The largest database of trusted experimental protocols

Epitopes

Epitopes are the specific regions on the surface of an antigen that are recognized and bound by antibodies or T-cell receptors.
These unique molecular structures play a crucial role in the immune system's ability to identify and respond to foreign pathogens.
Epitopes can be linear, consisting of a continuous sequence of amino acids, or conformational, formed by the three-dimensional arrangement of amino acids.
Understanding epitopes is essential for the development of vaccines, diagnostic tests, and targeted theraputic approaches.
Researchers can leverage AI-driven platforms like PubCompare.ai to optimize their epitopes research, streamlining the process of locating the best protocols from literature, preprints, and patents, and using AI-driven comparisons to enhance reproducibility and accuaracy.

Most cited protocols related to «Epitopes»

A set of known linear peptides that were tested for immune recognition and were found to be epitopes (positive assay results) or non-epitopes (negative assay results) were downloaded from the Immune Epitope Database (IEDB) (21 (link)). Peptides shorter than five or larger than 25 amino acids were removed, as B cell epitopes rarely are outside these boundaries (1 (link)). Only peptides confirmed as positives in two or more separate experiments were included in the positive dataset, and only peptides seen as negative in two or more separate experiments and never observed as positives in any experiment were included in the negative dataset. This resulted in 11 834 positives and 18 722 negative peptides. Each peptide was mapped back on its original protein sequence, and this was used to calculate the output prediction. This dataset is available for download on the BepiPred web page (http://www.cbs.dtu.dk/services/BepiPred/download.php).
The evaluation was only performed on the residues within the positive and negative peptides. In this case, an AUC was calculated only on the pooled positive and negative residues and not per antigen sequence.
Publication 2017
Amino Acids Amino Acid Sequence Antigens Biological Assay Epitopes Epitopes, B-Lymphocyte Peptides Vision
We extracted 10,433 experimentally validated MHC class II binders or T-helper epitopes from Immune Epitope Database (IEDB) [53 (link)]. Out of these 10,433 MHC class II binders, 3705 induced IFN-γ, whereas remaining 6728 unique peptides have not induced IFN-γ. Thus, our dataset contains 3705 positive examples or IFN-γ inducing peptides and 6728 negative examples or IFN-γ non-inducing peptides.
Full text: Click here
Publication 2013
Epitopes Genes, MHC Class II Interferon Type II Peptides
The server is trained on the largest number of quantitative peptide:MHC affinity measurements ever published using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) (6 (link)), eluted peptide data from the SYFPEITHI database (7 (link)) and proprietary affinity data. The predictions based on ANNs are trained essentially as described in (3 (link)) on data from 55 MHC alleles (43 Human and 12 non-human), and the predictions based on position specific scoring matrices (PSSMs) are trained as described in (2 (link)) for additional 67 HLA alleles. A large number of 9-mer MHC affinity data have become available from the IEDB database, since the training of the ANNs used at NetMHC-3.0, and all peptides not used in the training (6452 9-mer peptide affinity data points, covering 32 HLA alleles) were used for evaluation of the server performance. These data are available at the server. In this dataset, 3104 were measured to be binders (IC50<500 nM), 76% of these were correctly predicted as such. 3030 peptides were predicted to bind to a given HLA, and 78% of these had a measured IC50<500 nM. The average Pearson correlation coefficient (PCC) and area under a ROC curve (AUC) value using a 500 nM classification threshold were 0.71 and 0.86, respectively. For the full per allele results, see the Supplementary Material (Supplementary Table 1 and Supplementary Figure 1). NetMHC-3.0 uses a new approximation algorithm that reliably predicts the affinity of peptides of lengths 8, 10 and 11, for which affinity data for training are rare (8 ). The method uses predictors trained on peptides of length 9 to successfully extrapolate to other lengths. In short, the method approximates each peptide of any length to a number of 9-mers, by inserting X (for 8-mers) or deleting amino acid(s) (for 10- and 11-mers) and set the final prediction to an average of the 9-mer predictions. We had previously trained ANN predictors directly on 10-mer affinity data and since this training more than 2000 10-mer peptide:MHC affinities had become available from the IEDB database (6 (link)). Area under a ROC curve (AUC) values were calculated for each allele using either ANNs trained on 10-mers or the approximation method. For 12 of the 16 alleles, the approximation method performed better than the 10-mer trained ANNs (P < 0.01), see Supplementary Material Figure 2. However, for the four HLA-alleles, this evaluation showed better performance for ANNs trained on 10-mer peptides; these 10-mer trained ANNs are used for predictions by the server. For 8-mers, 2002 affinity data were extracted covering 35 MHC alleles. The overall PCC and AUC were 0.68 and 0.86, respectively. For 8-mer per allele performance, see the Supplementary Material Figure 4. For 8-mers, predictors trained on actual 8-mers seems to be better than the approximation method otherwise used, so for the alleles with available 8-mer affinity data, 8-mer trained ANNs are used for the predictions. In general, it is not possible to estimate how reliable a single prediction is. However, the stronger the affinity is predicted the higher are the chance that the actual affinity is stronger than the generally accepted binding threshold of 500 nM.
