Acrylamide
It is a colorless, odorless, crystalline solid that is highly solubike in water and other polar solvents.
Acrylamide has a wide range of industrial and scientific applications, including the production of polyacrylamide, which is used in water treatment, papermaking, and other industries.
In the human body, acrylamide can be formed during the cooking of certain foods, particularly at high temperatures, and has been associated with potential health risks.
Researchers studying acrylamide may use PubCompare.ai to optimize their research by identifying the best protocols from literature, preprints, and patents, and leverageing AI-powered comparisons to enhance reproducibility and accuracy in their work.
Most cited protocols related to «Acrylamide»
Most recents protocols related to «Acrylamide»
Example 161
To a solution of 2-(piperazin-1-yl)ethanol (0.73 g, 5.6 mmol, 1 eq.) in DMF (10 mL) was added K2CO3 (1.56 g, 11.3 mmol, 2 eq.) followed by 1,2,4-trifluoro-5-nitrobenzene (1 g, 5.6 mmol, 1 eq.) and the mixture was stirred at 0° C. for 1 hour. The mixture was poured into ice-water (100 mL), extracted by EA (3×40 mL), and the organic layers were combined, washed with brine (150 mL), concentrated and purified via column chromatography (10-95% CH3CN—H2O) to afford 2-(4-(2,5-difluoro-4-nitrophenyl)piperazin-1-yl)ethanol (0.65 g, 41%) as a yellow solid.
To a solution of 2-(4-(2,5-difluoro-4-nitrophenyl)piperazin-1-yl)ethanol (0.65 g, 2.3 mmol) in MeOH (50 mL) was added Pd/C (100 mg) and the resulting mixture was stirred at r.t. overnight. The Pd/C was removed by filtration and the filtrate was concentrated to afford 2-(4-(4-amino-2,5-difluorophenyl)piperazin-1-yl)ethanol (0.58 g, 99%).
To a suspension of 2-(4-(4-amino-2,5-difluorophenyl)piperazin-1-yl)ethanol (270 mg, 0.88 mmol, 1 eq.) and N-(3-(2-chloroquinazolin-8-yl)phenyl)acrylamide (225 mg, 0.88 mmol, 1 eq.) in n-BuOH (10 mL) was added TFA (0.5 mL, 4.4 mmol, 5 eq.) and the resulting mixture was stirred at 90° C. overnight. The mixture was concentrated, diluted with DCM (20 mL), washed with Na2CO3 solution (20 mL), dried, concentrated and purified via column chromatography (DCM/MeOH=10/1) to afford N-(3-(2-((2,5-difluoro-4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (120 mg, 26%) as yellow solid. LRMS (M+H+) m/z calculated 531.2, found 531.2. 1H NMR (DMSO-d6, 400 MHz) δ 10.18 (s, 1H), 9.37 (s, 1H), 9.17 (s, 1H), 7.97-7.94 (m, 3H), 7.83-7.74 (m, 2H), 7.50-7.39 (m, 3H), 6.90-6.85 (m, 1H), 6.48-6.41 (m, 1H), 6.23 (dd, 1H), 5.73 (dd, 1H), 4.42 (t, 1H), 3.55-3.50 (m, 2H), 2.94-2.91 (m, 4H), 2.55-2.54 (m, 4H), 2.44 (t, 2H).
Example 82
N-(3-(2-((4-(2-oxooxazolidin-3-yl)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (71.0 mg) was prepared as described for (S)—N-(3-(2-((4-((1-acetylpyrrolidin-3-yl)oxy)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide. LRMS (M+H+) m/z calculated 452.2, found 452.1. 1H NMR (DMSO-d6, 400 MHz) δ10.30 (s, 1H), 9.95 (s, 1H), 9.36 (s, 1H), 8.06 (s, 1H), 7.81-7.96 (m, 5H), 7.48 (q, 2H), 7.41 (d, 1H), 7.29 (d, 2H), 6.43-6.47 (m, 1H), 6.26 (d, 1H), 5.75 (d, 1H), 4.42 (t, 2H), 3.97 (t, 2H).
Example 58
N-(3-(2-((4-(4-(2,2-difluoroethyl)piperazin-1-yl)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (74.2 mg) was prepared as described for (S)—N-(3-(2-((4-((1-acetylpyrrolidin-3-yl)oxy)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide. LRMS (M+H+) m/z calculated 515.2, found 515.2. 1H NMR (CD3OD, 300 MHz) δ 9.15 (s, 1H), 7.52-7.99 (m, 6H), 7.39-7.50 (m, 3H), 6.80 (d, 2H), 6.41-6.52 (m, 2H), 6.02 (t, 1H), 5.77-5.84 (m, 1H), 3.03-3.12 (m, 4H), 2.74-2.88 (m, 6H).
Example 72
N-(3-(2-((4-(3-(hydroxymethyl)-4-methylpiperazin-1-yl)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (41.4 mg) was prepared as described for (S)—N-(3-(2-((4-((1-acetylpyrrolidin-3-yl)oxy)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide. LRMS (M+H+) m/z calculated 495.2, found 495.2. 1H NMR (CD3OD, 400 MHz) δ 9.01 (s, 1H), 7.80-7.86 (m, 2H), 7.68 (d, 2H), 7.62 (d, 2H), 7.35-7.38 (m, 1H), 7.25-7.30 (m, 2H), 6.68 (d, 2H), 6.25-6.39 (m, 2H), 5.68 (d, 1H), 3.66-3.67 (m, 2H), 3.45 (d, 1H), 3.33 (d, 1H), 2.99 (d, 1H), 2.56-2.71 (m, 1H), 2.46 (s, 1H)
Example 106
(R)—N-(3-(2-((4-((tetrahydrofuran-3-yl)oxy)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (55.0 mg) was prepared as described for (S)—N-(3-(2-((4-((1-acetylpyrrolidin-3-yl)oxy)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide. LRMS (M+H+) m/z calculated 453.2, found 453.1. 1H NMR (DMSO-d6, 400 MHz) δ 10.29 (s, 1H), 9.76 (s, 1H), 9.31 (s, 1H), 8.04 (s, 1H), 7.78-7.93 (m, 5H), 7.33-7.50 (m, 3H), 6.66 (d, 2H), 6.44-6.50 (m, 1H), 6.23-6.28 (m, 1H), 5.74-5.77 (m, 1H), 4.85-4.87 (m, 1H), 3.37-3.86 (m, 4H), 2.12-2.17 (m, 1H), 1.89-1.91 (m, 1H).
Top products related to «Acrylamide»
More about "Acrylamide"
It is a colorless, odorless, crystalline solid that is highly soluble in water and other polar solvents.
Acrylamide has a wide range of industrial and scientific applications, including the production of polyacrylamide, which is used in water treatment, papermaking, and other industries.
In the human body, acrylamide can be formed during the cooking of certain foods, particularly at high temperatures, and has been associated with potential health risks.
Researchers studying acrylamide may also use related compounds and materials such as PVDF membranes, ammonium persulfate, bovine serum albumin, Image Lab software, nitrocellulose membranes, protease inhibitor cocktails, N,N'-methylenebisacrylamide, and sodium dodecyl sulfate in their experiments and analyses.
PubCompare.ai is an AI-driven platform that can help optimize acrylamide research by identifying the best protocols from literature, preprints, and patents, and leveraging AI-powered comparisons to enhance reproducibility and accuracy.
By utilizing this tool, researchers can discover the optimal methods and products to advance their acrylamide-related discoveries and investigations.