The largest database of trusted experimental protocols
> Chemicals & Drugs > Indicator > Contrast Media

Contrast Media

Contrast Media are substances used to enhance the visibility of structures or fluids within the body during medical imaging procedures.
These agents can improve the contrast between different tissues, allowing for more accurate diagnosis and monitoring of various medical conditions.
PubCompare.ai, the leading AI platform, can optimize your Contrast Media research by effortlessly locating relevant protocols from literature, pre-prints, and patents, and leveraging AI-driven comparisons to identify the best protocols and products.
This powerful tool can take your Contrast Media research to new heights and enhance reproducibility, helping you to make informed decisions and advance your studies.

Most cited protocols related to «Contrast Media»

Aside from the highly popular SCLVM (https://github.com/PMBio/scLVM) [46 (link), 47 (link)], which uses Gaussian process latent variable models for inferring hidden sources of variation, there are, among others, the visualization frameworks FASTPROJECT (https://github.com/YosefLab/FastProject) [48 (link)], ACCENSE (http://www.cellaccense.com/) [49 ], and SPRING (https://github.com/AllonKleinLab/SPRING) [15 ]—the latter uses the JavaScript package (http://d3js.org D3.js for the actual visualization and Python only for preprocessing—the trajectory inference tool SCIMITAR (https://github.com/dimenwarper/scimitar), the clustering tool PHENOGRAPH (https://github.com/jacoblevine/PhenoGraph) [19 (link)], the single-cell experiment design tool MIMOSCA (https://github.com/asncd/MIMOSCA)[50 (link)], UMIS (https://github.com/vals/umis) for handling raw read data [51 (link)], the tree-inference tool ECLAIR (https://github.com/GGiecold/ECLAIR) [52 (link)], and the framework FLOTILLA (https://github.com/yeolab/flotilla), which comes with modules for simple visualization, simple clustering, and differential expression testing. Hence, only the latter provides a data analysis framework that solves more than one specific task. In contrast to SCANPY, however, FLOTILLA is neither targeted at single-cell nor at large-scale data and does not provide any graph-based methods, which are the core of SCANPY. Also, FLOTILLA is built around a complicated class STUDY, which contains data, tools, and plotting functions. SCANPY, by contrast, is built around a simple HDF5-backed class ANNDATA, which makes SCANPY both scalable and extendable (law of Demeter).
Full text: Click here
Publication 2018
Cells Python Trees Vals
In order to understand the modeling choices underlying our new imputation algorithm, it is crucial to consider the statistical issues that arise in imputation datasets. For simplicity, we will discuss these issues in the context of Scenario A, although we will also extend them to Scenario B in the Results section. Fundamentally, imputation is very similar to phasing, so it is no surprise that most imputation algorithms are based on population genetic models that were originally used in phasing methods. The most important distinction between phasing and imputation datasets is that the latter include large proportions of systematically missing genotypes.
Large amounts of missing data greatly increase the space of possible outcomes, and most phasing algorithms are not able to explore this space efficiently enough to be useful for inference in large studies. A standard way to overcome this problem with HMMs [6] (link),[11] (link) is to make the approximation that, conditional on the reference panel, each study individual's multilocus genotype is independent of the genotypes for the rest of the study sample. This transforms the inference problem into a separate imputation step for each study individual, with each step involving only a small proportion of missing data since the reference panel is assumed to be missing few, if any, genotypes.
In motivating our new imputation methodology, we pointed out that modeling the study individuals independently, rather than jointly, sacrifices phasing accuracy at typed SNPs; this led us to propose a hybrid approach that models the study haplotypes jointly at typed SNPs but independently at untyped SNPs. We made the latter choice partly to improve efficiency – it is fast to impute untyped alleles independently for different haplotypes, which allows us to use all of the information in large reference panels – but also because of the intuition that there is little to be gained from jointly modeling the study sample at untyped SNPs.
By contrast, the recently published BEAGLE [13] (link) imputation approach fits a full joint model to all individuals at all SNPs. To overcome the difficulties caused by the large space of possible genotype configurations, BEAGLE initializes its model using a few ad-hoc burn-in iterations in which genotype imputation is driven primarily by the reference panel. The intuition is that this burn-in period will help the model reach a plausible part of parameter space, which can be used as a starting point for fitting a full joint model.
This alternative modeling strategy raises the question of whether, and to what extent, it is advantageous to model the study sample jointly at untyped SNPs. One argument [20] (link) holds that there is no point in jointly modeling such SNPs because all of the linkage disequilibrium information needed to impute them is contained in the reference panel. A counterargument is that, as with any statistical missing data problem, the “correct” inference approach is to create a joint model of all observed and missing data. We have found that a full joint model may indeed improve accuracy on small, contrived imputation datasets (data not shown), and this leads us to believe that joint modeling could theoretically increase accuracy in more realistic datasets.
However, a more salient question is whether there is any useful information to be gained from jointly modeling untyped SNPs, and whether this information can be obtained with a reasonable amount of computational effort. Most imputation methods, including our new algorithm, implicitly assume that such information is not worth pursuing, whereas BEAGLE assumes that it is. We explore this question further in the sections that follow.
Full text: Click here
Publication 2009
Alleles Genotype Haplotypes Hybrids Hypertelorism, Severe, With Midface Prominence, Myopia, Mental Retardation, And Bone Fragility Intuition Joints Seizures Single Nucleotide Polymorphism

