The largest database of trusted experimental protocols

Alkalies

Alkalies are a class of chemical compounds that have a pH greater than 7, indicating they are bases that can accept protons.
They are widely used in various industries, including the production of soaps, detergents, and glass.
PubCompare.ai, an AI-driven platform, can streamline your alkalies research by enhancing reproducibility and accuracy.
The platform allows you to easily locate the best protocols from literature, pre-prints, and patents using AI-powered comparisons, helping you discover the optimal products and procedures to elevate your alkalies research effortlessly.
Experience the future of research optimization today with PubCompare.ai.

Most cited protocols related to «Alkalies»

In this work, we have developed a set of monovalent ion parameters across the series of alkali cations and halide anions that are directly applicable to simulations in explicit solvent (TIP3P, TIP4PEW, or SPC/E) with Ewald treatments of the electrostatics. Alkali metal ions and halide ions investigated include Li+, Na+, K+, Rb+, Cs+, F, Cl, Br, and I. A significant challenge was choosing the appropriate target values to guide the parametrization.
Publication 2008
Alkalies Anions Cations Electrostatics Ions Metals, Alkali Solvents
Escherichia coli strain DH5α was used to amplify plasmids, and E.coli transformations were performed using the high efficiency method of Inoue et al. (13 (link)). YPAD and synthetic complete medium (H-) were used as described previously (14 (link)). Yeast strain JD932 (MATa ade2-1 trp1-1 ura3-1 leu2-3,112 his3-11,15 can1-100) (15 (link)) was used for in vivo measurement of programmed −1 ribosomal frameshifting. Yeast cells were transformed using the alkali cation method (16 (link)). Dual luciferase plasmids pJD375 (C1, no frameshift signal) and pJD376 (F1, L-A virus gag-pol frameshift signal) have been described previously (7 (link)). Putative frameshift signals from S.cerevisiae genes YOR026W/BUB3 (F2, plasmid pJD519) and YPL128C/TBF1 (F3, plasmid pJD478) were constructed as follows: (i) oligonucleotides from Integrated DNA Technology (Coralville, IA) were annealed and gel purified, and (ii) annealing the oligonucleotides 5′-TCGACAAAAAATCATCTTTCAGGGTGGATTGGAACGGCCCCAGTGATCCTGAGAACCCACAAAACTGGCCCG-3′ to 5′-GATCCGGGCCAGTTTTGTGGGTTCTCAGGATCACTGGGGCCGTTCCAATCCACCCTGAAAGATGATTTTTTG-3′ (F2), and 5′-CGACAAATTTATCTCAAGCATCCTTCATCAGCTGCATCTGCTACTGAAGAGGG-3′ to 5′-GATCCTCTTCTGTAGCAGATGCAGCTGAAGAAGGATGCTGAGATAAATTTG-3′ (F3) left overhanging single-stranded DNA complementary to SalI and BamHI restriction sites. The annealed oligonucleotides were ligated into p2mci (6 (link)). The frameshift signal was sub-cloned as a SalI–EcoRI fragment into similarly digested pJD375. The open reading frame (ORF) 1a-1b frameshift signal from the SARS-associated Coronavirus (SARS-CoV) was cloned; sense 5′-GATCCTTTTTAAACGGGTTTGCGGTGTAAGTGCAGCCCGTCTTACACCGTGCGGCACAGGCACTAGTACTGATGTCGTCTACAGGGCTTTTGAGCT-3′ and antisense 5′-CAAAAGCCCTGTAGACGACATCAGTACTAGTGCCTGTGCCGCACGGTGTAAGACGGGCTGCACTTACACCGCAAACCCGTTTAAAAAG-3′ oligonucleotides were annealed, gel purified and cloned into BamHI and SacI restricted p2mc (6 (link)). This was further sub-cloned into a pJD375-based plasmid where the reading frame was corrected using site-directed mutagenesis to add a cytosine downstream of the BamHI restriction site (F4). A zero-frame control (C2) plasmid was made by inserting two cytosine residues upstream of the BamHI restriction site and cells were grown in the absence or presence of 20 μg/ml of anisomycin (Sigma–Aldrich, St. Louis, MO). The annealed oligonucleotides were ligated into p2mci (6 (link)). The SARS-CoV frameshift signal (F4) was sub-cloned as a SalI–EcoRI fragment into similarly restricted pJD375. In vivo DLAs for programmed −1 ribosomal frameshifting were performed in yeast strain JD1158 as described previously (7 (link)). Luminescence readings were obtained using a Turner Designs TD20/20 luminometer (Sunnyvale, CA). Reactions were carried out using the Dual-Luciferase® Reporter Assay System from Promega Corporation (Madison, WI).
Publication 2004
Alkalies Anisomycin Antisense Oligonucleotides Biological Assay Cells Cytosine Deoxyribonuclease EcoRI DNA, Single-Stranded Escherichia coli Frameshift Mutation Genes Luciferases Luminescence Mutagenesis, Site-Directed Oligonucleotides Plasmids Promega Reading Frames Saccharomyces cerevisiae Severe acute respiratory syndrome-related coronavirus Strains tyrosinase-related protein-1 Virus
Protein-free cell wall sample (20 mg) was placed into a screw-cap centrifuge tube containing 0.5 ml of 25% acetyl bromide (v/v in glacial acetic acid) and incubated at 70°C for 30 min. After complete digestion, the sample was quickly cooled in an ice bath, and then mixed with 0.9 ml of 2 M NaOH, 0.1 ml of 5 M hydroxylamine-HCl, and a volume of glacial acetic acid sufficient for complete solubilization of the lignin extract (4 ml for soybean tissues or 6 ml for sugarcane bagasse). After centrifugation (1,400×g, 5 min), the absorbance of the supernatant was measured at 280 nm [21] (link). A standard curve was generated with alkali lignin (Aldrich 37, 096-7) and the absorptivity (ε) value obtained was 22.9 g−1 L cm−1. The results were expressed as mg lignin g−1 cell wall.
Full text: Click here
Publication 2014
Acetic Acid acetyl bromide Alkalies bagasse Bath Cell Wall Centrifugation Digestion Gastrin-Secreting Cells Hydroxylamine Lignin Proteins Saccharum Soybeans Tissues