Publication 2008
Alleles Amino Acids Epitopes Homo sapiens Peptides
The HA epitope-tagged Asf1a (NCBI GeneID: 25842) and Asf1b (GeneID: 55723) cDNAs as well as the HIRA (GeneID: 7290) cDNA were a gift from Peter Adams (Beatson Institute, Glasgow). The HA-Asf1a and HA-Asf1b were subcloned in the pENTR1A no ccdB plasmid and the HIRA cDNA was cloned into the pENTR4-V5 plasmid. The XPG (GeneID: 2073) cDNA cloned in to the pENTR3C vector with a V5 epitope and a GFP-fusion at its C-terminus (XPG-V5-GFP) was a gift of Ely Kwoh. The XPG-V5 was subcloned into pENTR3C to remove the GFP fusion. The Ubc9 (GeneID: 7329) cDNA was a gift from Claude Gazin (CNRS, UMR217). The ARID4B (GeneID: 51742) cDNA was obtained from the Kazusa cDNA project (clone HH11923, Accession #AB210032). The ARID4B cDNA was cloned in the pENTR4-V5 plasmid. A region of the cDNA encoding the shorter isoform was amplified by RT-PCR from U2OS cells and subcloned into the pCR2.1 TA cloning plasmid (Invitrogen) and sequence verified. The fragment was excised using the Bbv CI/Hind III restriction enzymes and inserted into the Bbv CI + Hind III-digested pENTR4-V5-ARID4B plasmid to generate pENTR4-V5 ARID4B Δchromo.
The shRNA for Asf1a was derived from an siRNA previously used [84] (link). We inserted the following annealed oligonucleotides between the Bgl II/Hind III sites of either pENTR/pTER+ or pENTR/pSUPER+:
For Asf1a:
5′GATCCCGTGAAGAATACGATCAAGTGTGTGCTGTCCACTTGATCGTATTCTTCACTTTTTGGAAA and 5′AGCTTTTCCAAAAAGTGAAGAATACGATCAAGTGGACAGCACACACTTGATCGTATTCTTCACGG, where the underlined sequence is specific for human Asf1a.
For MDC1: 5′GATCCCCCAACATGCAGAGATTGAAATTCAAGAGATTTCAATCTCTGCATGTTGTTTTTGGAAA and 5′AGCTTTTCCAAAAACAACATGCAGAGATTGAAATCTCTTGAATTTCAATCTCTGCATGTTGGGGFor XPG: 5′GATCCCAGAATACATGCGGTGGATTTTCAAGAGAAATCCACCGCATGTATTCTTTTTTGGAAA and AGCTTTTCCAAAAAAGAATACATGCGGTGGATTTCTCTTGAAAATCCACCGCATGTATTCTGG.
For the Asf1a shRNA, we also designed an miRNA-based loop in the shRNA because it was reported to result in better depletion efficiencies [85] (link). To design the Asf1a miRNA, we used the algorithm from Open Biosystems (www.openbiosystems.com). The following oligos were amplified with the Xho I and Eco RI amplification primers and subcloned into the pENTR/pSM2 vectors according to the manufacturer's protocol:
5′TGCTGTTGACAGTGAGCGAGGTCACAAGATTCCACATTAATAGTGAAGCCACAGATGTATTAATGTGGAATCTTGTGACCCTGCCTACTGCCTCGGA5′TGCTGTTGACAGTGAGCGAAGGTAGAATACTTTCATTATTTAGTGAAGCCACAGATGTAAATAATGAAAGTATTCTACCTCTGCCTACTGCCTCGGAwhere the underlined sequences are specific for the human Asf1a.
Full text: Click here
Publication 2009
2',5'-oligoadenylate Cells Cloning Vectors Deoxyribonuclease EcoRI DNA, Complementary Enzymes Epitopes Homo sapiens MicroRNAs Oligonucleotide Primers Oligonucleotides Plasmids Protein Isoforms Reverse Transcriptase Polymerase Chain Reaction RNA, Small Interfering Short Hairpin RNA
A dataset of eluted ligands was obtained from Pearson et al. (17 (link)). Also, a set of positive CD8 epitopes was downloaded from the IEDB. The epitope set was identified using the following search criteria “T cell assays: IFNg", "positive assays only", "MHC restriction Type: Class I". Only entries with fully typed HLA restriction, peptides length in the range 8–14 amino acids, and with annotated source protein sequence were included. Positive entries with a predicted rank score greater than 10% using NetMHCpan-3.0 were excluded to filter out likely noise (6 (link)). For both the T-cell epitope and eluted ligand data sets, negative peptides were obtained by extracting all 8–14mer peptides from the source proteins of the eluted ligands and subsequently excluding peptides-MHC combination found with an exact match in the training data (both binding affinity and eluted ligand data sets). The final eluted data set contained 15,965 positive ligands restricted to 27 different HLA molecules, and the IEDB T cell epitope data set 1,251 positive T cell epitopes restricted to 80 HLA molecules.
A Frank value was calculated for each positive-HLA pair as the ratio between the number of peptides with a prediction score higher than the positive peptide and the number of peptides contained within the source protein. The Frank value is hence 0 if the positive peptide has the highest prediction value of all peptides within the source protein, and a value of 0.5 in cases where an equal amount of peptides has a higher and lower prediction value compared to the positive peptide.
An unfiltered eluted ligand data set was obtained from Bassani-Sternberg et al. (22 (link)). This data sets consisted of eluted ligand data from 6 cell lines each with fully typed HLA-A, B and C alleles. A data set was constructed for each cell line, including all 8–13mer ligand as positives, and 5 times the total number of ligands random natural negatives for each length 8–13. That is if a data set contained 5,000 ligands, 5*5000 = 25,000 random natural peptides of length 8, 9, 10, 11, 12, and 13 were added as negatives arriving at a final data set with 155,000 (5000 + 6*25000) peptides.
Publication 2017
Alleles Amino Acids Amino Acid Sequence Biological Assay Cell Lines Epitopes Epitopes, T-Lymphocyte Interferon Type II Ligands Peptides Proteins T-Lymphocyte