fastp supports automatic adapter trimming for both single-end and paired-end Illumina data and uses different algorithms for each of these tasks. For single-end data, adapter sequences are detected by assembling the high-frequency read tails; for paired-end data, adapter sequences are detected by finding the overlap of each pair.
The adapter-sequence detection algorithm is based on two assumptions: the first is that only one adapter exists in the data; the second is that adapter sequences exist only in the read tails. These two assumptions are valid for major next-generation sequencers like Illumina HiSeq series, NextSeq series and NovaSeq series. We compute the k-mer (k = 10) of first N reads (N = 1 M). From this k-mer, the sequences with high occurrence frequencies (>0.0001) are considered as adapter seeds. Low-complexity sequences are removed because they are usually caused by sequencing artifacts. The adapter seeds are sorted by its occurrence frequencies. A tree-based algorithm is applied to extend the adapter seeds to find the real complete adapter, which is described by the pseudo code in Algorithm 1.
In Algorithm 1, the function build_nucleotide_tree() is used to convert a set of sequences to a tree, in which each node is a nucleotide and each path of root to leaf is a sequence. A node’s dominant child is defined as its major child with a dominant percentage (>90%). This algorithm tries to extend an adapter seed in the forward direction to check its validity since a valid adapter can always be extended to the read tails. And if this adapter seed is valid, a backward extension is applied to obtain the complete adapter sequence. The process of extending an adapter seed in forward and backward directions is given in Figure 2.
For paired-end data, fastp seeks the overlap of each pair and considers the bases that fall out of the overlapped regions as adapter contents. The overlapping detection algorithm was derived from our previous work, AfterQC. Compared to sequence-matching-based adapter-trimming tools like Cutadapt and Trimmomatic, a clear advantage of the overlap-analysis-based method is that it can trim adapters with few bases in the read tail. For example, most sequence-matching-based tools require a hatchment of at least three bases and cannot trim adapters with only one or two bases. In contrast, fastp can trim adapters with even only one base in the tail.
Although fastp can detect adapter sequences automatically, it also provides interfaces to set specific adapter sequences for trimming. For SE data, if an adapter sequence is given, then automatic adapter-sequence detection will be disabled. For PE data, the adapter sequence will be used for sequence-matching-based adapter trimming only when fastp fails to detect a good overlap in the pair.
Publication 2018
Child Nucleotides Plant Leaves Plant Roots Tail Trees
ROAST [7 (link)] and CAMERA [8 (link)] are gene set testing procedures that assess changes in the overall expression signature defined by a set of genes. ROAST [7 (link)] is a self-contained test that assesses differential expression of the gene set without regard to genes not in the set. CAMERA [8 (link)] is a competitive test that assesses differential expression of the gene set relative to all other genes on the array. Both procedures offer considerable flexibility as they have the ability to test the association of a genomic pathway or gene set signature with quite general treatment comparisons or contrasts defined in the context of a microarray linear model. We have adapted both methods to make use of quantitative weights as output by voom. The revised methods are implemented in the functions roast() and camera() of the limma software package.
Full text: Click here
Publication 2014
Contrast Media Gene Expression Genes Genome Microarray Analysis
Our consensus process relied on evidence where available and, in the absence of evidence, consensus expert opinion when possible [7 (link)]. This combined approach has previously led to important practice guidelines that were widely adopted into clinical practice [8 (link)]. In contrast, expert opinion alone can ignore important evidence, whereas evidence-based reviews can be conceptually flawed without expert opinion [9 ]. We conducted the consensus process in three stages: preconference, conference and postconference.
Before the conference, we identified six topics relevant to the field of ARF: definition/classification system for ARF; clinical outcome measures for ARF studies; physiological end-points for ARF studies; animal models of ARF; techniques for assessing and achieving fluid balance in ARF; and information technology in acute dialysis. We selected these topics based on the level of possible clinical impact, the level of controversy, known or suspected variation in practice, potential importance for scientific outcome, potential for development of evidence-based medicine recommendations, and availability of evidence. For each topic we outlined a preliminary set of key questions. We then invited an international panel, predominantly from the fields of nephrology and intensive care, based on their expertise in the fields of analysis. Panelists were assigned to three-person workgroups, with each workgroup addressing one key topic. Each workgroup conducted literature searches related to their topic questions via Medline, PubMed, bibliography of review articles and participants' files. Searches were limited to English language articles. However, articles written in other languages were used when identified by workgroup members. During this stage, the scope of the conference was also more clearly defined.
We conducted a 2-day conference in May 2002 in Vicenza, Italy. We developed summary statements through a series of alternating breakout and plenary sessions. In each breakout session, the workgroup refined key questions, identified the supporting evidence, and generated recommendations and/or directions for future research as appropriate. We generated future research questions by identifying deficiencies in the literature and debating whether more evidence was necessary. Where possible, we also considered pertinent study design issues. Workgroup members presented their findings during plenary sessions, rotating responsibility for presenting to ensure full participation. The workgroup then revised their drafts as needed until a final version was agreed upon. When consensus was not achieved on any individual question by the conclusion of the meeting, deliberations continued by correspondence. When voting was required to settle an issue, a two-thirds majority was required to approve a proposal.
A writing committee assembled the individual reports from the workgroups and each report was edited to conform to a uniform style and for length. Finally, each report was submitted for comments to independent international experts. In this report we present a summary of the proceedings.
Publication 2004
Animal Model Conferences Dialysis Fluid Balance Intensive Care physiology