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2009
3-(triethoxysilyl)propylamine Alexa 350 alexa 568 alexa fluor 488 Alkalies Antibodies Antibodies, Anti-Idiotypic Avidin Biological Assay Biotin Buffers Cells Cloning Vectors Ethanol Glutaral Goat Immunoglobulins isolation Mice, House Microscopy Molecular Probes Monoclonal Antibodies neutravidin Nucleotides Pulses Telomere
The presented Duplex-PCR is performed as follows: After Co-transformation of the Pme I-digested shuttle vector with the adenoviral backbone plasmid to E. coli (BJ 5183) and plating on agar (selection on kanamycin), half of the overnight grown colonies are picked and used directly as template for the colony-PCR. The other half of the colony is used for inoculation with LB-kanamycin and then incubation at 37°C. Only the positive, recombinant clones which have been detected by PCR are grown overnight, a minipreparation of DNA is then performed the next morning.
The PCR is run using two different primer sets. The primers KanaFor (5' CAA GAT GGA TTG CAC GCA GG 3') and KanaRev (5'AAG GCG ATA GAA GGC GAT GC 3') hybridize to the Kanamycin resistence gene and AdFor (5'GGC TGC TCT GCT CGG AAG AC 3') and AdRev (5'GGC ATA CGC GCT ACC CGT AG 3') detect the adenoviral backbone.
The optimised concentrations of the components for the Duplex-PCR were as follows: 2, 5 mM MgCl2, 100 mM dNTPs and 0,2 Units Taq polymerase. The bacteria are denatured at 95°C for 10 minutes. The PCR-products are amplified by 40 cycles of annealing at 58°C (30 sec), extension at 72°C (30 sec) and denaturation at 94°C (30 sec). In our experience, this procedure produced the best results without generating false positive clones (Figure 1).
PCR products are analyzed by agarose gel electrophoresis, half of the reaction volume (25 μl) is size fractionated with 80 V for 1 h in 1% agarose in the presence of ethidium bromide and the resulting bands visualized with ultraviolet illumination.
The DNA obtained by small scale alkali lysis from the recombinants is then extracted twice with a phenol-chloroform protocol, precipitated and carefully resuspended in 20 μl RNAse-free water. The construct is linearized with PacI and directly transfected into 911 cells, which are monitored for cytopathic effects, i.e. production of recombinant adenoviruses. The cytopathic effect is usually seen within 5 to 10 days. The expression of the transgene is confirmed by Western blot analysis. The practicability of our procedure was verified with three different transgenes: Cytosin Deaminase (AdCD), p53 (Adp53) and Granulocyte Macrophage Colony Stimulating Factor (AdGM-CSF).
Full text: Click here
Publication 2005
Adenoviruses Agar Alkalies Bacteria Cells Chloroform Clone Cells Cytopathogenic Effect, Viral DNA, A-Form Electrophoresis, Agar Gel Endoribonucleases Escherichia coli Ethidium Bromide Genes Granulocyte-Macrophage Colony-Stimulating Factor Kanamycin Magnesium Chloride Oligonucleotide Primers Phenol Plasmids Sepharose Shuttle Vectors Taq Polymerase Transgenes Ultraviolet Rays Vaccination Vertebral Column Vision Western Blot

Most recents protocols related to «Alkalies»

Example 1

<Step (A): Synthesis of porous particle having glycidyl group>

27.8 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 11.3 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were dissolved in 58.7 g of diethyl succinate as a diluent, and nitrogen gas was bubbled for 30 minutes to provide an oil phase.

