SHAKE34 was performed on all bonds including hydrogen with the AMBER default tolerance of 10−5 Å for NVT and 10−6 Å for NVE. Non-bonded interactions were calculated directly up to 8 Å. Beyond 8 Å, electrostatic interactions were treated with cubic spline switching and the particle-mesh Ewald approximation35 in explicit solvent, with direct sum tolerances of 10−5 for NVT or 10−6 for NVE. A continuum model correction for energy and pressure was applied to long-range van der Waals interactions. The production timesteps were 2 fs for NVT and 1 fs for NVE.
Solvents
They play a crucial role in various chemical and biological processes, from extraction and purification to reaction optimization.
Solvents can be classified based on their polarity, proton-donating ability, and other physicochemical properties, each offering unique advantages and applications.
Understanding the properties and selection of appropriate solvents is essential for researchers across fields, from organic synthesis to drug formulation.
This MeSH term provides a comprehensive overview of solvents, their characteristics, and their imporant role in scientific research and development.
Most cited protocols related to «Solvents»
Txyz_restraints and Tadp_restraints are restraint terms that introduce a priori knowledge, thus helping to compensate for the insufficient amount of experimental data owing to finite resolution or incompleteness of the data set typically observed in macromolecular crystallography. Note that the restraint terms are not used in certain situations, for example rigid-body coordinate refinement, TLS refinement, occupancy refinement, f′/f′′ refinement or if the data-to-parameter ratio is extremely high. In these cases the total refinement target is reduced to Texp.
The weights wxcscale, wxc and wc (or wxuscale, wxu and wu, correspondingly) are used to balance the relative contributions of experimental and restraints terms. The automatic weight-estimation procedure is implemented as described in Brünger et al. (1989 ▶ ) and Adams et al. (1997 ▶ ) with some variations and is used by default to calculate wxc and wxu. The long-term experience of using a similar scheme in CNS and PHENIX indicates that it is typically robust and provides a good estimate of weights in most cases, especially at medium to high resolution. In cases where this procedure fails to produce optimal weights, a more time-intensive automatic weight-optimization procedure may be used, as originally described by Brünger (1992 ▶ ) and further adopted by Afonine et al. (2011 ▶ ), in which an array of wxcscale or wxuscale values is systematically tested in order to find the value that minimizes Rfree while keeping the overall model geometry deviations from ideality within a predefined range. The weight wc (or wu, correspondingly) is used to scale the restraints contribution, mostly duplicating the function of wxcscale (or wxuscale), while allowing an important unique option of excluding the restraints if necessary (for example, at subatomic resolution). Setting wc = 0 (or wu = 0) reduces the total refinement target to Texp.
In maximum-likelihood (ML)-based refinement (Pannu & Read, 1996 ▶ ; Bricogne & Irwin, 1996 ▶ ; Murshudov et al., 1997 ▶ ; Adams et al., 1997 ▶ ; Pannu et al., 1998 ▶ ) the calculation of the ML target (Lunin & Urzhumtsev, 1984 ▶ ; Read, 1986 ▶ , 1990 ▶ ; Lunin & Skovoroda, 1995 ▶ ) requires an estimation of model error parameters, which depend on the current atomic parameters and bulk-solvent model and scales. Since the atomic parameters and the bulk-solvent model are updated during refinement, the ML error model has to be updated correspondingly, as described in Lunin & Skovoroda (1995 ▶ ), Urzhumtsev et al. (1996 ▶ ) and Afonine et al. (2005a ▶ ).
Most recents protocols related to «Solvents»
Example 21
Complex Em9-i:
A solution of 0.17 g of complex Em9-s in 2000 ml acetonitril are irradiated at 15° C. for 9.5 h with a blacklight-blue-lamp (Osram, L18W/73, λmax=370-380 nm). The solvent is removed in vacuo. The residue is purified by chromatography (cyclohexane/acetic ester). 0.055 g of Em9-i (32%, contaminated with traces of a further complex) are obtained as well as 0.075 g of reisolated Em9-s (44%) are reisolated.