Most recents protocols related to «Epitopes»

Example 1

a. Materials and Methods

i. Vector Construction

1. Virus-Like Particle

As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.

The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (FIG. 3), which includes the following elements: CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), CaMV 35S 3′ terminator (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

2. Recombinant Immune Complex

The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (FIG. 3, RIC vector). Both cassettes contain CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

ii. Agroinfiltration of Nicotiana benthamiana Leaves

Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).

iii. Protein Extraction

Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.

iv. SDS-PAGE and Western Blot

Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).

v. Immunization of Mice and Sample Collection

All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.

vi. Antibody Measurements

Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.

vii. Electron Microscopy

Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.

viii. Statistical Analysis

The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.

b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2

BeYDV plant expression vectors (FIG. 3) expressing either the target VLP HBche-L2, or L2 and HBche alone as controls, were agroinfiltrated into the leaves of N. benthamiana and analyzed for VLP production. After 4-5 days post infiltration (DPI), leaves displayed only minor signs of tissue necrosis, indicating that the VLP was well-tolerated by the plants (FIG. 4A). Leaf extracts analyzed by reducing SDS-PAGE showed an abundant band near the predicted size of 51 kDa for HBche-L2, just above the large subunit of rubisco (RbcL). HBche was detected around the predicted size of 38 kDa (FIG. 4B). Western blot probed with anti-L2 polyclonal serum detected a band for HBche-L2 at ˜51 kDa (FIG. 4B). These results indicate that this plant system is capable of producing high levels of L2-containing HBc VLP.