Most recents protocols related to «Contrast Media»

Example 1

a. Materials and Methods

i. Vector Construction

1. Virus-Like Particle

As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.

The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (FIG. 3), which includes the following elements: CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), CaMV 35S 3′ terminator (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

2. Recombinant Immune Complex

The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (FIG. 3, RIC vector). Both cassettes contain CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

ii. Agroinfiltration of Nicotiana benthamiana Leaves

Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).

iii. Protein Extraction

Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.

iv. SDS-PAGE and Western Blot

Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).

v. Immunization of Mice and Sample Collection

All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.

vi. Antibody Measurements

Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.

vii. Electron Microscopy

Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.

viii. Statistical Analysis

The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.

b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2

BeYDV plant expression vectors (FIG. 3) expressing either the target VLP HBche-L2, or L2 and HBche alone as controls, were agroinfiltrated into the leaves of N. benthamiana and analyzed for VLP production. After 4-5 days post infiltration (DPI), leaves displayed only minor signs of tissue necrosis, indicating that the VLP was well-tolerated by the plants (FIG. 4A). Leaf extracts analyzed by reducing SDS-PAGE showed an abundant band near the predicted size of 51 kDa for HBche-L2, just above the large subunit of rubisco (RbcL). HBche was detected around the predicted size of 38 kDa (FIG. 4B). Western blot probed with anti-L2 polyclonal serum detected a band for HBche-L2 at ˜51 kDa (FIG. 4B). These results indicate that this plant system is capable of producing high levels of L2-containing HBc VLP.

To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (FIG. 3) expressing both the L2-fused 6D8 heavy chain and the light chain was agroinfiltrated into leaves of N. benthamiana and analyzed for RIC production. To create more homogenous human-type glycosylation, which has been shown to improve antibody Fc receptor binding in vivo, transgenic plants silenced for xylosyltransferase and fucosyltransferase were employed (Castilho and Steinkellner 2012). By western blot, high molecular weight bands >150 kDa suggestive of RIC formation were observed (FIG. 4C). Expression of soluble L2 RIC was lower than HBche-L2 due to relatively poor solubility of the RIC (FIG. 4C).

After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (FIGS. 4A-4C and 6).

c. Purification and Characterization of HBche-L2 and L2 RIC

To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (FIG. 5A). To demonstrate particle formation, sucrose fractions were examined by electron microscopy. Both HBche and HBche-L2 formed ˜30 nm particles, although the appearance of HBche-L2 VLP suggested slightly larger, fuller particles (FIGS. 5C and 5D). As most plant proteins do not sediment with VLP, pooling peak sucrose fractions resulted in >95% pure HBche-L2 (FIG. 5B), yielding sufficient antigen (>3 mg) for vaccination from a single plant leaf.

L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (FIG. 5B). Western blot confirmed the presence of L2 in this band, indicating proper RIC formation (FIG. 5B). L2 RIC bound to human complement C1q receptor with substantially higher affinity compared to free human IgG standard, suggesting proper immune complex formation (FIG. 5E).

d. Mouse Immunization with HBche-L2 and L2 RIC

Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (FIG. 6). After one or two doses, the combined VLP/RIC treatment group outperformed both the VLP or RIC groups, reaching mean endpoint titers of >200,000, which represent a 700-fold increase over immunization with L2 alone (FIG. 6). After the third dose, both the VLP and combined VLP/RIC groups reached endpoint titers >1,300,000, a 2-fold increase over the RIC alone group. To determine the antibody subtypes produced by each treatment group, sera were assayed for L2-binding IgG1 and IgG2a. All four groups produced predominately IgG1 (FIG. 7, note dilutions). However, RIC and especially VLP-containing groups had an elevated ratio of IgG2a:IgG1 (>3-fold) compared to L2 alone (FIG. 7).

In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (FIG. 5, p<0.001). Additionally, VLP and RIC combined further enhanced neutralization activity ($5-fold, p<0.05) compared to either antigen alone, supporting the strong synergistic effect of delivering L2 by both platforms simultaneously.