1H-NMR [CD2Cl2, 400 MHz, sample comprises traces of a further complex observable for example at 0.77 (m), 0.83 (d), 1.04 (d), 1.21 (m), 1.92 (sept), 2.34 (sept), 7.20-7.23 (m), 7.31-7.34 (m)]:
δ=0.65 (d, 3H), 0.77 (d, 3H), 0.85 (d, 3H), 0.97 (d, 3H), 0.98 (d, 3H), 1.02 (d, 3H), 1.13 (d, 6H), 1.82 (sept, 1H), 2.33 (sept, 1H), 2.54 (sept, 1H), 2.67 (sept, 1H), 3.04 (s, 3H), 6.09 (dd, 2H), 6.37 (td, 1H), 6.40-6.44 (m, 3H), 6.50 (m, 1H), 6.59 (d, 1H), 6.61 (td, 1H), 6.68 (d, 1H), 6.70 (d, 1H), 6.72 (d, 1H), 6.86 (d, 1H), 6.96 (br.s, 1H), 7.14 (me, 2H), 7.20-7.23 (m, 1H), 7.23-7.31 (m, 3H), 7.44-7.50 (m, 3H).
MS (Maldi):
m/e=979 (M+H)+
photoluminescence (in film, 2% in PMMA):
λmax=457, 485 nm, CIE: (0.17; 0.26)
The photoluminescence quantum efficiency of the isomer Em9-i has the 1.14-fold value of the quantum efficiency of the isomer Em9-s.
Example 10
Complex Mixture Em5-i:
A solution of 0.60 g of Em5-s complex mixture in 200 ml of 3-methoxypropionitril is irradiated with a blacklight blue lamp at room temperature for 7 h (Osram, L18W/73, λmax=370-380 nm). The solvent is removed under reduced pressure. The residue is carefully washed with methanol. This gives 0.10 g of Em5-i as a pale yellow powder (17%, again mixture of two cyclometalation isomers).
MS (Maldi):
m/e=1110 (M+H)+
Photoluminescence (in a film, 2% in PMMA):
λmax=456,487 nm, CIE: (0.20; 0.34)
The photoluminescence quantum yield of the isomerized Em5-i complex mixture has 1.50 times the quantum yield of the Em5-s complex mixture.
Example 1
Provided is a preparation method for an A-site high-entropy nanometer metal oxide (Gd0.4Er0.3La0.4Nd0.5Y0.4)(Zr0.7, Sn0.8, V0.5)O7 with high conductivity, the method including the following steps.
-
- (1) Gd(NO3)3, Er(NO3)3, La(NO3)3, Nd(NO3)3, Y(NO3)3, ZrOSO4, SnC14 and NH4VO3 were taken at a molar ratio of 0.4:0.3:0.4:0.5:0.4:0.7:0.8:0.5, added to a mixed solution of deionized water/absolute ethyl alcohol/tetrahydrofuran at a mass ratio of 0.3:3:0.5, and stirred for five minutes to obtain a mixed liquid I. The ratio of the total mass of Gd(NO3)3, Er(NO3)3, La(NO3)3, Nd(NO3)3, Y(NO3)3, ZrOSO4, SnC14 and NH4VO3 to that of the mixed solution of deionized water/absolute ethyl alcohol/tetrahydrofuran (0.3:3:0.5) is 12.6%.
- (2) Para-phenylene diamine, hydrogenated tallowamine, sorbitol and carbamyl ethyl acetate at a mass ratio of 1:0.2:7:0.01 were taken, added to propyl alcohol, and stirred for one hour to obtain a mixed liquid II. The ratio of the total mass of the para-phenylene diamine, the hydrogenated tallowamine, the sorbitol and the carbamyl ethyl acetate to that of the propyl alcohol is 7.5%;
- (3) The mixed liquid I obtained in step (1) was heated to 50° C., and the mixed liquid II obtained in step (2) was dripped at the speed of one drop per second, into the mixed liquid I obtained in step (1) with stirring and ultrasound, and heated to the temperature of 85° C. after the dripping is completed and the temperature was maintained for three hours while stopping stirring, and the temperature was decreased to the room temperature, so as to obtain a mixed liquid III. The mass ratio of the mixed liquid I to the mixed liquid II is 10:4.
- (4) The mixed liquid III was added to an electrolytic cell with using a platinum electrode as an electrode and applying a voltage of 3 V to two ends of the electrode, and reacting for 13 minutes, to obtain a mixed liquid IV.
- (5) The mixed liquid IV obtained in step (4) was heated with stirring, another mixed liquid II was taken and dripped into the mixed liquid IV obtained in step (4) at the speed of one drop per second. The mass ratio of the mixed liquid II to the mixed liquid IV is 1.05:1.25; and after the dripping is completed, the temperature was decreased to the room temperature under stirring, so as to obtain a mixed liquid V.