To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (FIG. 3) expressing both the L2-fused 6D8 heavy chain and the light chain was agroinfiltrated into leaves of N. benthamiana and analyzed for RIC production. To create more homogenous human-type glycosylation, which has been shown to improve antibody Fc receptor binding in vivo, transgenic plants silenced for xylosyltransferase and fucosyltransferase were employed (Castilho and Steinkellner 2012). By western blot, high molecular weight bands >150 kDa suggestive of RIC formation were observed (FIG. 4C). Expression of soluble L2 RIC was lower than HBche-L2 due to relatively poor solubility of the RIC (FIG. 4C).

After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (FIGS. 4A-4C and 6).

c. Purification and Characterization of HBche-L2 and L2 RIC

To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (FIG. 5A). To demonstrate particle formation, sucrose fractions were examined by electron microscopy. Both HBche and HBche-L2 formed ˜30 nm particles, although the appearance of HBche-L2 VLP suggested slightly larger, fuller particles (FIGS. 5C and 5D). As most plant proteins do not sediment with VLP, pooling peak sucrose fractions resulted in >95% pure HBche-L2 (FIG. 5B), yielding sufficient antigen (>3 mg) for vaccination from a single plant leaf.

L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (FIG. 5B). Western blot confirmed the presence of L2 in this band, indicating proper RIC formation (FIG. 5B). L2 RIC bound to human complement C1q receptor with substantially higher affinity compared to free human IgG standard, suggesting proper immune complex formation (FIG. 5E).

d. Mouse Immunization with HBche-L2 and L2 RIC

Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (FIG. 6). After one or two doses, the combined VLP/RIC treatment group outperformed both the VLP or RIC groups, reaching mean endpoint titers of >200,000, which represent a 700-fold increase over immunization with L2 alone (FIG. 6). After the third dose, both the VLP and combined VLP/RIC groups reached endpoint titers >1,300,000, a 2-fold increase over the RIC alone group. To determine the antibody subtypes produced by each treatment group, sera were assayed for L2-binding IgG1 and IgG2a. All four groups produced predominately IgG1 (FIG. 7, note dilutions). However, RIC and especially VLP-containing groups had an elevated ratio of IgG2a:IgG1 (>3-fold) compared to L2 alone (FIG. 7).

In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (FIG. 5, p<0.001). Additionally, VLP and RIC combined further enhanced neutralization activity ($5-fold, p<0.05) compared to either antigen alone, supporting the strong synergistic effect of delivering L2 by both platforms simultaneously.

In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (FIG. 6). Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the other groups had much more homogenous antibody responses, especially the VLP-containing groups, which had no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2. Moreover, significant synergy of VLP and RIC systems was observed when the systems were delivered together, after one or two doses (FIG. 6). Since equivalent amounts of L2 were delivered with each dose, the enhanced antibody titer did not result from higher L2 doses. Rather, these data suggest that higher L2-specific antibody production may be due to augmented stimulation of L2-specific B cells by T-helper cells that were primed by RIC-induced antigen presenting cells. Although treatment with VLP and RIC alone reached similar endpoint titers as the combined VLP/RIC group after 3 doses, virus neutralization was substantially higher (>5-fold) in the combined group (FIG. 8). Together, these data indicate unique synergy exists when VLP and RIC are delivered together. Inventors have observed similarly significant synergistic enhancement of immunogenicity for a variety of other antigens.

Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2.

Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (FIG. 7). Importantly, production of IgG2a is associated with successful clearance of a plethora of viral pathogens (Coutelier et al. 1988; Gerhard et al. 1997; Wilson et al. 2000; Markine-Goriaynoff and Coutelier 2002).

The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (FIG. 6). However, yield suffered from insolubility of the RIC (FIG. 4C). We found that the 11-128 segment of L2 expresses very poorly on its own in plants and may be a contributing factor to poor L2 RIC yield. Importantly, we have produced very high yields of RIC with different antigen fusions. Thus, in some aspects, antibody fusion with a shorter segment of L2 could substantially improve the yield of L2 RIC.

e. Neutralization of HPV Pseudovirions

Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.