In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (FIG. 6). Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the other groups had much more homogenous antibody responses, especially the VLP-containing groups, which had no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2. Moreover, significant synergy of VLP and RIC systems was observed when the systems were delivered together, after one or two doses (FIG. 6). Since equivalent amounts of L2 were delivered with each dose, the enhanced antibody titer did not result from higher L2 doses. Rather, these data suggest that higher L2-specific antibody production may be due to augmented stimulation of L2-specific B cells by T-helper cells that were primed by RIC-induced antigen presenting cells. Although treatment with VLP and RIC alone reached similar endpoint titers as the combined VLP/RIC group after 3 doses, virus neutralization was substantially higher (>5-fold) in the combined group (FIG. 8). Together, these data indicate unique synergy exists when VLP and RIC are delivered together. Inventors have observed similarly significant synergistic enhancement of immunogenicity for a variety of other antigens.

Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2.

Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (FIG. 7). Importantly, production of IgG2a is associated with successful clearance of a plethora of viral pathogens (Coutelier et al. 1988; Gerhard et al. 1997; Wilson et al. 2000; Markine-Goriaynoff and Coutelier 2002).

The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (FIG. 6). However, yield suffered from insolubility of the RIC (FIG. 4C). We found that the 11-128 segment of L2 expresses very poorly on its own in plants and may be a contributing factor to poor L2 RIC yield. Importantly, we have produced very high yields of RIC with different antigen fusions. Thus, in some aspects, antibody fusion with a shorter segment of L2 could substantially improve the yield of L2 RIC.

e. Neutralization of HPV Pseudovirions

Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.

TABLE 1
L2-specific serum IgG and pseudovirus neutralization
titers from IP immunized mice
Neutralization of Pseudoviruses
ImmunogenSerum IgGHPV 16HPV 18HPV 58
HBc-L2>50,000 400
~70,0001600400400
>80,0001600400800
L2 (11-128)~8000 200
~12,000 400
~50,000 800200400

Full text: Click here
Patent 2024
3' Untranslated Regions 5' Untranslated Regions AA 149 Agrobacterium tumefaciens aluminum potassium sulfate aluminum sulfate Amino Acids Animals Animals, Transgenic Antibodies Antibody Formation Antigen-Presenting Cells Antigens B-Lymphocytes Bacteria Bromphenol Blue Buffers Cell Culture Techniques Cells Centrifugation Chromatography, Affinity Cloning Vectors Cold Temperature Combined Modality Therapy complement 1q receptor Complement Receptor Complex, Immune Complex Extracts Cytotoxicities, Antibody-Dependent Cell Cytotoxin Digestion DNA, A-Form DNA Sequence Edetic Acid Electron Microscopy Electroporation Enzyme-Linked Immunosorbent Assay Epitopes ethane sulfonate Fc Receptor Females Formvar Fucosyltransferase G-substrate Gamma Rays Genes Genes, vif Glycerin Goat Helix (Snails) Helper-Inducer T-Lymphocyte Homo sapiens Homozygote Horseradish Peroxidase Human papillomavirus 16 Human papillomavirus 18 Human Papilloma Virus Vaccine IGG-horseradish peroxidase IgG1 IgG2A Immune Sera Immunoglobulin Heavy Chains Immunoglobulins Immunologic Factors Institutional Animal Care and Use Committees Introns Inventors L2 protein, Human papillomavirus type 16 Light Macrophage Mammals Matrix Attachment Regions Mice, Inbred BALB C Microscopy Milk, Cow's Morpholinos Mus Necrosis Needles Nicotiana Oligonucleotide Primers Oligonucleotides Open Reading Frames Opsonophagocytosis Papilloma Pathogenicity Plant Development Plant Extracts Plant Leaves Plant Proteins Plants Plants, Transgenic polyacrylamide gels Polystyrenes polyvinylidene fluoride prisma Protein Glycosylation Proteins Punctures Rabbits Receptors, IgG Recombinant Proteins Replicon Reproduction Response, Immune Ribulose-Bisphosphate Carboxylase Large Subunit Satellite Viruses SDS-PAGE Serum Serum Albumin, Bovine Sodium Ascorbate Sodium Chloride sodium phosphate Specimen Collection Stars, Celestial Strains Sucrose Sulfate, Magnesium Syringes System, Immune Technique, Dilution Tissue, Membrane Tissues Transferase Transmission Electron Microscopy Triton X-100 Tromethamine Tween 20 Ultraviolet Rays uranyl acetate Vaccination Vaccines Vaccines, Recombinant Virion Viroids Virus Vision Western Blotting xylosyltransferase

Example 3

Investigation of Virus Infectivity as a Factor that Determines Plaque Size.

With the revelation that plaque formation is strongly influenced by the immunogenicity of the virus, the possibility that infectivity of the virus could be another factor that determines plaque sizes was investigated. The uptake of viruses into cells in vitro was determined by measuring the amounts of specific viral RNA sequences through real-time PCR.

To measure total viral RNA, total cellular RNA was extracted using the RNEasy Mini kit (Qiagen), and complementary DNA synthesized using the iScript cDNA Synthesis kit (Bio-Rad). To measure total viral RNA, quantitative real-time PCR was done using a primer pair targeting a highly conserved region of the 3′ UTR common to all four serotypes of dengue; inter-sample normalization was done using GAPDH as a control. Primer sequences are listed in Table 5. Pronase (Roche) was used at a concentration of 1 mg/mL and incubated with infected cells for five minutes on ice, before washing with ice cold PBS. Total cellular RNA was then extracted from the cell pellets in the manner described above.