Next, separately from the oil phase, 10.0 g of PVA-224 (manufactured by Kuraray Co., Ltd., polyvinyl alcohol having a degree of saponification of 87.0% to 89.0%) as a dispersion stabilizer and 10.0 g of sodium chloride as a salting-out agent were dissolved in 480 g of ion exchanged water to provide an aqueous phase.

The aqueous phase and the oil phase were placed in a separable flask and dispersed at a rotation speed of 430 rpm for 20 minutes using a stirring rod equipped with a half-moon stirring blade, then the inside of the reactor was purged with nitrogen, and the reaction was carried out at 60° C. for 16 hours.

After that, the resulting polymer was transferred onto a glass filter and thoroughly washed with hot water at about 50 to 80° C., denatured alcohol, and water in the order presented to obtain 100.4 g of a porous particle (carrier al).

The amount of glycidyl methacrylate used was 79.8 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 20.2 mol % based on the total amount of the monomers.

<Step (B): Introduction reaction of alkylene group>

98 g of the carrier α1 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether. After cleaning, the carrier α1 was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g (920 mol % based on glycidyl methacrylate) of 1,4-butanediol were placed in the separable flask, and stirring and dispersion were carried out.

After that, 1.5 ml of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours.

The mixture was cooled, then the porous particle (carrier β1) bonded to a diol compound including an alkylene group in the structure thereof was collected by filtration and then washed with 1 L of ion exchanged water to obtain 152 g of a carrier β1.

The progress of the reaction was confirmed by the following procedure.

A part of the dry porous particle into which an alkylene group had been introduced was mixed with potassium bromide, and the resulting mixture was pelletized by applying a pressure and then measured using FT-IR (trade name: Nicolet (registered trademark) iS10, manufactured by Thermo Fisher Scientific Inc.) to check the height of an absorbance peak at 908 cm−1 due to the glycidyl group in the infrared absorption spectrum.

As a result, no absorbance peak at 908 cm−1 was observed by FT-IR.

<Step (C): Introduction Reaction of Glycidyl Group>

150 g of the carrier β1 was weighed onto a glass filter and thoroughly cleaned with dimethylsulfoxide.

After cleaning, the carrier β1 was placed in a separable flask, 262.5 g of dimethyl sulfoxide and 150 g of epichlorohydrin were added, the resulting mixture was stirred at room temperature, 37.5 ml of a 30% sodium hydroxide aqueous solution (manufactured by KANTO CHEMICAL CO., INC.) was further added, and the resulting mixture was heated to 30° C. and stirred for 6 hours.

After completion of the reaction, the obtained product was transferred onto a glass filter and thoroughly washed with water, acetone, and water in the order presented to obtain 172 g of a porous particle into which a glycidyl group had been introduced (carrier γ1).

The introduction density of the glycidyl group in the obtained carrier γ1 was measured by the following procedure.

5.0 g of the carrier γ1 was sampled, and the dry mass thereof was measured and as a result, found to be 1.47 g. Next, the same amount of the carrier γ1 was weighed into a separable flask and dispersed in 40 g of water, 16 mL of diethylamine was added while stirring at room temperature, and the resulting mixture was heated to 50° C. and stirred for 4 hours. After completion of the reaction, the reaction product was transferred onto a glass filter and thoroughly washed with water to obtain a porous particle A into which diethylamine had been introduced.

The obtained porous particle A was transferred into a beaker and dispersed in 150 mL of a 0.5 mol/L potassium chloride aqueous solution, and titration was carried out using 0.1 mol/L hydrochloric acid with the point at which the pH reached 4.0 as the neutralization point.

From this, the amount of diethylamine introduced into the porous particle A into which diethylamine had been introduced was calculated, and the density of the glycidyl group of the carrier γ1 was calculated from the following expression.

As a result, the density of the glycidyl group was 880 μmol/g.
Density(μmol/g) of glycidyl group={0.1×volume(μL) of hydrochloric acid at neutralization point/dry mass(g) of porous particle into which glycidyl group has been introduced}<Step (D): Introduction Reaction of Polyol>

150 g of the carrier γ1, 600 mL of water, and 1000 g (13000 mol % based on glycidyl group) of D-sorbitol (log P=−2.20, manufactured by KANTO CHEMICAL CO., INC.) were placed in a 3 L separable flask and stirred to form a dispersion.

After that, 10 g of potassium hydroxide was added, the temperature was raised to 60° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 15 hours.

The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 152 g of a porous particle into which polyol had been introduced (carrier 61).

The obtained carrier 61 was classified into 16 to 37 μm using a sieve to obtain 140.5 g of a packing material 1.