TABLE 1
L2-specific serum IgG and pseudovirus neutralization
titers from IP immunized mice
Neutralization of Pseudoviruses
ImmunogenSerum IgGHPV 16HPV 18HPV 58
HBc-L2>50,000 400
~70,0001600400400
>80,0001600400800
L2 (11-128)~8000 200
~12,000 400
~50,000 800200400

Full text: Click here
Patent 2024
3' Untranslated Regions 5' Untranslated Regions AA 149 Agrobacterium tumefaciens aluminum potassium sulfate aluminum sulfate Amino Acids Animals Animals, Transgenic Antibodies Antibody Formation Antigen-Presenting Cells Antigens B-Lymphocytes Bacteria Bromphenol Blue Buffers Cell Culture Techniques Cells Centrifugation Chromatography, Affinity Cloning Vectors Cold Temperature Combined Modality Therapy complement 1q receptor Complement Receptor Complex, Immune Complex Extracts Cytotoxicities, Antibody-Dependent Cell Cytotoxin Digestion DNA, A-Form DNA Sequence Edetic Acid Electron Microscopy Electroporation Enzyme-Linked Immunosorbent Assay Epitopes ethane sulfonate Fc Receptor Females Formvar Fucosyltransferase G-substrate Gamma Rays Genes Genes, vif Glycerin Goat Helix (Snails) Helper-Inducer T-Lymphocyte Homo sapiens Homozygote Horseradish Peroxidase Human papillomavirus 16 Human papillomavirus 18 Human Papilloma Virus Vaccine IGG-horseradish peroxidase IgG1 IgG2A Immune Sera Immunoglobulin Heavy Chains Immunoglobulins Immunologic Factors Institutional Animal Care and Use Committees Introns Inventors L2 protein, Human papillomavirus type 16 Light Macrophage Mammals Matrix Attachment Regions Mice, Inbred BALB C Microscopy Milk, Cow's Morpholinos Mus Necrosis Needles Nicotiana Oligonucleotide Primers Oligonucleotides Open Reading Frames Opsonophagocytosis Papilloma Pathogenicity Plant Development Plant Extracts Plant Leaves Plant Proteins Plants Plants, Transgenic polyacrylamide gels Polystyrenes polyvinylidene fluoride prisma Protein Glycosylation Proteins Punctures Rabbits Receptors, IgG Recombinant Proteins Replicon Reproduction Response, Immune Ribulose-Bisphosphate Carboxylase Large Subunit Satellite Viruses SDS-PAGE Serum Serum Albumin, Bovine Sodium Ascorbate Sodium Chloride sodium phosphate Specimen Collection Stars, Celestial Strains Sucrose Sulfate, Magnesium Syringes System, Immune Technique, Dilution Tissue, Membrane Tissues Transferase Transmission Electron Microscopy Triton X-100 Tromethamine Tween 20 Ultraviolet Rays uranyl acetate Vaccination Vaccines Vaccines, Recombinant Virion Viroids Virus Vision Western Blotting xylosyltransferase

Example 4

An overview of the immunization strategies for lectin-binding proteins, such as galectin-3, is shown in Table 18.

BALB/c mice were immunized with 2 mg/kg mRNA, complexed with LNPs, or 20 μg recombinant protein as indicated in Table 18. Plasma anti-galectin-3 IgG titers were assayed 7 days after the final boost, which was delivered at day 55.

FIG. 3 shows that the use of galectin-3 mRNA as a final boosting agent resulted in a significantly higher target-specific IgG titer than when purified recombinant protein (a traditional immunogen) was used. This effect was observed regardless of whether the antigens were delivered subcutaneously or intravenously.

Hybridomas producing galectin-3-specific antibodies were generated, and high affinity monoclonal anti-galectin-3 antibodies were obtained from further screens.

TABLE 18
Priming ImmunizationBoostFinal Boost
(Day 0)(Day 7)(Day 55)
mRNA (I.V.)mRNA (I.V.)mRNA (I.V.)
mRNA (I.V.)mRNA (I.V.)Recombinant protein
(I.V.)
mRNA (S.C.)mRNA (S.C.)mRNA (S.C.)
mRNA (S.C.)mRNA (S.C.)Recombinant protein
(S.C.)
Summary of the Hit Rates Attainable by mRNA-Mediated Immunization

Table 19 provides a target protein-specific summary of the total number of hybridoma wells (generally about one third (⅓) of these wells contain hybridomas) screened and the number of confirmed target-specific antibodies obtained from those hybridomas wells following the use of lipid-encapsulated mRNA as an immunogen.