TABLE 5
PCR primer sequences.
Gene TargetPrimer Sequence
DENV LYL 3′UTRForward: TTGAGTAAACYRTGCTGCCTGTA
TGCC (SEQ ID NO: 24)
Reverse: GAGACAGCAGGATCTCTGGTCTY
TC (SEQ ID NO: 25)
GAPDH (Human)Forward: GAGTCAACGGATTTGGTCGT
(SEQ ID NO: 26)
Reverse: TTGATTTTGGAGGGATCTCG
(SEQ ID NO: 27)
CXCL10 (Human)Forward: GGTGAGAAGAGATGTCTGAATCC
(SEQ ID NO: 28)
Reverse: GTCCATCCTTGGAAGCACTGCA
(SEQ ID NO: 29)
ISG20 (Human)Forward: ACACGTCCACTGACAGGCTGTT
(SEQ ID NO: 30)
Reverse: ATCTTCCACCGAGCTGTGTCCA
(SEQ ID NO: 31)
IFIT2 (Human)Forward: GAAGAGGAAGATTTCTGAAG
(SEQ ID NO: 32)
Reverse: CATTTTAGTTGCCGTAGG
(SEQ ID NO: 33)
IFNα (Canine)Forward: GCTCTTGTGACCACTACACCA
(SEQ ID NO: 34)
Reverse: AAGACCTTCTGGGTCATCACG
(SEQ ID NO: 35)
IFNβ (Canine)Forward: GGATGGAATGAGACCACTGTCG
(SEQ ID NO: 36)
Reverse: ACGTCCTCCAGGATTATCTCCA
(SEQ ID NO: 37)

The proportion of infected cells was assessed by flow cytometry. Cells were fixed and permeabilised with 3% paraformaldehyde and 0.1% saponin, respectively. DENV envelope (E) protein was stained with mouse monoclonal 4G2 antibody (ATCC) and AlexaFluor488 anti-mouse secondary antibody. Flow cytometry analysis was done on a BD FACS Canto II (BD Bioscience).

Unexpectedly, despite DENV-2 PDK53 inducing stronger antiviral immune responses, it had higher rates of uptake by HuH-7 cells compared to DENV-2 16681 (FIG. 5). This difference continued to be observed when DENV-2 PDK53 inoculum was reduced 10-fold. In contrast, DENV-3 PGMK30 and its parental strain DENV-3 16562 displayed the same rate of viral uptake in host cells. Furthermore, DENV-2 PDK53 showed a higher viral replication rate compared to DENV-2 16681. This was determined by measuring the percentage of cells that harbored DENV E-protein, detected using flow cytometry. DENV-2 PDK53 showed a higher percentage of infected cells compared to DENV-2 16681 at the same amount of MOI from Day 1 to 3 (FIG. 6). In contrast, DENV-3 PGMK30 showed a reverse trend and displayed lower percentage of infected cells compared to DENV-3 16562. Results here show that successfully attenuated vaccines, as exemplified by DENV-2 PDK53, have greater uptake and replication rate.

Results above demonstrate that the DENV-2 PDK53 and DENV-3 PGMK30 are polarized in their properties that influence plaque morphologies. While both attenuated strains were selected for their formation of smaller plaques compared to their parental strains, the factors leading to this outcome are different between the two.

Accordingly, this study has demonstrated that successfully attenuated vaccines, as exemplified by DENV-2 PDK53 in this study, form smaller plaques due to induction of strong innate immune responses, which is triggered by fast viral uptake and spread of infection. In contrast, DENV-3 PGMK30 form smaller plaques due to its slower uptake and growth in host cells, which inadvertently causes lower up-regulation of the innate immune response.

Based on the results presented in the foregoing Examples, the present invention provides a new strategy to prepare a LAV, which expedites the production process and ensures the generation of effectively attenuated viruses fit for vaccine use.

Full text: Click here
Patent 2024
Antibodies, Anti-Idiotypic Antigens, Viral Antiviral Agents Canis familiaris Cells Common Cold Cowpox virus Dengue Fever Dental Plaque DNA, Complementary DNA Replication Flow Cytometry GAPDH protein, human Genes Homo sapiens Immunity, Innate Infection Interferon-alpha Monoclonal Antibodies Mus Oligonucleotide Primers paraform Parent Pellets, Drug Pronase Proteins Real-Time Polymerase Chain Reaction Response, Immune RNA, Viral Saponin Senile Plaques Strains Vaccines Virus Virus Diseases Virus Replication

Example 8

An adhesive layer (product name: OCA #8146 from 3M company) was interposed between the prepared film and a PET substrate to obtain a multilayer film. It was folded to have a radius of curvature of 3 mm, which was left at a low temperature of −20° C. for 72 hours, and then unfolded. The extent of wrinkles was visually observed. In such event, if no wrinkles were visually observed, it was evaluated as o. If wrinkles were visually observed slightly, it was evaluated as Δ. If wrinkles were visually observed readily, it was evaluated as x.