<Evaluation of Alkali Resistance>

The alkali resistance was evaluated by calculating the amount of a carboxy group produced by hydrolysis of sodium hydroxide according to the following procedure.

First, 4 g of the packing material was dispersed in 150 mL of a 0.5 mol/L potassium chloride aqueous solution, and titration was carried out using 0.1 mol/L sodium hydroxide aqueous solution with the point at which the pH reached 7.0 as the neutralization point. From this, the amount of a carboxy group before hydrolysis included in the packing material was calculated from the following expression.
Amount(μmol/mL) of carboxy group=0.1×volume(μL) of sodium hydroxide aqueous solution at the time of neutralization/apparent volume (mL) of packing material

Here, the apparent volume of the packing material is the volume of the packing material phase measured after preparing a slurry liquid by dispersing 4 g of the packing material in water, transferring the slurry liquid to a graduated cylinder, and then allowing the same to stand for a sufficient time.

Subsequently, 4 g of the packing material was weighed into a separable flask, 20 mL of a 5 mol/L sodium hydroxide aqueous solution was added, and the resulting mixture was treated at 50° C. for 20 hours while stirring at 200 rpm. The mixture was cooled, then the packing material was collected by filtration, then washed with a 0.1 mol/L HCl aqueous solution and water in the order presented, and the amount of a carboxy group contained in the obtained packing material was calculated by the same method as above. From the difference between the amount of a carboxy group before and that after the reaction with the 5 mol/L sodium hydroxide aqueous solution, the amount of a carboxy group produced by the reaction with the 5 mol/L sodium hydroxide aqueous solution was calculated. As a result, the amount of a carboxy group produced was 21 μmol/mL.

If the amount of a carboxy group produced is 40 μmol/mL or less, the alkali resistance is considered to be high.

<Evaluation of Non-Specific Adsorption>

The obtained packing material was packed into a stainless steel column (manufactured by Sugiyama Shoji Co., Ltd.) having an inner diameter of 8 mm and a length of 300 mm by a balanced slurry method. Using the obtained column, a non-specific adsorption test was carried out by the method shown below.

The column packed with the packing material was connected to a Shimadzu Corporation HPLC system (liquid feed pump (trade name: LC-10AT, manufactured by Shimadzu Corporation), autosampler (trade name: SIL-10AF, manufactured by Shimadzu Corporation), and photodiode array detector (trade name: SPD-M10A, manufactured by Shimadzu Corporation)), and a 50 mmol/L sodium phosphate buffer aqueous solution as a mobile phase was passed at a flow rate of 0.6 mL/min.

Using the same sodium phosphate aqueous solution as the mobile phase as a solvent, their respective sample solutions of 0.7 mg/mL thyroglobulin (Mw of 6.7×105), 0.6 mg/mL γ-globulin (Mw of 1.6×105), 0.96 mg/mL BSA (Mw of 6.65×104), 0.7 mg/mL ribonuclease (Mw of 1.3×104), 0.4 mg/mL aprotinin (Mw of 6.5×103), and 0.02 mg/mL uridine (Mw of 244) (all manufactured by Merck Sigma-Aldrich) are prepared, and 10 μL of each is injected from the autosampler.

The elution time of each observed using the photodiode array detector at a wavelength of 280 nm was compared to confirm that there was no contradiction between the order of elution volume and the order of molecular weight size.

As a result, the elution volumes of the samples from the column packed with the packing material 1 were 8.713 mL, 9.691 mL, 9.743 mL, 10.396 mL, 11.053 mL, and 11.645 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced. When there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof, there was no non-specific adsorption, which is indicated as 0 in Table 1, and when there was a contradiction therebetween, non-specific adsorption was induced, which is thus indicated as X.

The porous particle (carrier al) obtained in the same manner as in Example 1 was subjected to the step D of Example 1.

<Step (D): Introduction Reaction of Polyol>

98 g of carrier al, 600 mL of water, and 1000 g (3050 mol % based on glycidyl group) of D-sorbitol (manufactured by KANTO CHEMICAL CO., INC.) were placed in a 3 L separable flask and stirred to form a dispersion.

After that, 10 g of potassium hydroxide was added, the temperature was raised to 60° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 15 hours.

The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 130 g of a porous particle into which a polyol had been introduced (carrier δ7).

The carrier δ7 was classified into 16 to 37 μm using a sieve to obtain 115 g of a packing material 7.

The alkali resistance of the obtained packing material 7 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced in the packing material 7 was 120.3 μmol/mL, resulting in poor alkali resistance.

Further, the non-specific adsorption of the obtained packing material 7 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.606 mL, 9.769 mL, 9.9567 mL, 10.703 mL, 11.470 mL, and 12.112 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

Example 2

A porous particle (carrier al) was obtained in the same manner as in Example 1, and then a packing material 2 was obtained as follows.

