The largest database of trusted experimental protocols
> Chemicals & Drugs > Hazardous or Poisonous Substance > Tetrachlorodibenzodioxin

Tetrachlorodibenzodioxin

Tetrachlorodibenzodioxin is a highly toxic environmental contaminant that has been extensively studied for its adverse health effects.
This polychlorinated dibenzo-p-dioxin compound is a byproduct of various industrial processes and can accumulate in the food chain, posing a significant risk to human and animal health.
Researching the latest methods and protocols for studying Tetrachlorodibenzodioxin is crucial to understanding its mechanisms of action, exposure pathways, and potential mitigation strategies.
PubCompare.ai's AI-driven platform can help locate top protocols from literature, preprints, and patents, while providing intelligent comparisons to enhance reproducibility and accuarcy.
Discover the optimal research methods and products for your Tetrachlorodibenzodioxin studies and experience the future of scientific discovery today.

Most cited protocols related to «Tetrachlorodibenzodioxin»

Data generated by real-time PCR were compiled and collected using SDS 2.2 software (Applied Biosystems). Data were exported to QGene to determine the PCR amplification efficiency (E) for each primer pair where E = 10(-1/slope) as determined by linear regression analysis of a dilution series of reactions [[38 (link)]; see Results]. All amplifications had a PCR efficiency value between 1.9 and 2.2. To normalize data for geNorm analysis the efficiency of each primer pair (E), together with the Ct values, was used to calculate a relative gene expression value for each transcript using the equation E ΔCt(Min Ct-Ct sample) where Min Ct is the lowest Ct value for the primer pair and Ct sample is the Ct value for each amplification [10 (link),34 (link)]. The Ct is defined as the number of cycles needed for the fluorescence to reach a specific threshold level of detection and is inversely correlated with the amount of template present in the reaction [39 (link)]. The relative stability of the eight reference genes was then calculated using geNorm [34 (link)]. This program evaluates a gene expression stability measure (M) for each reference gene by calculating pair-wise variations with all other control genes and ranks them in order of increasing expression stability. Statistical analysis of Ct value differences was performed using the Sigma-Stat 3.5 package (Aspire Software, Leesburg, VA). Data were analyzed by one-way analysis of variance (ANOVA) followed by the Tukey method for pair-wise multiple comparisons. Student's t-test was used to compare differences in mean Ct values between male and female tissues. Student's t-test was also used to determine significant differences in expression following chemical treatment. Vehicle (DMSO, EtOH) was compared to untreated and all other chemicals (E2, T, ICI, BNF, TCDD) were compared to the vehicle of preparation (DMSO). Significance was set at P < 0.05.
Full text: Click here
Publication 2008
Ethanol Females Fluorescence Gene Expression Genes Genes, vif Males Oligonucleotide Primers Real-Time Polymerase Chain Reaction Sulfoxide, Dimethyl Technique, Dilution Tetrachlorodibenzodioxin Tissues
Wild type adult male and female zebrafish, Danio rerio, were obtained from a commercial supplier (Ekkwill, Gibsonton, FL) and maintained in 30 gal aquaria at 28°C on a 14:10 light-dark cycle. Fertilized eggs were collected after natural spawning, washed, and distributed into 20 × 100 mm culture plates (Fisher Scientific). Embryos (150 embryos/50 ml egg water) were allowed to develop at 28°C on a 14L:10D cycle [36 ]. For developmental expression analysis embryos were collected after timed intervals: 2, 6, 12, 24, 48, 72, and 120 hours post-fertilization (hpf), quick-frozen on dry ice, and stored at -70°C until analysis (3 independent embryo pools, 50 embryos per pool, per time point from the same spawning group). For treatment expression analysis embryos were left untreated until 24 hpf and then exposed to 17β-estradiol (E2; 0.1 μM), testosterone (T; 1 μM), ICI 182,780 (ICI; 10 μM; Tocris Bioscience, Ellisville, MO), β-napthaflavone (BNF; 10 nM), or 2,3,7,8, tetrachlodibenzo-p-dioxin (TCDD; 1 nM; Ultra Scientific, N. Kingstown, RI) dissolved in dimethyl sulfoxide (DMSO). All chemicals were obtained from Sigma-Aldrich (St. Louis, MO) unless otherwise noted. Stock solutions of chemicals were added directly to egg water and replaced daily. In addition, embryos were treated with DMSO alone (final concentration, 0.0006%), EtOH alone (final concentration 0.0005%), or left untreated as a control. Embryos were collected at 96 hpf, quick-frozen on dry ice, and stored at -70°C until analysis (3 independent embryo pools per treatment). Treated embryo RNAs were used for both housekeeping gene expression analysis (Table 3) and gene of interest normalization (Figure 2). Tissues (brain, eye, heart, liver, muscle, gonad) were collected from adult male and female zebrafish, pooled by sex (3 pools per tissue type/sex, 5 fish per pool), quick-frozen on dry ice, and stored at -70°C. Adult fish were reproductively active stock from our breeding colony.
Full text: Click here
Publication 2008
Adult Brain Dioxins Dry Ice Embryo Embryonic Development Estradiol Ethanol Females Fertilization Fishes Freezing Gene Expression Profiling Genes Gonads Heart Histocompatibility Testing ICI 182780 Liver Males Muscle Tissue RNA Sulfoxide, Dimethyl Testosterone Tetrachlorodibenzodioxin Tissues Zebrafish Zygote
All experimental protocols for the procedures with rats were pre-approved by the Washington State University Animal Care and Use Committee (IACUC approval # 02568-026). The University Department of Environmental Health and Safety approved all the protocols for the use of hazardous chemicals in this experiment. Sprague Dawley SD female and male rats of an outbred strain (Harlan) at about 70 and 100 days of age were maintained in ventilated (up to 50 air exchanges/hour) isolator cages (cages with dimensions of 10 ¾″ W×19 ¼″ D×10 ¾″ H, 143 square inch floor space, fitted in Micro-vent 36-cage rat racks; Allentown Inc., Allentown, NJ) containing Aspen Sani chips (pinewood shavings from Harlan) as bedding, and a 14 h light: 10 h dark regimen, at a temperature of 70 F and humidity of 25% to 35%. The mean light intensity in the animal rooms ranged from 22 to 26 ft-candles. Rats were fed ad lib with standard rat diet (8640 Teklad 22/5 Rodent Diet; Harlan) and ad lib tap water for drinking. During the procedures, rats were held in an animal transfer station (AniGard 6VF, The Baker Company, Sanford, ME) that provided an air velocity of about 0.5 inch.
At proestrus as determined by daily vaginal smears, the female rats, (90 days) were pair-mated with male rats (120 days). On the next day, the females were separated and their vaginal smears were examined microscopically and if they were sperm-positive (day 0) the rats were tentatively considered pregnant and then weighed with a digital animal weighing balance to monitor increases in body weight. Vaginal smears were continued for monitoring diestrus status in these rats until day 7. On embryonic day 7 (E-7) these females were weighed to determine if there was a significant increase in (greater than about 10 g) body weight, to confirm pregnancy in sperm-positive females. These pregnant rats were then given daily intraperitoneal injections of any one of the following single chemicals or mixtures with an equal volume of sesame oil (Sigma) on days E-8 through E-14 of gestation [43] (link). Treatment groups were Control, Pesticide (Permethrin+DEET), Plastics (Bisphenol-A, DBP and DEHP), Dioxin (TCDD), and Jet Fuel (JP8 hydrocarbon). The pregnant female rats treated with various mixtures were designated as the F0 generation. When there was a drop in the litter size and the sex ratio of pups in F1 generation of Plastics group, another treatment group was included with only half the dose of Bisphenol-A, DBP and DEHP and this group was designated ‘Low Dose Plastics’ group. Doses, percent of oral LD50, and sources of chemicals for the compounds are given in Table S1A.
Full text: Click here
Publication 2012