TABLE 1
Ex. 1aEx. 2aEx. 3aEx. 4aC. Ex. 1aC. Ex. 2aC. Ex. 3a
CompositionDiamineTFMBTFMBTFMBTFMBTFMBTFMBTFMB
100100100100100100100
Dianhydride6FDA 36FDA 36FDA 106FDA 156FDA 246FDA 06FDA 0
DicarbonylTPC 75TPC 75TPC 75TPC 75TPC 29TPC 75TPC 75
compoundIPC 22IPC 22IPC 15IPC 10BPDC 47IPC 25IPC 25
Imide:amide3:973:9710:9015:8524:760:1000:100
Type of metal saltLiClLi2CO3Li2CO3Li2CO3LiBrLiBr
Content of metal salt (based on10.50.50.5011
100 parts by weight of polymer
solids content)
Tensile strength (TS1a)kgf/mm232.131.630.427.726.329.221.3
Tensile strength at highkgf/mm226.425.924.62318.721.617.1
temperatures (TS2a)
TSR%82.2481.9680.9283.0371.1073.9780.28
Elongation at break%23.722.721.4218.817.317.618.3
(EL1a)
Elongation at break at%20.718.218.915.114.714.414.3
high temperatures
(EL2a)
ELR%87.3480.1888.2480.3284.9781.8278.14
Modulus (MO1a)GPa7.437.256.86.55.867.47.6
Modulus at highGPa5.85.85.45.14.25.35
temperatures (MO2a)
MOR%78.0680.0079.4178.4671.6771.6265.79
Film thicknessμm50505050505050
Light transmittance%88.888.989.589.688.988.587.9
Haze%0.50.50.40.40.50.82.4
YI2.82.52.52.52.93.66.12
Flexural resistance (1 R, 20K)passpasspasspassfailfailpass
ProcessDrying step125/15 125/15 115/15 115/15 150/20 150/20 115/15 
(temp./min.)
First thermal125/1 125/1 115/1 115/1 150/1 150/1 115/1 
treatment step
(temp./min.)
Second thermal225/10 225/10 225/10 225/10 225/10 225/10 225/10 
treatment step
(temp./min.)

As can be seen from Table 1 above, the polyamide-imide films of Examples 1a to 4a had an MOR value of 75% or more. Thus, they maintained the modulus at least at a certain level even under the harsh conditions of high temperatures.

Since the display device is an electronic device, it generates heat during its use and it is to be used in a hot place as well, it is essential to secure mechanical properties at least at a certain level at high temperatures. Specifically, when a film is applied to a cover window for a display device, if the MOR value is 75% or more, no problem arises when a display device is fabricated.

In addition, the polyamide-imide films of Examples 1a to 4a were all excellent in the TSR value, ELR value, MO1a value, TS1a value, EL1a value, MO2a value, TS2a value, and EL2a value, in addition to the MOR value. That is, the polymer films of Examples 1a to 4a had high mechanical properties such as tensile strength, elongation at break, and modulus at room temperature and maintained the excellent mechanical properties even after the treatment under the severe conditions of high temperatures for a certain period of time.

Further, the polyamide-imide films of Examples 1a to 4a were all excellent in the evaluation of flexural resistance.

In contrast, since the films of Comparative Examples 1a to 3a had a low MOR value of 72% or less, when the film is applied to cover window for display device, it would have defects in appearance stability. In addition, the films of Comparative Examples 1a and 2a failed in the evaluation of flexural resistance. Thus, they are unsuitable for application to foldable display device or flexible display device.

TABLE 2
Ex. 1bEx. 2bEx. 3bEx. 4bEx. 5bEx. 6bEx. 7bEx. 8bC. Ex. 1bC. Ex. 2b
CompositionDiamineTFMBTFMBTFMBTFMBTFMBTFMBTFMBTFMBTFMBTFMB
100100100100100100100100100100
Dianhydride6FDA6FDA6FDA6FDA6FDA6FDA6FDA6FDA6FDA
33791215242550
BPDA
10
DicarbonylTPC 70TPC 70TPC 65TPC 69TPC 66TPC 75TPC 29TPC 65TPC 75TPC 25
compoundIPC 27IPC 27IPC 28IPC 22IPC 22IPC 10BPDC 47IPC 25IPC 25
Imide:amide3:973:977:939:9112:8815:8524:7635:650:10050:50
Type/content metal saltLiCl/1LiCl/0.5LiBr/1
Tensile strengthkgf/mm228.4532.1329.630.730.127.529.6128.3124.6122.62
(TS1b)
Tensile strengthkgf/mm227.7828.2430.128.62826.127.4122.9523.222.71
at low
temperatures
(TS2b)
dTS%2.3612.111.696.846.985.097.4318.935.730.40
Elongation at%19.8923.6719.223.12319.427.827.81178.9
break (EL1b)
Elongation at%23.0617.6821.51919.517.121.220.616.211.71
break at low
temperatures
(EL2b)
dEL%115.9425.3111.9817.7515.2211.8623.7425.934.7131.57
Modulus (MO1b)GPa7.427.436.025.925.546.156.446.657.454.83
Modulus at lowGPa7.577.646.216.035.716.326.556.767.464.87
temperatures
(MO2b)
dMO%2.022.833.161.863.072.761.7111.650.130.83
LMO1GPa1.4761.7591.1561.3681.2741.1931.7901.8491.2670.430
LMO2GPa1.7461.3511.3351.1461.1131.0811.3891.3931.2090.570
Thicknessμm50505050505050505050
Transmittance%89898989.189.3898988.588.490.8
Haze%0.470.480.660.520.670.560.460.542.410.41
YI2.622.653.42.963.122.442.872.74.59141
Folding evaluationΔΔxx
at low temperatures
(3 R, −20° C., 72 hours)
ProcessDrying125/15 125/15 125/15 125/15 115/15 115/15 115/15 115/15 150/20 115/15 
(temp/min.)First thermal125/1 125/1 125/1 125/1 115/1 115/1 115/1 115/1 150/1 150/1 
treatment
Second thermal225/10 225/10 225/10 225/10 225/10 225/10 225/10 225/10 225/10 225/10 
treatment

