at least one embodiment, the present disclosure includes a dental composition, comprising doped and/or coated TiO2 NPs, and a curable resin material, wherein the curable resin material comprises a polymer precursor component. The TiO2 NPs may comprise at least one dopant or coating selected from the group consisting of N (nitrogen), Ag (silver), F (fluorine), P (phosphorus), and PO4 (phosphate). As noted above, in non-limiting embodiments, the dental composition may comprise a volume to volume ratio of doped TiO2 NPs to curable resin material in a range of 1% to 80% (v/v), 5% to 50% (v/v), or 10% to 40% (v/v), for example. The polymer precursor component may be photocurable. The polymer precursor may be selected from the group consisting of acrylates, methacrylates, dimethacrylates, epoxies, vinyls and thiols. The polymer precursor may be selected from the group consisting of ethylenedimethacrylate (“EDMA”), bisphenol A glycidyl methacrylate (“BisGMA”), triethyleneglycol dimethacrylate (“TEGDMA”), 1,6-bis(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (UDMA), pyromellitic glycerol dimethacrylate (PMGDM), and 2-hydroxyethyl methacrylate (HEMA). The dental composition may comprise at least one solvent. The at least one solvent may be selected from the group consisting of water, ethanol, methanol, toluene, ethyl ether, cyclohexane, isopropanol, chloroform, ethyl acetate, acetone, hexane, and heptanes. The dental composition may comprise a polymerization initiator. The dental composition may comprise a filler. The dental composition may be selected from the group consisting of dental resins, dental bonding agents, dental adhesives, dental cements, dental restoratives, dentals coatings, dental sealants, acrylic resins, and denture teeth. The dental composition may comprise bioactive and/or antibacterial activity in the absence of visible or ultraviolet light. The dental composition may be used to form a hardened dental article after a photocuring step. In at least one embodiment, the disclosure includes an in vivo dental process, comprising applying the dental composition to at least one of a dental restorative and a dental substrate, and causing the dental restorative to be bonded to the dental substrate via the dental composition after a step of photocuring the dental composition.

Accordingly, the present disclosure is directed to at least the following non-limiting embodiments:

Clause 1. In at least one embodiment the present disclosure includes a dental composition, comprising doped TiO2 nanoparticles, and a curable resin material, wherein the curable resin material comprises a polymer precursor component.

Clause 2. The dental composition of clause 1, wherein the doped TiO2 nanoparticles comprise at least one dopant selected from the group consisting of N (nitrogen), Ag (silver), F (fluorine), P (phosphorus), and PO4 (phosphate).

Clause 3. The dental composition of clause 1 or 2, wherein the doped TiO2 nanoparticles further comprise at least one second dopant selected from the group consisting of N, Ag, F, P, and PO4.

Clause 4. The dental composition of any one of clauses 1-3, comprising a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 1% to 80% (v/v).

Clause 5. The dental composition of any one of clauses 1-4, comprising a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 5% to 50% (v/v).

Clause 6. The dental composition of any one of clauses 1-5, comprising a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 10% to 40% (v/v).

Clause 7. The dental composition of any one of clauses 1-6, wherein the polymer precursor component is photocurable.

Clause 8. The dental composition of any one of clauses 1-7, wherein the polymer precursor is selected from the group consisting of acrylates, methacrylates, dimethacrylates, epoxies, vinyls and thiols.

Clause 9. The dental composition of any one of clauses 1-8, wherein the polymer precursor is at least one selected from the group consisting of ethylenedimethacrylate (EDMA), bisphenol A glycidyl methacrylate (BisGMA), triethyleneglycol dimethacrylate (TEGDMA), 1,6-bis(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (UDMA), pyromellitic glycerol dimethacrylate (PMGDM), and 2-hydroxyethyl methacrylate (HEMA).

Clause 10. The dental composition of any one of clauses 1-9, further comprising at least one solvent.

Clause 11. The dental composition of any one of clauses 1-10, further comprising a solvent selected from the group consisting of water, ethanol, methanol, acetone, toluene, ethyl ether, cyclohexane, isopropanol, chloroform, ethyl acetate, hexane, and heptanes.

Clause 12. The dental composition of any one of clauses 1-11, further comprising a polymerization initiator.

Clause 13. The dental composition of any one of clauses 1-12, further comprising a filler.

Clause 14. The dental composition of any one of clauses 1-13, wherein the curable resin material is selected from the group consisting of dental resins, dental bonding agents, dental adhesives, dental cements, dental restoratives, dentals coatings, dental sealants, acrylic resins, and denture teeth.

