The largest database of trusted experimental protocols

Acrylamide

Acrylamide is a chemical compound with the formula CH2=CHCONH2.
It is a colorless, odorless, crystalline solid that is highly solubike in water and other polar solvents.
Acrylamide has a wide range of industrial and scientific applications, including the production of polyacrylamide, which is used in water treatment, papermaking, and other industries.
In the human body, acrylamide can be formed during the cooking of certain foods, particularly at high temperatures, and has been associated with potential health risks.
Researchers studying acrylamide may use PubCompare.ai to optimize their research by identifying the best protocols from literature, preprints, and patents, and leverageing AI-powered comparisons to enhance reproducibility and accuracy in their work.

Most cited protocols related to «Acrylamide»

Total RNAs were extracted using standard hot phenol RNA preparation method (51 (link)). For RT-PCR analysis, 1.5 µg of total RNAs were subjected to reverse transcription (RT) using gene-specific primers, and then the resulting cDNAs were analysed by standard PCR method or qPCR. Primers used are listed in Supplementary Table S3. The half-life of pre-mRNAs was determined as described previously (52 (link),53 (link)). For northern blotting, the procedures were as previously described (50 (link)) except that total RNAs (10 µg) were separated by 6% acrylamide gels. Sequences of oligonucleotide probes are listed in Supplementary Table S3. Band intensities were quantified using ImageJ densitometry software.
Publication 2013
Acrylamide Densitometry DNA, Complementary Gels Genes mRNA Precursor Oligonucleotide Primers Oligonucleotide Probes Phenol Reverse Transcription RNA Standard Preparations

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2014
Acid Hybridizations, Nucleic Acrylamide Antibodies Buffers Equus asinus Immunoglobulins Immunoglobulins, Fab Nitrogen paraform PEGDMA Hydrogel Phosphates Propane RBBP8 protein, human Serum Sodium Azide Tissues
For most routine extractions of fungal tissue and our early extractions of ectomycorrhizal root tips, DNA was extracted using a CTAB protocol with 0.8% mercaptoethanol and incubating at 65°C for 1 hour [34 (link)]. An alternate extraction method modified from Ross [35 (link)] based on the action of xanthogenate [36 ] was later employed for rapid survey analyses of large numbers of ectomycorrhizal root tips. Single ectomycorrhizal root tips (approximately 1 mg tissue dry weight) were placed in each 1.5 mL tube with 600 μL Xanthine/Tween Buffer (100 mM Tris-HCl pH 7.5, 12.5 mM potassium ethyl xanthogenate (Fluka, Buchs, Switzerland, cat. no. 60040), 10 mM EDTA pH 8.0, 10% Tween 20, 500 mM NaCl). These were sonicated for 15 seconds and incubated 90–120 min at 60°C on a shaker. Tubes were then centrifuged 5 min at 10,000 × g to pellet undissolved tissue. Supernatant was removed to a new tube containing 1/5 volume of PEG/NaCl (20% PEG-8000/2.5 M NaCl [37 (link)]) and 8 μL 1.25 mg/mL Linear Acrylamide (Ambion, Austin, Texas, cat. no. 9520). This was mixed by gently tipping the tube, and the mixture was incubated at 30°C for 15 minutes. DNA was precipitated by centrifuging 5 minutes (room temp.) at 10,000 × g, and then recovered by removing the PEG solution. The final DNA pellet was obtained by rinsing twice with 200 μL 80% ice-cold ethanol while mixing by gently tipping the tubes, followed by centrifuging 5 minutes at 10,000 × g, and lastly, by drying the pellet under vacuum for 30–45 minutes. In both protocols DNA was resuspended in a final volume of 100 μL TE buffer (pH 8, 10 mM Tris: 1 mM EDTA) after extraction by heating to 37°C for 10 minutes.
Full text: Click here
Publication 2005
2-Mercaptoethanol Acrylamide austin Buffers Cetrimonium Bromide Cold Temperature Ectomycorrhizae Edetic Acid Ethanol Neoplasm Metastasis polyethylene glycol 8000 potassium ethylxanthate Root Tip Sodium Chloride Tissues Tromethamine Tween 20 Tweens Vacuum Xanthine