As can be seen from Table 2 above, the polyamide-imide films of Examples 1b to 8b had a dMO value of 1% to 8%. Thus, they maintained the modulus at least at a certain level even under the harsh conditions of low temperatures.

In the case where the polyamide-imide film is applied to a cover window for a display device and to a display device, it may be used in an extremely cold environment. Thus, it is essential to secure mechanical properties at least at a certain level even in such an extremely cold environment. Specifically, when the polyamide-imide film is applied to a cover window for a display device and to a display device, if the dMO value is within 1% to 8%, no problem arises.

In addition, the polyamide-imide films of Examples 1b to 8b were all excellent in the dTS value, dEL value, MO1b value, TS1b value, EL1b value, MO2b value, TS2b value, and EL2b value, in addition to the dMO value. That is, the polymer films of Examples 1b to 8b had high mechanical properties such as tensile strength, elongation at break, and modulus at room temperature and maintained the excellent mechanical properties even after the treatment under the severe conditions of low temperatures for a certain period of time.

Further, the polyamide-imide films of Examples 1b to 8b were all excellent in the folding characteristics at low temperatures.

In contrast, since the films of Comparative Examples 1b and 2b had a low dMO value of 1% or less, when it is applied to a cover window for a display device, it would not be balanced with other layers, resulting in cracks, which is defective in terms of the appearance stability. In addition, the films of Comparative Examples 1b and 2b failed in the evaluation of flexural resistance at low temperatures. Thus, they are unsuitable for application to a foldable display device or a flexible display device.

Full text: Click here
Patent 2024
1-(decanoylthio)-2-decanoyl-3-phosphatidylcholine 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride Amides Cold Temperature Diamines Fever GPA 7 Imides Light LMO1 protein, human Medical Devices Metals Nylons Polymers Radius Sodium Chloride Vision

Example 5

The effects of AST on P. falciparum transmission to Anopheles gambiae mosquitoes was analyzed. AST was added to 15-day cultured P. falciparum-infected blood at concentrations from 0.1 to 3 μM and fed to An. gambiae using a standard membrane feeding assay (SMFA). The number of oocysts in mosquito midguts was counted on day 7 post-infection. AST completely inhibited malaria transmission at 3 μM (FIG. 4A) suggesting that AST effectively blocks transmission. Most of currently available antimalarial drugs and candidate drugs in clinical development require 5 μM or higher for complete inhibition of P. falciparum transmission in SMFAs. These results demonstrate that AST is at least as effective as current drugs. In contrast, no dead mosquitoes were observed, suggesting that AST has no or little insecticidal activity. The EC50 of AST in blocking the transmission of the sexual-stage P. falciparum to mosquitos, defined as the concentration of a compound that inhibits 50% of infection intensity (the number of oocysts per mosquito) compared to that of the compound-free control, was 0.34 μM.

Advantageously, AST significantly inhibits Plasmodium falciparum transmission to Anopheles gambiae mosquitoes compared to that of PT and MSO (FIG. 4B).

Full text: Click here
Patent 2024
Anopheles gambiae Antimalarials Biological Assay BLOOD Cardiac Arrest Culicidae Infection Insecticides Malaria Oocysts Pharmaceutical Preparations Plasmodium falciparum Psychological Inhibition Tissue, Membrane Transmission, Communicable Disease

Example 3

Hardening of Fermented Liquid

Whey permeate that had been previously fermented and concentrated to form FACW was used to evaluate the impact on hardening time of adjusting pH with NH4(OH) and NaOH. The original pH of the FACW was 5.57 and 60% solids. Two pH levels were evaluated, pH 5.82 and 6.32, and they were set by using either NH4(OH) and NaOH to increase the pH of the FACW (4 treatments). For each of the four FACW treatments, 320 g was placed in a mixing bowl and mixing was initiated. Then 80 g of calcium chloride was slowly added over a total mixing time of 20 minutes. Subsequently, the mixture was poured into foil-lined trays and held at ambient temperature (74° F.). The mixtures were evaluated every 10 minutes for hardness. FACW which had pH adjusted to 5.82 and 6.32 reached a hard state by 90 and 60 minutes, respectively. In contrast, FACW that had pH adjusted with NaOH did not reach hardness. Results are presented in FIG. 1.