Clause 15. The dental composition of any one of clauses 1-14, comprising bioactive and/or antibacterial activity in the absence of visible or ultraviolet light.

Clause 16. A kit for forming a dental composition, the kit comprising doped TiO2 nanoparticles, and a curable resin material, wherein the curable resin material comprises a polymer precursor component.

Clause 17. The kit of clause 16, wherein the doped TiO2 nanoparticles comprise at least one dopant selected from the group consisting of N (nitrogen), Ag (silver), F (fluorine), P (phosphorus), and PO4 (phosphate).

Clause 18. The kit of clause 16 or 17, wherein the doped TiO2 nanoparticles further comprise at least one second dopant selected from the group consisting of N, Ag, F, P, and PO4.

Clause 19. The kit of any one of clauses 16-18, comprising sufficient doped TiO2 nanoparticles and curable resin material such that the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 1% to 80% (v/v).

Clause 20. The kit of any one of clauses 16-19, comprising sufficient doped TiO2 nanoparticles and curable resin material such that the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 5% to 50% (v/v).

Clause 21. The kit of any one of clauses 16-20, comprising sufficient doped TiO2 nanoparticles and curable resin material such that the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 10% to 40% (v/v).

Clause 22. The kit of any one of clauses 16-21, wherein the polymer precursor component is photocurable.

Clause 23. The kit of any one of clauses 16-22, wherein the polymer precursor is selected from the group consisting of acrylates, methacrylates, dimethacrylates, epoxies, vinyls and thiols.

Clause 24. The kit of any one of clauses 16-23, wherein the polymer precursor is at least one selected from the group consisting of ethylenedimethacrylate (EDMA), bisphenol A glycidyl methacrylate (BisGMA), triethyleneglycol dimethacrylate (TEGDMA), 1,6-bis(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (UDMA), pyromellitic glycerol dimethacrylate (PMGDM), and 2-hydroxyethyl methacrylate (HEMA).

Clause 25. The kit of any one of clauses 16-24, further comprising at least one solvent.

Clause 26. The kit of any one of clauses 16-25, further comprising a solvent selected from the group consisting of water, ethanol, methanol, acetone, toluene, ethyl ether, cyclohexane, isopropanol, chloroform, ethyl acetate, hexane, and heptanes.

Clause 27. The kit of any one of clauses 16-26, further comprising a polymerization initiator for combining with the doped TiO2 nanoparticles, and curable resin material.

Clause 28. The kit of any one of clauses 16-27, further comprising a filler for combining with the doped TiO2 nanoparticles, and curable resin material.

Clause 29. The kit of any one of clauses 16-28, wherein the curable resin material is selected from the group consisting of dental resins, dental bonding agents, dental adhesives, dental cements, dental restoratives, dentals coatings, dental sealants, acrylic resins, and denture teeth.

Clause 30. The kit of any one of clauses 16-29, wherein the dental composition has bioactive and/or antibacterial activity in the absence of visible or ultraviolet light.

Clause 31. A hardened dental article formed from the dental composition of any one of clauses 1-15, after the dental composition has been photocured.

Clause 32. An in vivo dental process, comprising: applying a dental composition to a dental surface, the dental composition comprising doped TiO2 nanoparticles, and a curable resin material, wherein the curable resin material comprises a polymer precursor component; and causing the dental composition to be bonded to the dental surface by photocuring the dental composition.

Clause 33. The dental process of clause 32, wherein the dental surface is at least one of a dental restorative and a dental substrate.

Clause 34. The dental process of clause 32 or 33, wherein the doped TiO2 nanoparticles comprise at least one dopant selected from the group consisting of N (nitrogen), Ag (silver), F (fluorine), P (phosphorus), and PO4 (phosphate).

Clause 35. The dental process of any one of clauses 32-34, wherein the doped TiO2 nanoparticles further comprise at least one second dopant selected from the group consisting of N, Ag, F, P, and PO4.

Clause 36. The dental process of any one of clauses 32-35, wherein the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 1% to 80% (v/v).

Clause 37. The dental process of any one of clauses 32-36, wherein the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 5% to 50% (v/v).

Clause 38. The dental process of any one of clauses 32-37, wherein the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 10% to 40% (v/v).

Clause 39. The dental process of any one of clauses 32-38, wherein the polymer precursor component is photocurable.

Clause 40. The dental process of any one of clauses 32-39, wherein the polymer precursor is selected from the group consisting of acrylates, methacrylates, dimethacrylates, epoxies, vinyls and thiols.