Table 20 provides a comparison of mRNA-LNP immunization methods with other conventional methods of immunization by number of hybridomas producing target-specific antibodies. In general, these data suggest that mRNA-LNP immunization is an effective method for inducing an immune response to a target protein antigen and for obtaining a higher number/rate of target protein-specific antibodies. In particular, these results confirm that mRNA-LNP immunization is surprisingly more effective than conventional immunization methods for obtaining antibodies specific for transmembrane proteins, e.g., multi-pass transmembrane proteins, such as GPCRs, which are difficult to raise antibodies against, and for poorly immunogenic proteins (e.g., proteins which produce low or no detectable target-specific IgGs in plasma of animals immunized with traditional antigen).

TABLE 19
Number of
Number ofhybridomas
hybridomaproducing
Proteinwellstarget-specific
targetType of proteinscreenedantibodies
RXFP1Multi-pass Transmembrane20240207
protein/GPCR
SLC52A2Multi-pass Transmembrane12880228
protein
ANGPTL8Soluble protein22816542
TSHRTransmembraneTBD130
protein/GPCR
APJTransmembrane22080230
protein/GPCR
GP130Single-pass Transmembrane23920614
protein

TABLE 20
Method of immunization and number of hybridomas producing
target-specific antibodies
Whole Virus-likeProtein/
ProteinType ofmRNA-cellsparticlesCDNApeptide
targetproteinLNP1onlyonlyonlyonly
RXFP1GPCR/20766NDNDND
multi-pass
SLC52A2multi-228NSTNSTNDNST
pass
TSHRGPCR/130NDND42413
multi-pass
APJGPCR/230 94621 ND
multi-pass
1Immunization with mRNA-LNP alone or in combination with another antigen format (e.g., protein/peptide).
2Sanders et al. 2002 Thyroid stimulating monoclonal antibodies Thyroid 12(12): 1043-1050.
3Oda et al. 2000. Epitope analysis of the human thyrotropin (TSH) receptor using monoclonal antibodies. Thyroid 10(12): 1051-1059.
ND—Not determined; antigen format not tested
NST—No specific titers detected. Because no target-specific IgG titers were detectable in plasma, hybridoma generation was not initiated on these groups.

In general, successful generation of hybridomas producing antigen-specific antibodies have been achieved for at least 15 different targets utilizing mRNA-LNP immunization methods as exemplified herein. These results show that the mRNA immunization methods described herein are capable of eliciting an immune response against a wide range of antigens (e.g., transmembrane proteins, for example multi-pass transmembrane proteins, such as GPCRs) in host animals, and are effective methods for producing high affinity monoclonal antibodies, which can serve as parentals for generation of chimeric variants, humanized variants, and affinity matured variants.

Full text: Click here
Patent 2024
Animals anti-IgG Antibodies Antigens Binding Proteins Cells Chimera DNA, Complementary Epitopes Galectin 3 Histocompatibility Antigens Class II Homo sapiens Hybridomas Integral Membrane Proteins Lectin Lipids Mice, Inbred BALB C Monoclonal Antibodies Parent Peptides Plasma Proteins Protein Targeting, Cellular Recombinant Proteins Response, Immune RNA, Messenger Soluble Glycoprotein 130 Thyroid Gland Thyrotropin Thyrotropin Receptor Vaccination Viral Proteins

Example 2

The DNA encoding the amino acid sequence of human KIF5B-RET variant 1 was placed in a lentivirus vector under a doxycycline-inducible promoter to maximize expression with a carboxyl-terminal FLAG epitope to facilitate immunodetection of the fusion by anti-FLAG antibodies. Lentiviral-mediated gene transduction was used to express KIF5B-RET in Ba/F3 cells, KIF5B-RET dependent cells were selected by IL-3 withdrawal and confirmed to express the KIF5B-RET fusion protein by immunoblot analysis. To generate Ba/F3 cells carrying V804 substitutions, WT KIF5B-RET Ba/F3 cells were mutagenized overnight with ENU and plated in 96-well plates for a period of 2 weeks in the presence of 6 concentrations of MKIs (ponatinib, regorafenib, cabozantinib, or vandetanib). The concentrations chosen ranged from 2×-64× the proliferation IC50 for each compound: 125 nM to 4 μmol/L cabozantinib, 20 to 640 nM ponatinib, and 250 nM to 8 μmol/L vandetanib. Genomic DNA was isolated from resistant clones, and Sanger sequencing was used to identify those that harbored substitutions. FIG. 3 shows antitumor activity of Compound 1 compared with cabozantinib in KIF5B-RET V804L Ba/F3 allografts.