- (6) A high-speed shearing treatment was performed on the mixed liquid V obtained in step (5) by using a high-speed shear mulser at the speed of 20000 revolutions per minute for one hour, so as to obtain a mixed liquid VI.
- (7) Lyophilization treatment was performed on the mixed liquid VI to obtain a mixture I;
- (8) The mixture I obtained in step (7) and absolute ethyl alcohol were mixed at a mass ratio of 1:2 and uniformly stirred, and were sealed at a temperature of 210° C. for performing solvent thermal treatment for 18 hours. The reaction was cooled to the room temperature, the obtained powder was collected by centrifugation, washed with deionized water and absolute ethyl alcohol eight times respectively, and dried to obtain a powder I.
- (9) The powder I obtained in step (8) and ammonium persulfate was uniformly mixed at a mass ratio of 10:1, and sealed and heated to 165° C. The temperature was maintained for 13 hours. The reaction was cooled to the room temperature, the obtained mixed powder was washed with deionized water ten times, and dried to obtain a powder II.
- (10) The powder II obtained in step (4) was placed into a crucible, heated to a temperature of 1500° C. at a speed of 3° C. per minute. The temperature was maintained for 7 hours. The reaction was cooled to the room temperature, to obtain an A-site high-entropy nanometer metal oxide (Gd0.4Er0.3La0.4Nd0.5Y0.4)(Zr0.7, Sn0.8, V0.5)O7 with high conductivity.
As observed via an electron microscope, the obtained A-site high-entropy nanometer metal oxide with high conductivity is a powder, and has microstructure of a square namometer sheet with a side length of about 4 nm and a thickness of about 1 nm.
The product powder was taken and compressed by using a powder sheeter at a pressure of 550 MPa into a sheet. Conductivity of the sheet is measured by using the four-probe method, and the conductivity of the product is 2.1×108 S/m.
A commercially available ITO (indium tin oxide) powder is taken and compressed by using a powder sheeter at a pressure of 550 MPa into a sheet, and the conductivity of the sheet is measured by using the four-probe method.
As measured, the conductivity of the commercially available ITO (indium tin oxide) is 1.6×106 S/m.
Example 26
Synthesis of 169-A.
A mixture of tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (750 mg, 3.54 mmol), 1-methylpiperidin-4-one (800 mg, 7.08 mmol) and acetic acid (2 drops) in DCE (15 mL) was stirred at 50° C. for 2 h. Then Sodium triacetoxyborohydride (1.50 g, 7.08 mmol) was added into above mixture and stirred at 50° C. for another 2 h. After the reaction was completed according to LCMS, the solvent was diluted with water (10 mL) and then extracted by DCM (10 mL×3). The combined organics washed with brine (10 mL×3), dried over anhydrous Na2SO4 and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜50:1) to give 169-A (750 mg, 69%) as a yellow oil.
Synthesis of 169-B.
A solution of 169-A (400 mg, 1.29 mmol) in DCM (10 mL) was added TFA (5 mL) and stirred at room temperature for 1 h. when LCMS showed the reaction was finished. The solvent was removed in vacuo to give 169-B as a crude product and used to next step directly.
Synthesis of 169-C.
A mixture of 143-C (306 mg, 0.65 mmol) and 169-B (crude product from last step) in acetonitrile (6 mL) was stirred at 50° C. for 30 min. Then Na2CO3 (624 mg, 6.50 mmol) was added into above mixture and stirred at 50° C. for 3 h. After the reaction was completed according to LCMS, the mixture was cooled to room temperature. The Na2CO3 was removed by filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜20:1) to give 169-C (230 mg, 76%) as a yellow solid.
Synthesis of 169.
A mixture of 169-C (230 mg, 0.49 mmol) and Pd/C (230 mg) in MeOH (10 mL) was stirred at room temperature for 30 min under H2 atmosphere. Pd/C was then removed by filtration through the Celite. The filtrate was concentrated and the residue was purified by Pre-TLC (DCM:MeOH=10:1) to give 169 (150 mg, 70%) as a white solid.
Compounds 152, 182, 199, 201, 202, 203, 235, 236 and 256 were synthesized in a similar manner using the appropriately substituted aldehyde or ketone variant of 169.
Compound 152.
50 mg, 36%, a light yellow solid.
Compound 182.
70 mg, 38%, a red solid.
Compound 199.
50 mg, 54%, a light yellow solid.
Compound 201.
30 mg, 42%, as a yellow solid.
Compound 202.