Animals ARID1A protein, human bisphenol A Body Weight DEET Diestrus Diet Diethylhexyl Phthalate DNA Chips Embryo Females Hazardous Chemicals Humidity Hydrocarbons Injections, Intraperitoneal Institutional Animal Care and Use Committees jet fuel A Light Males Permethrin Pesticides Pregnancy Pregnant Women Proestrus Rattus norvegicus Rodent Safety Sesame Oil Sperm Strains Tetrachlorodibenzodioxin Treatment Protocols Vaginal Smears
From 2579 boys, aged 10–16 years in 1999, enrolled in an earlier pilot study to generate growth and maturation curves for boys in Chapaevsk [13 ], a subset of 246 older boys (14.0 to 16.9 years) were identified for a sub-study in which blood samples and questionnaire information were obtained. Older boys were chosen for study because blood samples were required and participation rates were expected to be higher than among younger children. Of the 246 boys, 221 had blood samples collected, and of these samples, 30 bloods were initially sent to the CDC for chemical analysis of dioxins, furans and PCBs. By design, of the 30 blood samples, 15 were from children with cryptorchidism or hypospadias, and 15 were from children with neither condition (controls). The selection of the 15 cases and 15 controls was done blindly in relation to factors that may predict dioxin levels.
Each of the 30 boys, with his mother, was asked to complete a nurse-administered detailed questionnaire on medical history, diet, and lifestyle. The diet questions were used to measure the current and lifetime consumption of locally grown or raised foods. The question was worded, "Does your child eat any of the following foods from local sources (i.e. your own garden or farms or lakes in the Chapaevsk area)? Yes/No". There were separate questions for current intake and lifetime intake of each food item. The distances the boys lived from the Khimprom factory at the time of the study and during pregnancy were assessed by questionnaire based on maternal self-report as <2, 2–6, or >6 kilometers, and the distance at the time of the study was also estimated using ArcView GIS 3.0 mapping of addresses.
Full text: Click here
Publication 2005
BLOOD Boys Child Cryptorchidism Diet Dioxins Eating Food Furans Hypospadias Mothers Nurses Polychlorinated Biphenyls Pregnancy Tetrachlorodibenzodioxin Youth
We obtained a national database of U.S. facilities and their air emissions of dioxins from the U.S. Environmental Protection Agency (EPA) (D. Cleverly, Personal communication, 2008). The database contained the facility address, latitude/longitude, and emissions (ng TEQ/year) in 1995. Facilities included secondary copper smelters, municipal solid waste incinerators, cement kilns burning hazardous waste, iron ore sintering plants, medical waste incinerators, coal-fired electric generating facilities, cement kilns burning non-hazardous waste, sewage sludge incinerators, hazardous waste incinerators, and industrial boilers. These 10 facility types accounted for over 85% of dioxin emissions from U.S. industrial sources over the past 30 years [6 ]. Facility locations and emissions were available in 1987 for secondary copper smelters and municipal solid waste incinerators, which had the highest dioxin air emissions in the United States.
Based on the latitude/longitude provided by EPA, 382 facilities were within 10 km of residences in our analysis. We checked the accuracy of these facility locations by comparing the coordinates to locations determined through web-based aerial photographs and ancillary information (Google Inc. Mountain View, CA; Environmental Systems Research Institute, Redlands, CA, USA); locations were corrected if necessary. We verified locations for 340 (89%) facilities and excluded 42 facilities that we could not verify. The median distance between the original and corrected location ranged from 132 meters (coal-fired electric generating facilities) to 23 km (hazardous waste incinerators).
Full text: Click here
Publication 2013
Coal Copper Dental Cements Dioxins Electricity Hazardous Waste Iron Medical Waste Plants Residency Sewage Sludge Tetrachlorodibenzodioxin

