Forty nonsmoking homes in Richmond and 10 in Bolinas were sampled. Additional information about the study communities and participant selection are described elsewhere (9 (
link)).
Outdoor and indoor air samples consisting of <7-μm particulate and vapor phases were collected using parallel 160-mm URG personal pesticide sampling cartridges (University Research Glassware; Chapel Hill, NC) at a target flow rate of 8−9 L/min supplied by a flow-controlled pump. Each URG cartridge contained an impactor-equipped inlet (10-μm at 4 L/min) followed by a 25-mm quartz fiber filter and a 3.0-g bed of XAD-2 sandwiched between two 1
13/
16-inch-diameter polyurethane foam (PUF) plugs. Units were placed in a frequently used room within the home and in the backyard, and samples were collected over 24-h periods Monday through Friday. Indoor and outdoor samples were collected simultaneously at 43 homes, and indoor samples were collected in 7 additional homes. Sampler inlets were placed at approximately breathing height and flow rates were measured and recorded at the beginning and end of the 24-h sampling period. At the end of the sampling period, the URG samplers were disconnected from the pump and stored at −4 °C prior to shipping to the laboratory.
Chemical analysis was conducted at the Southwest Research Institute (SWRI) in San Antonio, TX. Two GC/MS analytical methods targeted a total of 104 target compounds, including 70 identified as having potential endocrine activity in the European Commission list of priority substances for investigation of endocrine disruption (10 ) or in original references cited in our previous work (11 ). One method measured neutrally extracted pesticides, phthalates, PAHs, PBDEs, and PCBs; the phenols method, which requires derivatization prior to analysis, targeted alkylphenols, parabens, and other phenols and biphenyls identified as EDCs. All samples were analyzed by the neutrals method, and a subset was analyzed by the phenols method (Table S1). Details on sampling pumps, and extraction and analytical techniques are included in
Supporting Information.
Quality assurance/quality control (QA/QC) measures were conducted to ensure accuracy and reliability of measurements. To estimate precision we collected four duplicate air samples for each analytical method. To evaluate contamination from laboratory, sampling matrices, and sample handling, we analyzed field blanks (
n = 4 neutrals;
n = 3 phenols), batch blanks (
n = 5), and matrix blanks (
n = 5 phenols, 6 neutrals). Matrix spikes (
n = 2) and surrogate recoveries were used to characterize accuracy, compound recovery from the matrix, and extraction efficiency. Additional QA/QC information and results are presented in
Supporting Information.
Rudel R.A., Dodson R.E., Perovich L.J., Morello-Frosch R., Camann D.E., Zuniga M.M., Yau A.Y., Just A.C, & Brody J.G. (2010). Semivolatile Endocrine-Disrupting Compounds in Paired Indoor and Outdoor Air in Two Northern California Communities. Environmental Science & Technology, 44(17), 6583-6590.