98 g of the carrier α1 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether.

After cleaning, the porous particle was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g (580 mol % based on the glycidyl group) of 1,4-cyclohexanedimethanol were placed in the separable flask, and stirring and dispersion were carried out.

After that, 1.5 ml of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours.

The mixture was cooled, then the resulting porous particle (carrier $2) bonded to a diol compound including an alkylene group in the structure thereof was collected by filtration and then washed with 1 L of ion exchanged water to obtain 165 g of a carrier 32.

The progress of the reaction was confirmed by the following procedure.

A part of the dry porous particle into which an alkylene group had been introduced was mixed with potassium bromide, and the resulting mixture was pelletized by applying a pressure and then measured using FT-IR (trade name: Nicolet (registered trademark) iS10, manufactured by Thermo Fisher Scientific Inc.) to check the height of a absorbance peak at 908 cm−1 due to the glycidyl group in the infrared absorption spectrum.

As a result, no absorbance peak at 908 cm−1 was observed by FT-IR.

<Step (C): Introduction Reaction of Glycidyl Group>

150 g of the carrier $2 was weighed onto a glass filter and thoroughly cleaned with dimethylsulfoxide. After cleaning, the carrier $2 was placed in a separable flask, 262.5 g of dimethyl sulfoxide and 150 g of epichlorohydrin were added, the resulting mixture was stirred at room temperature, 37.5 ml of a 30% sodium hydroxide aqueous solution (manufactured by KANTO CHEMICAL CO., INC.) was further added, and the resulting mixture was heated to 30° C. and stirred for 6 hours. After completion of the reaction, the porous particle was transferred onto a glass filter and thoroughly washed with water, acetone, and water in the order presented to obtain 180 g of a porous particle into which a glycidyl group had been introduced (carrier γ2).

The introduction density of the glycidyl group in the obtained carrier γ2 was measured in the same manner as in Example 1. As a result, the density of the glycidyl group was 900 μmol/g.

<Step (D): Introduction Reaction of Polyol>

150 g of the carrier γ2 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether. After cleaning, the carrier γ2 was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g (5760 mol % based on the glycidyl group) of ethylene glycol (log P=−1.36) were placed in the separable flask, and stirring and dispersion were carried out. After that, 1.5 mL of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours. The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 152 g of a polyol-introduced porous particle (carrier δ2). The carrier δ2 was classified into 16 to 37 μm using a sieve to obtain 140.5 g of a packing material 2.

The alkali resistance of the obtained packing material 2 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 15.2 μmol/mL, and it was confirmed that the packing material 2 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 2 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.814 mL, 9.635 mL, 9.778 mL, 10.37 mL, 10.898 mL, and 12.347 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 8 was obtained in the same manner as in Example 1 except that 150 g of ethylene glycol was used instead of 1,4-butanediol as an alkylene group-introducing agent.

The alkali resistance of the obtained packing material 8 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced in the packing material 8 was 108.4 μmol/mL, resulting in poor alkali resistance.

Further, the non-specific adsorption of the obtained packing material 8 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 9.708 mL, 9.8946 mL, 10.6452 mL, 11.5374 mL, and 12.1656 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

Example 3

A carrier γ2 was obtained in the same manner as in Example 2.

150 g of the obtained carrier γ2 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether.

After cleaning, the porous particle was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g of polyethylene glycol #200 (manufactured by KANTO CHEMICAL CO., INC., average molecular weight of 190 to 210, log P is unclear, but the close compound tetraethylene glycol (Mw of 194) has a log P of −2.02) (1790 mol % based on glycidyl group) were placed in the separable flask, and stirring and dispersion were carried out.

After that, 1.5 mL of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours.

The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 152 g of a porous particle into which a polyol had been introduced (carrier 63).

The carrier δ3 was classified into 16 to 37 μm using a sieve to obtain 140.5 g of a packing material 3.

The alkali resistance of the obtained packing material 3 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 16.1 μmol/mL, and it was confirmed that the packing material 3 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 3 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.517 mL, 9.241 mL, 9.47 mL, 10.034 mL, 10.484 mL, and 11.927 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 9 was obtained in the same manner as in Example 2 except that no glycidyl group was introduced and no polyol was introduced. That is, the carrier $2 obtained in the step (B) of Example 2 was used as the packing material 9.

The non-specific adsorption of the obtained packing material 9 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.590 mL, 10.316 mL, 9.603 mL, 10.484 mL, 13.863 mL, and 12.861 mL, and it was confirmed that there was a contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that non-specific adsorption was induced. Because of this, the alkali resistance was not evaluated.

Example 4

A packing material 4 was obtained in the same manner as in Example 3 except that 33.2 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 5.9 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 90.0 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 10.0 mol % based on the total amount of the monomers.