Most recents protocols related to «Tetrachlorodibenzodioxin»

Example 1

Each of the peptides having amino acid sequences of SEQ ID NOS: 1, 2, and 3 mixed with a coating buffer (20 mM sodium phosphate, pH 9.6) at a concentration of 1.8 mM was seeded on a plate for an enzyme-linked immunosorbent assay (ELISA) and cultured at 4° C. overnight. Subsequently, the peptide was washed with phosphate buffered saline with Tween-20 (PBST) and blocked with 3% of bovine serum albumin (BSA) for 2 hours at room temperature. After washing with PBST, 2 μM of 2,3,7,8-tetrachlorodibenzo-p-dioxin (hereinafter, referred to as TCDD) was added to each well and cultured at room temperature for 2 hours. Subsequently, after washing with PBST, treatment with anti-TCDD antibody conjugated with fluorescein isothiocyanate (FITC) was conducted at a ratio of antibody:PBST=1:100 and the resultant was cultured for 2 hours at room temperature. Then, after washing with PBST, an excitation 488 nm/emission 520 nm value was measured using a fluorescence meter, and the results are shown in FIGS. 1A to 1C, and Table 2.

TABLE 2
SEQ ID NO:Control50 μM500 μM1000 μM2000 μM
1100%193%360%394%575%
2100%128%264%358%405%
3100%159%253%400%420%

As shown in FIGS. 1A to 1C and Table 2, it was confirmed that the peptide consisting of an amino acid sequence of SEQ ID NO: 1, 2, or 3 directly binds to TCDD.

Full text: Click here
Patent 2024
Amino Acid Sequence Biological Assay Enzyme-Linked Immunosorbent Assay Figs Fluorescein Fluorescence Immunoglobulins isothiocyanate Peptides Phosphates Saline Solution Serum Albumin, Bovine sodium phosphate Tetrachlorodibenzodioxin Tween 20
Not available on PMC !

Example 2

HaCaT cells, human keratinocyte cells, were seeded on a 6-well plate at a density of 3×105 cells/well and cultured overnight. Subsequently, 10 nM of TCDD and 50 μM of the peptide consisting of an amino acid sequence of SEQ ID NO: 1, 2, or 3 were added to the culture medium. After 30 minutes of reaction, the cells were treated for 1 hour and collected to obtain nuclei and cytoplasmic proteins separated from each other. Westin blotting was performed using an aryl hydrocarbon receptor (AhR) antibody (Santa Cruz Biotechnology, U.S.A.) to identify activated nuclear translocation of AhR, and the results are shown in FIGS. 2A to 2F and Table 3.

TABLE 3
TCDD + Peptide
SEQ ID NO:ControlTCDD5 μM50 μM
11 times5.8 times1.9 times1.9 times
21 times5.7 times2.5 times0.9 times
31 times5.9 times  3 times1.5 times

As shown in FIGS. 2A to 2F and Table 3, it was confirmed that the peptide consisting of an amino acid sequence of SEQ ID NO: 1, 2, or 3 inhibits nuclear translocation of AhR by TCDD.

Full text: Click here
Patent 2024
AHR protein, human Amino Acid Sequence Cardiac Arrest Cell Nucleus Cells Culture Media Cytoplasm Figs Homo sapiens Immunoglobulins Keratinocyte Peptides Proteins Tetrachlorodibenzodioxin Translocation, Chromosomal

Example 174

[Figure (not displayed)]
Step 1.

tert-Butyl 6-(8-methoxy-7-quinolyl)spiro[4H-1,3-benzodioxine-2,4′-piperidine]-1′-carboxylate. tert-Butyl 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)spiro[4H-1,3-benzo-dioxine-2,4′-piperidine]-1′-carboxylate (0.80 g, 1.9 mmol), 7-bromo-8-methoxy-quinoline (0.45 g, 1.9 mmol), palladium(II) acetate (0.024 g, 0.11 mmol) and triphenylphosphine (0.10 g, 0.38 mmol) in 1,4-dioxane (30 mL), DMF (50 mL) was added aq. Na2CO3 (0.5 M) (6.0 mL, 3.0 mmol). The mixture was vacuum degassed then heated at 85° C. overnight. The mixture was diluted with EtOAc (200 mL) and water (100 mL) and extracted. The aqueous extract was washed with EtOAc (50 mL) and the combined organics were dried over Na2SO4, filtered and concentrated. The residue was dissolved in DCM, applied to a silica gel loading cartridge (5 g) and purified on silica gel (80 g, 0-40% EtOAc:hexanes) to afford tert-butyl 6-(8-methoxy-7-quinolyl)spiro[4H-1,3-benzodioxine-2,4′-piperidine]-1′-carboxylate (0.38 g, 0.82 mmol, 43% Yield). LCMS m/z=463.

Step 2.