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2013
Acrylamide Biological Assay Deoxyribonuclease EcoRI Embryo Ethidium Bromide Genes Genome MECP2 protein, human Mus Mutation Oligonucleotide Primers Restriction Fragment Length Polymorphism Sepharose

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2013
Acrylamide Biological Assay Biopsy Embryonic Stem Cells Ethidium Bromide Genome Mus Mutation Oligonucleotide Primers Restriction Fragment Length Polymorphism Sepharose Tail

Most recents protocols related to «Acrylamide»

Example 161

[Figure (not displayed)]

To a solution of 2-(piperazin-1-yl)ethanol (0.73 g, 5.6 mmol, 1 eq.) in DMF (10 mL) was added K2CO3 (1.56 g, 11.3 mmol, 2 eq.) followed by 1,2,4-trifluoro-5-nitrobenzene (1 g, 5.6 mmol, 1 eq.) and the mixture was stirred at 0° C. for 1 hour. The mixture was poured into ice-water (100 mL), extracted by EA (3×40 mL), and the organic layers were combined, washed with brine (150 mL), concentrated and purified via column chromatography (10-95% CH3CN—H2O) to afford 2-(4-(2,5-difluoro-4-nitrophenyl)piperazin-1-yl)ethanol (0.65 g, 41%) as a yellow solid.

[Figure (not displayed)]

To a solution of 2-(4-(2,5-difluoro-4-nitrophenyl)piperazin-1-yl)ethanol (0.65 g, 2.3 mmol) in MeOH (50 mL) was added Pd/C (100 mg) and the resulting mixture was stirred at r.t. overnight. The Pd/C was removed by filtration and the filtrate was concentrated to afford 2-(4-(4-amino-2,5-difluorophenyl)piperazin-1-yl)ethanol (0.58 g, 99%).

[Figure (not displayed)]

To a suspension of 2-(4-(4-amino-2,5-difluorophenyl)piperazin-1-yl)ethanol (270 mg, 0.88 mmol, 1 eq.) and N-(3-(2-chloroquinazolin-8-yl)phenyl)acrylamide (225 mg, 0.88 mmol, 1 eq.) in n-BuOH (10 mL) was added TFA (0.5 mL, 4.4 mmol, 5 eq.) and the resulting mixture was stirred at 90° C. overnight. The mixture was concentrated, diluted with DCM (20 mL), washed with Na2CO3 solution (20 mL), dried, concentrated and purified via column chromatography (DCM/MeOH=10/1) to afford N-(3-(2-((2,5-difluoro-4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (120 mg, 26%) as yellow solid. LRMS (M+H+) m/z calculated 531.2, found 531.2. 1H NMR (DMSO-d6, 400 MHz) δ 10.18 (s, 1H), 9.37 (s, 1H), 9.17 (s, 1H), 7.97-7.94 (m, 3H), 7.83-7.74 (m, 2H), 7.50-7.39 (m, 3H), 6.90-6.85 (m, 1H), 6.48-6.41 (m, 1H), 6.23 (dd, 1H), 5.73 (dd, 1H), 4.42 (t, 1H), 3.55-3.50 (m, 2H), 2.94-2.91 (m, 4H), 2.55-2.54 (m, 4H), 2.44 (t, 2H).

Full text: Click here
Patent 2024
1H NMR Acrylamide brine Chromatography Ethanol Filtration Ice Nitrobenzenes Piperazine potassium carbonate Sulfoxide, Dimethyl

Example 82

[Figure (not displayed)]

N-(3-(2-((4-(2-oxooxazolidin-3-yl)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (71.0 mg) was prepared as described for (S)—N-(3-(2-((4-((1-acetylpyrrolidin-3-yl)oxy)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide. LRMS (M+H+) m/z calculated 452.2, found 452.1. 1H NMR (DMSO-d6, 400 MHz) δ10.30 (s, 1H), 9.95 (s, 1H), 9.36 (s, 1H), 8.06 (s, 1H), 7.81-7.96 (m, 5H), 7.48 (q, 2H), 7.41 (d, 1H), 7.29 (d, 2H), 6.43-6.47 (m, 1H), 6.26 (d, 1H), 5.75 (d, 1H), 4.42 (t, 2H), 3.97 (t, 2H).