Clause 41. The dental process of any one of clauses 32-40, wherein the polymer precursor is at least one selected from the group consisting of ethylenedimethacrylate (EDMA), bisphenol A glycidyl methacrylate (BisGMA), triethyleneglycol dimethacrylate (TEGDMA), 1,6-bis(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (UDMA), pyromellitic glycerol dimethacrylate (PMGDM), and 2-hydroxyethyl methacrylate (HEMA).

Clause 42. The dental process of any one of clauses 32-41, wherein the dental composition further comprises at least one solvent.

Clause 43. The dental process of any one of clauses 32-42, further comprising a solvent selected from the group consisting of water, ethanol, methanol, acetone, toluene, ethyl ether, cyclohexane, isopropanol, chloroform, ethyl acetate, hexane, and heptanes.

Clause 44. The dental process of any one of clauses 32-43, wherein the dental composition further comprises a polymerization initiator.

Clause 45. The dental process of any one of clauses 32-44, wherein the dental composition further comprises a filler.

Clause 46. The dental process of any one of clauses 32-45, wherein the curable resin material is selected from the group consisting of dental resins, dental bonding agents, dental adhesives, dental cements, dental restoratives, dentals coatings, dental sealants, acrylic resins, and denture teeth.

Clause 47. The dental process of any one of clauses 32-46, wherein after curing, the dental composition has bioactive and/or antibacterial activity in the absence of visible or ultraviolet light.

Clause 48. The dental process of any one of clauses 32-47, wherein the dental surface has been acid-etched prior to the application of the dental composition thereon.

While the present disclosure has been described herein in connection with certain embodiments so that aspects thereof may be more fully understood and appreciated, it is not intended that the present disclosure be limited to these particular embodiments. On the contrary, it is intended that all alternatives, modifications and equivalents are included within the scope of the present disclosure as defined herein. Thus the examples described above, which include particular embodiments, will serve to illustrate the practice of the inventive concepts of the present disclosure, it being understood that the particulars shown are by way of example and for purposes of illustrative discussion of particular embodiments only and are presented in the cause of providing what is believed to be the most useful and readily understood description of procedures as well as of the principles and conceptual aspects of the present disclosure. Changes may be made in the formulation of the various compositions described herein, the methods described herein or in the steps or the sequence of steps of the methods described herein without departing from the spirit and scope of the present disclosure. Further, while various embodiments of the present disclosure have been described in claims herein below, it is not intended that the present disclosure be limited to these particular claims.

Full text: Click here
Patent 2024
2-hydroxyethyl methacrylate Acetone Acids Acrylates Acrylic Resins Anti-Bacterial Agents Bacteria Biofilms Bioluminescent Measurements Bisphenol A-Glycidyl Methacrylate chemical composition Chlorhexidine Chloroform Cyclohexane Dental Caries Dental Cements Dental Resins Dentures Epoxy Resins Ethanol ethyl acetate Ethyl Ether Fluorides Fluorine Focused Ion Beam Scanning Electron Microscopy Glycerin Head Heptanes Hexanes Homo sapiens Isopropyl Alcohol JM 10 Light Light, Visible Luciferases Luminescence Methacrylates Methanol Microscopy Mouth Diseases Nitrogen OptiBond SOLO Phosphates Phosphorus Pit and Fissure Sealants Polymerization Polymers Polyvinyl Chloride Radiotherapy Resins, Plant Scanning Electron Microscopy Sclerosis Scotchbond Silver Solvents Streptococcus mutans Sulfhydryl Compounds T.E.R.M. composite resin titanium dioxide Toluene Tooth triethylene glycoldimethacrylate Ultraviolet Rays Vision

Example 10

Table 10 below showed that the disinfectant compositions of Formulation DD was obtained at high level of salicylic acid (e.g., above 2% weight based on total weight of the formulation), with high stability and excellent antimicrobial efficacy. The micro efficacy of the disinfectant formulation was determined based on the EPA standard according to the OECD Quantitative Methods for Evaluating the Activity of Microbicides.

TABLE 10
FormulationAABBCCDD
IngredientsOn 100%On 100%On 100%On 100%
Salicylic acid0.80.81.62.4
Hydrogen peroxide4.254.254.254.25
Phosphoric acid3.43.43.43.4
Sodium sarcosinate06.76.76.7
Alcohol (C6-C12)5500
ethoxylate (3.5 EO)
Alkyl diphenyloxide003.83.8
disulphonic acid Na salt
Ethanol002020
WaterBal.Bal.Bal.Bal.
Physical StabilityClearphaseClearClear
separation
Dilution1:161:161:161:16
Fungicidal Efficacy4.32N/A5.605.60
against T. interdigitale
(Log reduction)