The alkali resistance of the obtained packing material 4 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 11.5 μmol/mL, and it was confirmed that the packing material 4 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 4 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 7.52 mL, 8.214 mL, 8.451 mL, 9.062 mL, 9.511 mL, and 11.915 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 10 was obtained in the same manner as in Example 1 except that 150 g (480 mol % based on glycidyl methacrylate) of 1,10-decanediol was used instead of 1,4-butanediol as an alkylene group-introducing agent.

The non-specific adsorption of the obtained packing material 10 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 9.991 mL, 10.15 mL, 10.063 mL, 10.691 mL, 12.172 mL, and 11.531 mL, and it was confirmed that there was a contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that non-specific adsorption was induced. Because of this, the alkali resistance was not evaluated.

Example 5

A packing material 5 was obtained in the same manner as in Example 3 except that 21.5 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 17.6 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase.

The amount of glycidyl methacrylate used was 66.2 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 33.8 mol % based on the total amount of the monomers.

The alkali resistance of the obtained packing material 5 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 18.3 μmol/mL, and it was confirmed that the packing material 5 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 5 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.692 mL, 9.434 mL, 9.625 mL, 10.236 mL, 10.759 mL, and 12.457 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 11 was obtained in the same manner as in Example 3 except that 13.7 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 25.4 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 46.4 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 53.6 mol % based on the total amount of the monomers.

The non-specific adsorption of the obtained packing material 11 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.872 mL, 10.131 mL, 9.82 mL, 10.422 mL, 12.782 mL, and 12.553 mL, and it was confirmed that there was a contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that non-specific adsorption was induced. Because of this, the alkali resistance was not evaluated.

It was confirmed that the exclusion limit molecular weights of the packing materials obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were all 1,000,000 or more.

Example 6

A packing material 6 was obtained in the same manner as in Example 3 except that 33.2 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 5.9 g of ethylene glycol dimethacrylate (trade name: NK Ester 1G, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 29.3 g of butyl acetate, 29.3 g of chlorobenzene, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 88.7 mol % based on the total amount of the monomers, and the amount of ethylene glycol dimethacrylate used was 11.3 mol % based on the total amount of the monomers.

The alkali resistance of the obtained packing material 6 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 12.5 μmol/mL, and it was confirmed that the packing material 6 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 6 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 9.613 mL, 10.427 mL, 10.444 mL, 11.066 mL, 11.582 mL, and 12.575 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 12 was obtained in the same manner as in Example 3 except that 37.1 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 2.0 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 96.7 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 3.3 mol % based on the total amount of the monomers.

Packing into a stainless steel column using the obtained packing material 12 was attempted. However, the back pressure was high, making liquid feeding difficult, and this made it impossible to carry out the packing. Because of this, neither of the evaluations was able to be carried out.

Results of the above Examples and Comparative Examples are shown in Table 1.

From the above results, by adopting the configuration of the present invention, a packing material having suppressed non-specific adsorption and high alkali resistance can be obtained.

When no hydrophobic portion is provided or when the alkylene chain is short, the alkali resistance is low as shown in Comparative Examples 1 and 2. In addition, it was found that when the alkylene chain is too long or when no hydrophilic portion is provided, the hydrophobicity is strong, and non-specific adsorption is induced as shown in Comparative Examples 3 and 4. In addition, in Comparative Example 5 having many repeating units derived from a polyfunctional monomer, it was found that non-specific adsorption was induced, and in Comparative Example 6 having fewer repeating units derived from a polyfunctional monomer, it was found that the back pressure applied to the apparatus was high, making column packing difficult.

TABLE 1
Amount of
carboxy
Degree ofgroup
PolyfunctionalcrosslinkingNon-specificproduced
Monomer[mol %]Alkylene groupPolyoladsorption5)[μmol/mL]
Ex. 1GDMA1)20.2Butylene groupSorbitol21
Ex. 2GDMA20.2Cyclohexane-1,4-dimethyleneEG3)15.2
group
Ex. 3GDMA20.2Cyclohexane-1,4-dimethylenePEG2004)16.1
group
Ex. 4GDMA10Cyclohexane-1,4-dimethylenePEG20011.5
group
Ex. 5GDMA33.8Cyclohexane-1,4-dimethylenePEG20018.3
group
Ex. 6EDMA2)11.3Cyclohexane-1,4-dimethylenePEG20012.5
group
Comp.GDMA20.2Sorbitol120.3
Ex. 1
Comp.GDMA20.2Ethylene groupEG108.4
Ex. 2
Comp.GDMA20.2Cyclohexane-1,4-dimethyleneX
Ex. 3group
Comp.GDMA20.2Decanylene groupSorbitolX
Ex. 4
Comp.GDMA53.6Cyclohexane-1,4-dimethylenePEG200X
Ex. 5group
Comp.GDMA3.3Cyclohexane-1,4-dimethylenePEG200Unmeasurable
Ex. 6group
1)GDMA: Glycerin-1,3-dimethacrylate
2)EDMA: Ethylene glycol dimethacrylate
3)EG: Ethylene glycol
4)PEG200: Polyethylene glycol #200
5)◯: No non-specific adsorption, X: Non-specific adsorption