Full text: Click here
Patent 2024
ARID1A protein, human Calcium chloride Whey

Top products related to «Contrast Media»

Sourced in United States, United Kingdom, Germany, Canada, Japan, Sweden, Austria, Morocco, Switzerland, Australia, Belgium, Italy, Netherlands, China, France, Denmark, Norway, Hungary, Malaysia, Israel, Finland, Spain
MATLAB is a high-performance programming language and numerical computing environment used for scientific and engineering calculations, data analysis, and visualization. It provides a comprehensive set of tools for solving complex mathematical and computational problems.
Sourced in Germany, United States, Japan, Netherlands, United Kingdom
The SOMATOM Definition Flash is a computed tomography (CT) scanner developed by Siemens. It is designed to provide high-quality imaging for a wide range of medical applications. The SOMATOM Definition Flash utilizes advanced technology to capture detailed images of the body, enabling medical professionals to make accurate diagnoses and inform treatment decisions.
Sourced in United States, Austria, Japan, Belgium, United Kingdom, Cameroon, China, Denmark, Canada, Israel, New Caledonia, Germany, Poland, India, France, Ireland, Australia
SAS 9.4 is an integrated software suite for advanced analytics, data management, and business intelligence. It provides a comprehensive platform for data analysis, modeling, and reporting. SAS 9.4 offers a wide range of capabilities, including data manipulation, statistical analysis, predictive modeling, and visual data exploration.
Sourced in Germany, United States, Japan, China, United Kingdom, Jersey, Canada, Ireland
Magnevist is a gadolinium-based contrast agent used in magnetic resonance imaging (MRI) procedures. It is designed to enhance the visualization of internal body structures and improve the diagnostic capabilities of MRI scans.
Sourced in Germany, United States, Japan, Canada, Switzerland, United Kingdom, France, Spain
Gadovist is a contrast agent used in magnetic resonance imaging (MRI) procedures. It contains the active ingredient gadobutrol, which enhances the visibility of certain structures within the body during the MRI scan.
Sourced in Italy, Switzerland, United States, United Kingdom, France, China, Germany
SonoVue is a contrast agent used in ultrasound imaging. It consists of microbubbles that enhance the visibility of blood flow during the ultrasound procedure.
Sourced in France, Germany, United States, United Kingdom, Italy
Dotarem is a gadolinium-based contrast agent used in magnetic resonance imaging (MRI) procedures. It is designed to enhance the visualization of internal body structures during MRI scans.
Sourced in Netherlands, Germany, United States, Switzerland, Japan
The Philips Ingenia is a magnetic resonance imaging (MRI) system designed for diagnostic imaging. It provides high-quality images of the body's internal structures to aid in the detection and diagnosis of various medical conditions.
Sourced in United States, Germany, Japan, United Kingdom, Netherlands
The LightSpeed VCT is a computed tomography (CT) imaging system produced by GE Healthcare. It is designed to provide high-quality, high-speed imaging for a variety of medical applications. The LightSpeed VCT features a multi-slice detector array that enables rapid data acquisition and reconstruction, allowing for efficient patient scanning.
Sourced in Germany, United States
The MAGNETOM Skyra is a magnetic resonance imaging (MRI) system developed by Siemens. It is designed to provide high-quality imaging for various medical applications. The MAGNETOM Skyra utilizes advanced technology to generate detailed images of the body's internal structures without the use of ionizing radiation.

More about "Contrast Media"

Contrast agents, contrast dyes, contrast materials, medical imaging, radiographic contrast, MRI contrast, ultrasound contrast, CT contrast, Gadolinium, Iodine, MATLAB, SOMATOM Definition Flash, SAS 9.4, Magnevist, Gadovist, SonoVue, Dotarem, Ingenia, LightSpeed VCT, MAGNETOM Skyra.
Contrast media are substances used to enhance the visibility of internal structures and fluids during medical imaging procedures, such as X-rays, CT scans, MRI, and ultrasound.
These agents improve the contrast between different tissues, enabling more accurate diagnosis and monitoring of various medical conditions.
PubCompare.ai, the leading AI platform, can optimize your contrast media research by effortlessly locating relevant protocols from literature, pre-prints, and patents, and leveraging AI-driven comparisons to identify the best protocols and products.
This powerful tool can take your contrast media research to new heights and enhance reproducibility, helping you to make informed decisions and advance your studies.
Whether you're using MATLAB, SOMATOM Definition Flash, SAS 9.4, or other imaging technologies, PubCompare.ai can assist you in optimizing your contrast media research and improving patient outcomes.