6-(8-Methoxy-7-quinolyl)spiro[4H-1,3-benzodioxine-2,4′-piperidine]. A mixture of tert-butyl 6-(8-methoxy-7-quinolyl)spiro[4H-1,3-benzodioxine-2,4′-piperidine]-1′-carboxylate (0.38 g, 0.82 mmol) and TFA (0.5 mL, 7 mmol) in DCM (10 mL) was stirred at RT for 24 h, then was diluted with DCM (20 mL) and NaOH (1M, 24 mL). The layers were separated and the aqueous phase was further extracted with DCM (2×20 mL). The combined organics were filtered through a phase separator, then dried over Na2SO4, filtered, and concentrated in vacuo to give a white foam. A small amount (50 mg) was purified by preparative HPLC to afford 6-(8-methoxy-7-quinolyl)spiro[4H-1,3-benzodioxine-2,4′-piperidine] TFA salt (20 mg). Analysis: LCMS m/z=363; 1H NMR (400 MHz, DMSO-d6) δ: 9.02 (dd, J=4.4, 1.6 Hz, 1H), 8.71 (br s, 2H), 8.57 (d, J=7.5 Hz, 1H), 7.87 (d, J=8.5 Hz, 1H), 7.71-7.64 (m, 2H), 7.54 (dd, J=8.5, 2.3 Hz, 1H), 7.43 (d, J=2.0 Hz, 1H), 7.03 (d, J=8.5 Hz, 1H), 5.00 (s, 2H), 3.88 (s, 3H), 3.29-3.16 (m, 4H), 2.19-2.06 (m, 4H). The remainder was used in the next step without further purification.

Step 3.

6-(8-Methoxy-7-quinolyl)spiro[4H-1,3-benzodioxine-2,4′-piperidine]-1′-carboxamide. A mixture of 6-(8-methoxy-7-quinolyl)spiro[4H-1,3-benzodioxine-2,4′-piperidine] (0.198 g, 0.546 mmol), trimethylsilyl isocyanate (0.30 mL, 1.9 mmol), DIPEA (0.50 mL, 2.9 mmol), and DCM (10.0 mL) was stirred overnight. The solution was concentrated and the resulting material was diluted with DCM an put on a 5 g preload silica gel. The material was purified on silica gel chromatography (24 g, 0-10% EtOAc:hexanes) to afford 6-(8-methoxy-7-quinolyl)spiro[4H-1,3-benzodioxine-2,4′-piperidine]-1′-carboxamide (0.183 g, 0.451 mmol, 83%) as an off-white solid. Analysis: LCMS m/z=406 (M+1); 1H NMR (400 MHz, DMSO-d6) δ 8.95 (dd, J=4.0, 1.8 Hz, 1H), 8.38 (dd, J=8.3, 1.8 Hz, 1H), 7.77 (d, J=8.5 Hz, 1H), 7.61-7.47 (m, 3H), 7.36 (d, J=2.3 Hz, 1H), 6.97 (d, J=8.5 Hz, 1H), 6.04 (s, 2H), 4.95 (s, 2H), 3.94 (s, 3H), 3.52-3.37 (m, 4H), 1.91-1.77 (m, 3H), 1.88-1.77 (m, 1H).

Full text: Click here
Patent 2024
1H NMR Acetate Chromatography Dioxanes DIPEA Gel Chromatography Hexanes High-Performance Liquid Chromatographies Isocyanates Lincomycin Palladium piperidine quinoline Silica Gel Silicon Dioxide Sodium Chloride Sulfoxide, Dimethyl TERT protein, human Tetrachlorodibenzodioxin triphenylphosphine Vacuum

Example 4

HaCaT cells, human keratinocyte cells, were seeded on a 6-well plate at a density of 3×105 cells/well and cultured overnight. Subsequently, 10 nM of TCDD and 50 μM of the peptide consisting of an amino acid sequence of SEQ ID NO: 1, 2, or 3 were added to the culture medium. After 30 minutes of reaction, the cells were treated for 24 hours and further treated with DCFH-DA for 30 minutes. Then, the cells were collected and subjected to FACS analysis to observe changes of average FL1 values, and the results are shown in FIGS. 4A to 4C.

As shown in FIGS. 4A to 4C, the peptide consisting of an amino acid sequence of SEQ ID NO: 1, 2, or 3 reduced ROS levels increased by TCDD in cells.

Full text: Click here
Patent 2024
Amino Acid Sequence Cells Culture Media diacetyldichlorofluorescein Figs HaCaT Cells Homo sapiens Keratinocyte Peptides Tetrachlorodibenzodioxin

Example 3

HaCaT cells, human keratinocyte cells, were seeded on a 6-well plate at a density of 3×105 cells/well and cultured overnight. Subsequently, 50 nM of TCDD and 50 μM of the peptide consisting of an amino acid sequence of SEQ ID NO: 1, 2, or 3 were added to the culture medium. After 30 minutes of reaction, the cells were treated for 5 minutes and immobilized with 4% paraformaldehyde for 30 minutes. Then, after washing three times, the cells were reacted with 0.5% Triton X-100 for 15 minutes and washed three times. Subsequently, the cells were blocked with 3% BSA for 1 hour and reacted with a primary antibody against TCDD conjugated with fluorescein isothiocyanate (FITC) (1:100) at 4° C. overnight. The cells were stained and mounted with 4,6-diamidino-2-phenylindole (DAPI) and observed with a fluorescence microscope. The results are shown in FIGS. 3A to 3C.