Full text: Click here
Patent 2024
1H NMR Acrylamide Sulfoxide, Dimethyl

Example 58

[Figure (not displayed)]

N-(3-(2-((4-(4-(2,2-difluoroethyl)piperazin-1-yl)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (74.2 mg) was prepared as described for (S)—N-(3-(2-((4-((1-acetylpyrrolidin-3-yl)oxy)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide. LRMS (M+H+) m/z calculated 515.2, found 515.2. 1H NMR (CD3OD, 300 MHz) δ 9.15 (s, 1H), 7.52-7.99 (m, 6H), 7.39-7.50 (m, 3H), 6.80 (d, 2H), 6.41-6.52 (m, 2H), 6.02 (t, 1H), 5.77-5.84 (m, 1H), 3.03-3.12 (m, 4H), 2.74-2.88 (m, 6H).

Full text: Click here
Patent 2024
1H NMR Acrylamide Piperazine

Example 72

[Figure (not displayed)]

N-(3-(2-((4-(3-(hydroxymethyl)-4-methylpiperazin-1-yl)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (41.4 mg) was prepared as described for (S)—N-(3-(2-((4-((1-acetylpyrrolidin-3-yl)oxy)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide. LRMS (M+H+) m/z calculated 495.2, found 495.2. 1H NMR (CD3OD, 400 MHz) δ 9.01 (s, 1H), 7.80-7.86 (m, 2H), 7.68 (d, 2H), 7.62 (d, 2H), 7.35-7.38 (m, 1H), 7.25-7.30 (m, 2H), 6.68 (d, 2H), 6.25-6.39 (m, 2H), 5.68 (d, 1H), 3.66-3.67 (m, 2H), 3.45 (d, 1H), 3.33 (d, 1H), 2.99 (d, 1H), 2.56-2.71 (m, 1H), 2.46 (s, 1H)

Full text: Click here
Patent 2024
1H NMR Acrylamide

Example 106

[Figure (not displayed)]

(R)—N-(3-(2-((4-((tetrahydrofuran-3-yl)oxy)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (55.0 mg) was prepared as described for (S)—N-(3-(2-((4-((1-acetylpyrrolidin-3-yl)oxy)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide. LRMS (M+H+) m/z calculated 453.2, found 453.1. 1H NMR (DMSO-d6, 400 MHz) δ 10.29 (s, 1H), 9.76 (s, 1H), 9.31 (s, 1H), 8.04 (s, 1H), 7.78-7.93 (m, 5H), 7.33-7.50 (m, 3H), 6.66 (d, 2H), 6.44-6.50 (m, 1H), 6.23-6.28 (m, 1H), 5.74-5.77 (m, 1H), 4.85-4.87 (m, 1H), 3.37-3.86 (m, 4H), 2.12-2.17 (m, 1H), 1.89-1.91 (m, 1H).

Full text: Click here
Patent 2024
1H NMR Acrylamide Sulfoxide, Dimethyl tetrahydrofuran

Top products related to «Acrylamide»