30 mg, 42%, a yellow solid.
Compound 203.
30 mg, 18%, a yellow solid.
Compound 235.
170 mg, 87%, a white solid.
Compound 236.
70 mg, 50%, a white solid.
Compound 256.
20 mg, 8%, a light yellow solid.
Compounds 210, 211, 215, 222, 223, 242 and 262 were synthesized in a similar manner using the appropriately substituted amine variant of 169.
Compound 210.
160 mg, 96%, a tan solid.
Compound 211.
70 mg, 40%, a white solid
Compound 215.
70 mg, 75%, a white solid.
Compound 222.
30 mg, 42%, a yellow solid.
Compound 223.
35 mg, 31%, a white solid.
Compound 242.
50 mg, 34%, a white solid.
Compound 262.
38 mg, 43%, a white solid.
Example 2
As discussed herein above, the disclosed methods improve the antiseptic properties of a dental implant without using charged metallic ions via conversion of the nitrogen moieties in titanium nitride surface to a positively charged quaternary ammonium via a Menschutkin reaction.
To prepare the antibacterial quaternized TiN surface, an implant which has been coated with TiN was used. The implant was cleaned to improve yield. The implant was washed with two solvents in sequence, acetone and isopropanol, to remove any dust particulate and other residue. The native oxide layer was removed by sonicating in 1:10 HCl:deionized water for 1 minute. This treatment additionally removes any residue that may not have been removed by the solvents. Acetonitrile was used as the solvent; however, any solvent may be used with preference for polar solvents giving improved reaction times (Stanger K., et al. J Org Chem. 2007 72(25):9663-8; Harfenist M., et al. J Am Chem Soc 1957 79(16):4356-4358). An excess of allyl bromide was added to the solvent and continuously stirred. The sample was then submerged in the solution, and full reaction of the surface occurred within about 60 minutes, as confirmed by contact angle measurement. A reference was also measured by submerging in solvent for the duration with no reactant to ensure any changes in surface properties was due to the quaternization.
Without wishing to be bound by a particular theory, the increased hydrophobicity of the treated surfaces can be due to the presence of the allyl groups on the surface which will impart some hydrophobicity. The contact angle measurements provide information on whether or not a reaction has occurred and whether it has saturated.
The biocidal activity was tested using live bacteria cultures from a patient's mouth, which provides the full flora to act against rather than targeting an individual strain of bacteria. The bacteria was incubated on the sample surface using several bacteria film thicknesses. The thickness is defined by keeping the same interaction surface area while varying the volume of bacteria solution added. Across two separate patients and several separate growths, within 4 hours 40-50% reduction in bacteria unit counts were observed for quaternized TiN as compared to traditional Titanium implants, outperforming traditional TiN coatings.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed invention belongs. Publications cited herein and the materials for which they are cited are specifically incorporated by reference.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the scope or spirit of the disclosure. Other aspects of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.
Top products related to «Solvents»
More about "Solvents"
These liquids are commonly used to dissolve, disperse, or extract a wide range of substances, making them indispensable tools for researchers and scientists across various fields.
Solvents can be classified based on their polarity, proton-donating ability, and other physicochemical properties, each offering unique advantages and applications.
For instance, polar solvents like DMSO, methanol, and acetonitrile are often used for their ability to solubilize polar and ionic compounds, while non-polar solvents like chloroform and ethanol excel in dissolving lipophilic substances.
The selection of the appropriate solvent is essential for optimizing experimental procedures and achieving desired outcomes.
Factors such as solvent compatibility, reaction kinetics, and product purification must be carefully considered.
Techniques like HPLC, GC, and liquid-liquid extraction often rely on the strategic use of solvents like formic acid, FBS, and Milli-Q water.
Beyond their application in chemical and biological research, solvents also play a crucial role in various industrial processes, such as the production of pharmaceuticals, cosmetics, and cleaning agents.
The understanding of solvent properties and their interactions with other substances is, therefore, a fundamental aspect of scientific and technological advancements.
To streamline the solvent selection process and enhance research productivity, AI-powered platforms like PubCompare.ai offer valuable insights.
These tools leverage advanced algorithms to compare solvents and protocols, helping researchers identify the optimal conditions for their projects, ultimately boosting efficiency and productivity.
Whether you're working on organic synthesis, drug formulation, or any other scientific endeavor, mastering the nuances of solvents and their applications can be a game-changer.
Explore the versatile world of solvents and unlock new possibilities in your research with the power of PubCompare.ai.