Full text: Click here
Patent 2024
A 300 Acetone Adsorption Alkalies Anabolism Aprotinin boron trifluoride Buffers butyl acetate butylene Butylene Glycols chlorobenzene COMP protocol Cyclohexane cyclohexanedimethanol diethylamine diethyl succinate diglyme Epichlorohydrin Esters Ethanol ethylene dimethacrylate Ethylenes Ethyl Ether Filtration G 130 gamma-Globulin Gel Chromatography Glycerin glycidyl methacrylate Glycol, Ethylene High-Performance Liquid Chromatographies Hydrochloric acid Hydrolysis Nitrogen Polyethylene Glycols Polymers polyol Polyvinyl Alcohol potassium bromide Potassium Chloride potassium hydroxide Pressure Ribonucleases Sodium Hydroxide sodium phosphate Solvents Sorbitol Stainless Steel Sulfoxide, Dimethyl tetraethylene glycol Thyroglobulin Titrimetry Uridine
Not available on PMC !

Example 6

This Example illustrates the involvement of alkalinity of culture medium in mediating Pb′ precipitation.

The pH of culture broth after the recovery of bioprecipitated Pb′ by B. licheniformis strain ECOBIO_2 was found to be 12. However, the pH of the control broth remained at 7. With this background, experiments were conducted to assess the involvement of alkalinity of the culture medium in mediating lead precipitation. Both the chelated and non-chelated forms of Pb(C2H3O2)2) and Pb(NO3)2 were added in culture broth and the initial pH was recorded as 7.4. Further, after the three days of incubation, individual flasks were tested for change in the pH. Results are shown in FIG. 6. To rule out the involvement of pH alone in precipitation, ammonium chloride was added to the broth amended with Pb(NO3)2+EDTA till the pH of the medium reached 12 and the broth was observed for signs of precipitation. No precipitation was observed even after increasing the pH of medium to 12 and 14. Thus the investigation confirmed that pH alone without the bacteria cannot bring forth the precipitation of lead, and that the lead precipitation is due to the bacteria and not due to the pH change.

Full text: Click here
Patent 2024
Alkalies Bacteria Bioremediation Chloride, Ammonium Edetic Acid Strains

Example 4

Testing to evaluate hard water tolerance of exemplary formulations of a high-foaming, higher alkaline chlorinated cleaner (with and without PSO) was conducted to determine the impact of the PSO on hard water tolerance. The evaluated formulations are shown below in Table 8 wherein alkaline cleaning compositions including hydroxide alkalinity sources were combined with the PSO adducts and compared to the formulations without the PSO adducts (Control).

TABLE 8
EXP 9Control
DI water25-5025-50
NaOH 50%10-3010-30
PSO adducts, 40%1-5 0
Lauryl dimethylamine oxide 30% 5-10 5-10
Sodium Hypochlorite, 10%20-4020-40
Additional Functional Ingredients 5-10 5-10
100.00100

The hardness tolerance testing of the EXP 9 formulation and the control were conducted using 1% solutions in water with varying degrees of synthetic hardness created by adding various amounts of dissolved CaCl2) and MgCl2 to a combination of deionized water and NaHCO3. Once the solutions reached 140° F. they were removed from the heat and let stand for 30 minutes. A failure was characterized by the presence of visible flocculent after the 30 minutes, whereas a passing evaluation was characterized by the absence of visible flocculent after the 30 minutes. The results are shown in Table 9.

TABLE 9
Grains per
Water sourcegallonEXP 9Control
Synthetic hard water16PassPass
Synthetic hard water17PassPass
Synthetic hard water18PassFail
Synthetic hard water19PassFail
Synthetic hard water20Fail
Synthetic hard water21Fail
Synthetic hard water22Fail
Synthetic hard water23Fail

As shown in Table 10, the exemplary high-foaming formulation (EXP 9) according to the invention containing the PSO adducts had increased hard water tolerance over cleaning compositions not containing the PSO adducts.

The inventions being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the inventions and all such modifications are intended to be included within the scope of the following claims.