Full text: Click here
Patent 2024
Allografts Amino Acid Sequence Anti-Antibodies Biological Assay cabozantinib Cells Clone Cells Cloning Vectors Doxycycline Epitopes Genome Homo sapiens Immunoblotting KIF5B protein, human Lentivirus Mutagenesis ponatinib regorafenib Transduction, Genetic vandetanib
Not available on PMC !

Example 4

Immunogenicity was assessed using the model antigen TIPeGFP in order to determine whether comparable immunogenicity to AdC63 and AdC68 could be obtained in mice using an AdY25-based vector.

Balb/c mice (4/group) were immunised intramuscularly with 109 infectious units (ifu) of each of the following viral vectors, all expressing the TIPeGFP antigen:

    • v. AdCh63;
    • vi. ΔE1 ΔE3 AdCh68; and
    • vii. ChAdOX1.

After 14 days post-prime, spleen immunogenicity against a strong CD8+ epitope (Pb9) was assessed by IFN-γ ELISpot

The IFN-γ spleen ELISpot responses are shown in FIG. 4. Responses elicited by ChAdOX1 were robust and comparable to those seen using AdCh63 and the AdCh68-based vector. These data support the continued development of AdY25-based vectors for clinical application.

Full text: Click here
Patent 2024
Antigens Cloning Vectors Enzyme-Linked Immunospot Assay Epitopes Interferon Type II Mice, Inbred BALB C Mus Spleen Virus Diseases Vision
Not available on PMC !

Example 3

To further confirm that the PEDV S protein contains the epitope recognized by the present scFv, an immunoprecipitation combined pull-down assay and SEC analysis were performed in this example. For the immunoprecipitation assay, the purified trimeric PEDV S glycoprotein, which harbored a V5 tag and a His6 tag, was incubated with the recombinant scFv for 3 hours and size-filtrated by centrifugation with a 100 kDa molecular weight cut-off (MWCO) spin column. In the absence of the PEDV S protein, all scFv passed through the 100 kDa MWCO spin column in the control group, and no protein band was detected in the respective lane of the SDS-PAGE (data not shown). The addition of the PEDV S protein retained the scFv after the 100 kDa MWCO filtration (data not shown). The SEC analysis of the PEDV S protein with excess scFv showed a similar elution volume as that without scFv, potentially due to the relatively small change in molecular size of the PEDV S protein when bound to the scFv (data not shown). To ascertain that the scFv was indeed co-eluted with the PEDV S protein during the SEC, the elution fractions corresponding to the PEDV S protein were analyzed by western blotting. The data confirmed the binding between the present scFv and PEDV S protein (data not shown).

Full text: Click here
Patent 2024
Biological Assay Centrifugation Epitopes Filtration Glycoproteins his6 tag Immunoprecipitation Lanugo Porcine epidemic diarrhea virus Proteins SDS-PAGE spike protein, SARS-CoV-2

Top products related to «Epitopes»

Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Italy, Switzerland, Australia, Spain, Belgium, Denmark, Singapore, India, Netherlands, Sweden, New Zealand, Portugal, Poland, Israel, Lithuania, Hong Kong, Argentina, Ireland, Austria, Czechia, Cameroon, Taiwan, Province of China, Morocco
Lipofectamine 2000 is a cationic lipid-based transfection reagent designed for efficient and reliable delivery of nucleic acids, such as plasmid DNA and small interfering RNA (siRNA), into a wide range of eukaryotic cell types. It facilitates the formation of complexes between the nucleic acid and the lipid components, which can then be introduced into cells to enable gene expression or gene silencing studies.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.
Sourced in United States, China, United Kingdom, Germany, Japan, Canada, France, Sweden, Netherlands, Italy, Portugal, Spain, Australia, Denmark
The PcDNA3.1 is a plasmid vector used for the expression of recombinant proteins in mammalian cells. It contains a powerful human cytomegalovirus (CMV) promoter, which drives high-level expression of the inserted gene. The vector also includes a neomycin resistance gene for selection of stable transfectants.
Sourced in United States, United Kingdom, Germany, Japan, France, Italy, Canada, China, Spain, Switzerland, Denmark, Australia, Hungary, Belgium, Ireland, Israel, Netherlands, Moldova, Republic of, India, Austria, Czechia, Poland
Alexa Fluor 488 is a fluorescent dye used in various biotechnological applications. It has an excitation maximum at 495 nm and an emission maximum at 519 nm, producing a green fluorescent signal. Alexa Fluor 488 is known for its brightness, photostability, and pH-insensitivity, making it a popular choice for labeling biomolecules in biological research.
Sourced in Germany, United Kingdom, United States, Australia, Japan, Israel, Denmark, Belgium, France
The Bond Polymer Refine Detection kit is a lab equipment product designed for immunohistochemistry (IHC) applications. It provides a reliable and consistent method for detecting target proteins in tissue samples. The kit includes the necessary reagents and components to perform the detection process, ensuring accurate and reproducible results.
Sourced in United States, Germany, United Kingdom, Japan, China, Canada, Italy, Australia, France, Switzerland, Spain, Belgium, Denmark, Panama, Poland, Singapore, Austria, Morocco, Netherlands, Sweden, Argentina, India, Finland, Pakistan, Cameroon, New Zealand
DAPI is a fluorescent dye used in microscopy and flow cytometry to stain cell nuclei. It binds strongly to the minor groove of double-stranded DNA, emitting blue fluorescence when excited by ultraviolet light.
Sourced in United States, Germany, Japan, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, Canada, Switzerland, Spain, Australia, Denmark, India, Poland, Israel, Belgium, Sweden, Ireland, Netherlands, Panama, Brazil, Portugal, Czechia, Puerto Rico, Austria, Hong Kong, Singapore
DAPI is a fluorescent dye that binds strongly to adenine-thymine (A-T) rich regions in DNA. It is commonly used as a nuclear counterstain in fluorescence microscopy to visualize and locate cell nuclei.
Sourced in United States, Switzerland, Azerbaijan, Germany, France, Denmark, United Kingdom, China, Belgium
The BenchMark XT is a fully automated, open-architecture immunohistochemistry (IHC) and in situ hybridization (ISH) system designed for routine and advanced research applications. The system provides consistent, reliable, and high-quality results by automating the entire staining process, from slide preparation to staining, washing, and detection.
Sourced in United States, United Kingdom, Canada, Germany, France, Japan, Switzerland
The Vectastain Elite ABC kit is a specialized laboratory equipment used for the detection and visualization of target proteins or antigens in biological samples. It utilizes an avidin-biotin complex (ABC) system to amplify the signal, enabling researchers to achieve high sensitivity and consistent results in their immunohistochemical or immunocytochemical analyses.
Sourced in United States, Denmark, United Kingdom, Germany, Japan, Canada, China, France, Belgium, Netherlands, Poland
The DAB (3,3'-Diaminobenzidine) product from Agilent Technologies is a chromogenic substrate used in immunohistochemistry and immunocytochemistry applications. It provides a brown precipitate at the site of the antigen-antibody reaction, allowing for the visualization and localization of target proteins or antigens in biological samples.

More about "Epitopes"

Epitopes, the specific regions on the surface of an antigen that are recognized and bound by antibodies or T-cell receptors, play a crucial role in the immune system's ability to identify and respond to foreign pathogens.
These unique molecular structures can be linear, consisting of a continuous sequence of amino acids, or conformational, formed by the three-dimensional arrangement of amino acids.
Understanding epitopes is essential for the development of vaccines, diagnostic tests, and targeted therapeutic approaches.
Researchers can leverage AI-driven platforms like PubCompare.ai to optimize their epitopes research, streamlining the process of locating the best protocols from literature, preprints, and patents, and using AI-driven comparisons to enhance reproducibility and accuracy.
Epitopes research may involve the use of various reagents and techniques, such as Lipofectamine 2000 for transfection, Bovine serum albumin (BSA) for blocking, pcDNA3.1 for plasmid expression, Alexa Fluor 488 for fluorescent labeling, Bond Polymer Refine Detection kit for immunohistochemistry, DAPI for nuclear staining, BenchMark XT for automated staining, and Vectastain Elite ABC kit and DAB for signal detection.
By utilizing the insights gained from the MeSH term description and leveraging AI-powered tools like PubCompare.ai, researchers can accelerate their epitopes research, leading to advancements in the fields of immunology, vaccine development, and targeted therapeutic approaches.
The optimized protocols and enhanced reproducibility can contribute to a better understanding of the immune system and the development of effective diagnostic and treatment strategies.