Sourced in United States, Germany, China, India, France, Belgium, Spain, United Kingdom, Singapore, Sao Tome and Principe, Italy, Switzerland
Acrylamide is a chemical compound used in the production of various laboratory equipment and materials. It is a white, crystalline solid with a high water solubility. Acrylamide is commonly utilized in the manufacture of polyacrylamide gels, which are widely used in electrophoresis techniques for the separation and analysis of biological macromolecules, such as proteins and nucleic acids.
Sourced in United States, Germany, China, United Kingdom, Morocco, Ireland, France, Italy, Japan, Canada, Spain, Switzerland, New Zealand, India, Hong Kong, Sao Tome and Principe, Sweden, Netherlands, Australia, Belgium, Austria
PVDF membranes are a type of laboratory equipment used for a variety of applications. They are made from polyvinylidene fluoride (PVDF), a durable and chemically resistant material. PVDF membranes are known for their high mechanical strength, thermal stability, and resistance to a wide range of chemicals. They are commonly used in various filtration, separation, and analysis processes in scientific and research settings.
Sourced in United States, Germany, India, United Kingdom, Spain, Italy, Canada, China, Australia, Macao, Belgium, Sao Tome and Principe, Japan, Brazil, Switzerland
Ammonium persulfate is a white crystalline chemical compound that is commonly used as an initiator in various chemical reactions, particularly in the field of polymerization. It serves as an oxidizing agent and is known for its ability to generate free radicals, which are essential for initiating and accelerating polymerization processes.
Sourced in United States, Spain, United Kingdom, Canada, Austria, Poland, Australia, France
Acrylamide is a chemical compound commonly used as a reagent in electrophoresis, a laboratory technique for the separation and analysis of biomolecules such as proteins and nucleic acids. It serves as a key component in the preparation of polyacrylamide gel, which is a versatile matrix used in various electrophoresis applications.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.
Sourced in United States, China, Germany, United Kingdom, Italy, France, Canada, Australia, Belgium, Japan, Portugal, Sweden, Czechia, Switzerland, Spain
Image Lab software is a data analysis tool designed for use with Bio-Rad's gel and blot imaging systems. The software provides a user-friendly interface for capturing, analyzing, and processing images of gels, blots, and other samples.
Sourced in United States, Germany, Italy, United Kingdom, Canada, France, China, Switzerland, Japan, Spain, Australia, Sweden, Portugal, Israel, Netherlands, Belgium
Nitrocellulose membranes are a type of laboratory equipment designed for use in protein detection and analysis techniques. These membranes serve as a support matrix for the immobilization of proteins, enabling various downstream applications such as Western blotting, dot blotting, and immunodetection.
Sourced in United States, Germany, China, United Kingdom, Italy, Japan, Sao Tome and Principe, France, Canada, Macao, Switzerland, Spain, Australia, Israel, Hungary, Ireland, Denmark, Brazil, Poland, India, Mexico, Senegal, Netherlands, Singapore
The Protease Inhibitor Cocktail is a laboratory product designed to inhibit the activity of proteases, which are enzymes that can degrade proteins. It is a combination of various chemical compounds that work to prevent the breakdown of proteins in biological samples, allowing for more accurate analysis and preservation of protein integrity.
Sourced in United States, Germany, Italy, India, United Kingdom, China, Poland, France, Norway, Sao Tome and Principe, Portugal
N,N′-methylenebisacrylamide is a chemical compound used as a cross-linking agent in various laboratory applications. It is a white crystalline solid that is soluble in water and organic solvents.
Sourced in United States, Germany, United Kingdom, France, Italy, India, Canada, China, Poland, Sao Tome and Principe, Spain, Switzerland, Japan, Macao, Malaysia, Brazil, Belgium, Finland, Ireland, Netherlands, Singapore, Austria, Australia, Sweden, Denmark, Romania, Portugal, Czechia, Argentina
Sodium dodecyl sulfate (SDS) is a commonly used anionic detergent for various laboratory applications. It is a white, crystalline powder that has the ability to denature proteins by disrupting non-covalent bonds. SDS is widely used in biochemical and molecular biology techniques, such as protein electrophoresis, Western blotting, and cell lysis.

More about "Acrylamide"

Acrylamide is a chemical compound with the formula CH2=CHCONH2, also known as propenamide or acrylic amide.
It is a colorless, odorless, crystalline solid that is highly soluble in water and other polar solvents.
Acrylamide has a wide range of industrial and scientific applications, including the production of polyacrylamide, which is used in water treatment, papermaking, and other industries.
In the human body, acrylamide can be formed during the cooking of certain foods, particularly at high temperatures, and has been associated with potential health risks.
Researchers studying acrylamide may also use related compounds and materials such as PVDF membranes, ammonium persulfate, bovine serum albumin, Image Lab software, nitrocellulose membranes, protease inhibitor cocktails, N,N'-methylenebisacrylamide, and sodium dodecyl sulfate in their experiments and analyses.
PubCompare.ai is an AI-driven platform that can help optimize acrylamide research by identifying the best protocols from literature, preprints, and patents, and leveraging AI-powered comparisons to enhance reproducibility and accuracy.
By utilizing this tool, researchers can discover the optimal methods and products to advance their acrylamide-related discoveries and investigations.