Full text: Click here
Patent 2024
Acids Alkalies Bicarbonate, Sodium Cereals dodecyldimethylamine oxide hydroxide ion Immune Tolerance Magnesium Chloride Sodium Hypochlorite
Soil microbial biomass carbon and nitrogen were determined by the chloroform fumigation-extraction method with 3 replications to each sample (Zhang et al., 2021 (link)). Microbial biomass carbon was calculated using the formula Ec/Kc, where Ec is (Fumigated organic carbon) – (Unfumigated organic carbon), and Kc is 0.38. Microbial biomass nitrogen was calculated using the formula (total nitrogen in fumigated soil- total nitrogen in no fumigated soil)/0.54. Soil microbial respiration intensity (mg CO2/kg·h) was measured using the alkali absorption method, based on the amount of CO2 released from soil, per hour per kilogram (Zhang et al., 2021 (link)).
Full text: Click here
Publication 2023
Alkalies Carbon Cell Respiration Chloroform DNA Replication Fumigation Nitrogen
To determine the fouling behavior
of fabricated ceramic membranes, the same cross-flow filtration test
mechanism was used as previously described in earlier sections. To
prepare three different fouling test solutions, 1 mg mL–1 of BSA as a fouling agent was dissolved in 100 mL PBS. Acidities
of test solutions were set to different pH values by dropwise addition
of 0.25 M HCl and 0.25 M NaOH solutions. To ensure complete fouling
during tests, acidity of the first solution was set to pH 5.5, and
to ensure complete antifouling during tests the basicity of the second
solution was set to pH 9.5. For the determination of fouling behavior
at physiological alkalinity, the third solution was balanced at pH
7.5 with the aforementioned approach. Before the fouling tests, the
solution feed rate was calibrated to 50 mL min–1 on the peristaltic pump. After the solution was initialized into
the system and the first permeate was observed, the permeating solution
was weighed with a high-precision scale for 1 min for each timepoint.
The measurements were recorded every 0, 15, 30, 60, 90, and 120 min
after the first permeate. After the tests had been continued overnight,
samples were collected every 16 and 24 h after the first permeate.
Full text: Click here
Publication 2023
Alkalies Filtration Heartburn Peristalsis physiology Tissue, Membrane

Top products related to «Alkalies»

Sourced in United States, Germany
Alkali lignin is a laboratory product available from Merck Group. It is a chemical compound derived from the pulping of wood or other plant materials. Alkali lignin serves as a source of lignin, a naturally occurring polymer found in the cell walls of plants.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United Kingdom, Ireland
The Sircol Collagen Assay kit is a laboratory product designed to quantify the amount of soluble collagen in biological samples. It provides a colorimetric assay method to measure the concentration of collagen present in the sample.
Sourced in Germany, United States, India, United Kingdom, Italy, China, Spain, France, Australia, Canada, Poland, Switzerland, Singapore, Belgium, Sao Tome and Principe, Ireland, Sweden, Brazil, Israel, Mexico, Macao, Chile, Japan, Hungary, Malaysia, Denmark, Portugal, Indonesia, Netherlands, Czechia, Finland, Austria, Romania, Pakistan, Cameroon, Egypt, Greece, Bulgaria, Norway, Colombia, New Zealand, Lithuania
Sodium hydroxide is a chemical compound with the formula NaOH. It is a white, odorless, crystalline solid that is highly soluble in water and is a strong base. It is commonly used in various laboratory applications as a reagent.
Sourced in United Kingdom, Ireland, France
The Sircol collagen assay is a colorimetric assay used to quantify the amount of soluble collagen in biological samples. It measures the binding of a dye to the [Gly-X-Y] repeating pattern in collagen molecules, allowing for the determination of collagen concentration.
Sourced in United States, Germany, Saudi Arabia
Lignin is a complex organic polymer found in the cell walls of plants. It provides structural support, impermeability, and resistance to microbial degradation. Lignin is a byproduct of the pulp and paper industry and can be used as a renewable material in various applications.
Sourced in United States, Germany, United Kingdom, Japan, Lithuania, France, Italy, China, Spain, Canada, Switzerland, Poland, Australia, Belgium, Denmark, Sweden, Hungary, Austria, Ireland, Netherlands, Brazil, Macao, Israel, Singapore, Egypt, Morocco, Palestine, State of, Slovakia
The High-Capacity cDNA Reverse Transcription Kit is a laboratory tool used to convert RNA into complementary DNA (cDNA) molecules. It provides a reliable and efficient method for performing reverse transcription, a fundamental step in various molecular biology applications.
Sourced in United Kingdom, Ireland, China
The Sircol soluble collagen assay kit is a quantitative colorimetric assay used for the measurement of soluble collagen. It provides a rapid and sensitive method for the determination of soluble collagen levels in a variety of biological samples.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United Kingdom, Ireland
The Sircol Soluble Collagen Assay is a colorimetric assay kit used to quantify the amount of soluble collagen in biological samples. The assay involves the binding of a dye reagent to the hydroxyproline residues present in collagen, allowing for the determination of collagen concentration through spectrophotometric measurements.

More about "Alkalies"