As shown in FIGS. 3A to 3C, the peptide consisting of an amino acid sequence of SEQ ID NO: 1, 2, or 3 inhibited introduction of TCDD into cells.

Full text: Click here
Patent 2024
Amino Acid Sequence Cells Culture Media Figs Fluorescein HaCaT Cells Homo sapiens Immunoglobulins isothiocyanate Keratinocyte Microscopy, Fluorescence paraform Peptides Tetrachlorodibenzodioxin Triton X-100

Top products related to «Tetrachlorodibenzodioxin»

Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Germany, Italy
CH223191 is a laboratory equipment product. It is used for scientific research and analysis purposes. The core function of this product is to facilitate the measurement and analysis of various samples and materials in a laboratory setting. However, a detailed description of its specific features and capabilities cannot be provided while maintaining an unbiased and factual approach.
Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Italy, Switzerland, Australia, Spain, Belgium, Denmark, Singapore, India, Netherlands, Sweden, New Zealand, Portugal, Poland, Israel, Lithuania, Hong Kong, Argentina, Ireland, Austria, Czechia, Cameroon, Taiwan, Province of China, Morocco
Lipofectamine 2000 is a cationic lipid-based transfection reagent designed for efficient and reliable delivery of nucleic acids, such as plasmid DNA and small interfering RNA (siRNA), into a wide range of eukaryotic cell types. It facilitates the formation of complexes between the nucleic acid and the lipid components, which can then be introduced into cells to enable gene expression or gene silencing studies.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in Germany, United States, United Kingdom, Spain, Netherlands, Canada, France, Japan, China, Italy, Switzerland, Australia, Sweden, India, Singapore, Denmark, Belgium
The RNeasy kit is a laboratory equipment product that is designed for the extraction and purification of ribonucleic acid (RNA) from various biological samples. It utilizes a silica-membrane-based technology to efficiently capture and isolate RNA molecules.
Sourced in United States, United Kingdom, Germany, France, Canada, Switzerland, Italy, Australia, Belgium, China, Japan, Austria, Spain, Brazil, Israel, Sweden, Ireland, Netherlands, Gabon, Macao, New Zealand, Holy See (Vatican City State), Portugal, Poland, Argentina, Colombia, India, Denmark, Singapore, Panama, Finland, Cameroon
L-glutamine is an amino acid that is commonly used as a dietary supplement and in cell culture media. It serves as a source of nitrogen and supports cellular growth and metabolism.
Sourced in United States, Germany, United Kingdom, Spain, Sao Tome and Principe, Macao, Canada, France
Benzo[a]pyrene is a polycyclic aromatic hydrocarbon commonly used as a reference compound in various laboratory applications. It serves as a standard for analytical techniques and is often employed in research, environmental monitoring, and regulatory compliance testing.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.

More about "Tetrachlorodibenzodioxin"

Tetrachlorodibenzodioxin (TCDD) is a highly toxic environmental contaminant that has been extensively studied for its adverse health effects.
This polychlorinated dibenzo-p-dioxin compound is a byproduct of various industrial processes and can accumulate in the food chain, posing a significant risk to human and animal health.
TCDD is also known as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) and dioxin.
Researching the latest methods and protocols for studying TCDD is crucial to understanding its mechanisms of action, exposure pathways, and potential mitigation strategies.
The use of solvents like DMSO, cell culture media containing FBS, and transfection reagents like Lipofectamine 2000 are common in TCDD research.
Molecular biology techniques like RNA extraction using TRIzol and RNeasy kits, as well as the addition of L-glutamine, are often employed.
Studying the effects of TCDD in comparison to other toxic compounds like Benzo[a]pyrene can provide valuable insights.
PubCompare.ai's AI-driven platform can help locate top protocols from literature, preprints, and patents, while providing intelligent comparisons to enhance reproducibility and accuracy.
Discover the optimal research methods and products for your TCDD studies and experienece the future of scientific discovery today.