Full text: Click here
Patent 2024
Acids Ethanol Industrial Fungicides Microbicides Peroxide, Hydrogen Phosphorus Physical Examination Salicylic Acid Sodium Sodium Chloride Technique, Dilution

Top products related to «Phosphorus»

Sourced in United States, United Kingdom
The storage phosphor screen is a reusable, radiation-sensitive device used in digital radiography and other imaging applications. It captures and stores energy from incident radiation, which can then be read out and converted into a digital image. The screen's core function is to serve as a radiation-sensitive medium for capturing and storing image data.
Sourced in United States, United Kingdom, Japan, China, France, Australia, Germany, Italy, Sweden, Canada
[γ-32P]ATP is a radiolabeled compound containing the radioactive isotope phosphorus-32 (32P) attached to the gamma phosphate group of adenosine triphosphate (ATP). This product is commonly used as a tracer in various biochemical and molecular biology applications, such as nucleic acid labeling and analysis.
Sourced in United States, United Kingdom, China, Germany, Japan, Canada, Morocco, Sweden, Netherlands, Switzerland, Italy, Belgium, Australia, France, India, Ireland
β-actin is a cytoskeletal protein that is ubiquitously expressed in eukaryotic cells. It is an important component of the microfilament system and is involved in various cellular processes such as cell motility, structure, and integrity.
Sourced in United States, Germany, China, United Kingdom, Morocco, Ireland, France, Italy, Japan, Canada, Spain, Switzerland, New Zealand, India, Hong Kong, Sao Tome and Principe, Sweden, Netherlands, Australia, Belgium, Austria
PVDF membranes are a type of laboratory equipment used for a variety of applications. They are made from polyvinylidene fluoride (PVDF), a durable and chemically resistant material. PVDF membranes are known for their high mechanical strength, thermal stability, and resistance to a wide range of chemicals. They are commonly used in various filtration, separation, and analysis processes in scientific and research settings.
Sourced in United States, United Kingdom, Germany, China, Canada, Japan, Macao, Italy, Sao Tome and Principe, Israel, Spain, Denmark, France, Finland, Australia, Morocco, Ireland, Czechia, Sweden, Uruguay, Switzerland, Netherlands, Senegal
β-actin is a protein that is found in all eukaryotic cells and is involved in the structure and function of the cytoskeleton. It is a key component of the actin filaments that make up the cytoskeleton and plays a critical role in cell motility, cell division, and other cellular processes.
Sourced in United States, United Kingdom, Germany, Japan, Sweden
The Typhoon FLA 7000 is a high-performance fluorescence imager used for the detection and analysis of fluorescently labeled biomolecules in gels, blots, microarrays, and other sample types. It provides high-resolution scanning, multiple excitation wavelengths, and sensitive detection to support a wide range of applications in life science research.
Sourced in United States, Germany
The phosphor screen is a component used in various imaging and detection applications. It is composed of a material that emits visible light when exposed to ionizing radiation, such as X-rays or electrons. The phosphor screen converts the invisible radiation into a visible light pattern, which can then be captured and recorded by an imaging device.
Sourced in United States, United Kingdom, China, Germany, Canada, Morocco, Japan, Italy, Switzerland, France, Israel, Singapore, Hong Kong, Sweden, Macao, Panama
β-actin is a cytoskeletal protein that is ubiquitously expressed in eukaryotic cells. It is a component of the microfilament system and plays a crucial role in various cellular processes, such as cell motility, maintenance of cell shape, and intracellular trafficking.
Sourced in United States, United Kingdom, Sweden, Germany, Austria, Australia
ImageQuant software is a data analysis tool designed for quantitative analysis of digital images. It enables users to capture, process, and analyze images from various laboratory equipment, such as gel imagers and blot imaging systems. The software provides tools for image acquisition, image processing, and data analysis, allowing researchers to quantify and compare signals within their samples.
Sourced in United States, United Kingdom, China, Germany, Japan, Canada, Morocco, France, Netherlands, Ireland, Israel, Australia, Sweden, Macao, Switzerland
GAPDH is a protein that functions as an enzyme involved in the glycolysis process, catalyzing the conversion of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate. It is a common reference or housekeeping protein used in various assays and analyses.

More about "Phosphorus"

Phosphorus, phosphoric, phosphates, mineralogy, bones, teeth, cell membranes, energy production, nutrient transport, cellular signaling, kidney function, kidney stones, osteoporosis, hypophosphatemia, metabolism, regulation, disorders, PubCompare.ai, protocols, research, comparisons, storage phosphor screens, [γ-32P]ATP, β-actin, PVDF membranes, Typhoon FLA 7000, phosphor screens, ImageQuant software, GAPDH