The SPSRQ was designed to improve on the BIS/BAS by including items that focus on sensitivity to specific types of rewards and punishments, whereas the BIS/BAS items focus on generalized sensitivity to punishment and reward. The SPSRQ has 24 SR (e.g., “Does the good prospect of obtaining money motivate you strongly to do some things?”; “Do you often do things to be praised?”) and 24 SP (“Do you often refrain from doing something because you are afraid of it being illegal?”; “Is it difficult for you to telephone someone you do not know?”) “yes” or “no” items designed to assess BAS and BIS sensitivity, respectively. Both subscales have acceptable internal consistency, with α’s = .75–.83 (Torrubia et al., 2001 ). In Phase I of this study, α’s for the SR and SP scales were .76 and .84, respectively. Three-month retest reliabilities are .87 for the SR and .89 for the SP scale (Torrubia et al., 2001 ). Findings also support the construct validity of the SPSRQ in terms of expected correlations with extraversion, impulsivity, sensation seeking, and neuroticism, and associations with proneness to various personality disorders (e.g., Alloy et al., 2006b (link); Caseras, Torrubia & Farre, 2001; Torrubia et al., 2001 ). BAS-T and SR scores correlated r = .40 in our Phase I sample.
Alloys
These materials are engineered to exhibit enhanced properties compared to their individual components, such as increased strength, corrosion resistance, or thermal conductivity.
Alloys are widely used in a variety of industries, including aerospace, automotive, construction, and electronics.
Researchers continually explore new alloy compositions and production methods to optimize performance and cost-effectiveness.
PubCompare.ai revolutionizes this process by leveraging AI to identify the best alloy protocols and products for specific applications, enhacning reproducibility and accuracy in alloy research and development.
Most cited protocols related to «Alloys»
Most recents protocols related to «Alloys»
Example 1
95 g of manganese (purity: 99.95%; purchased from Taewon Scientific Co., Ltd.) and 5 g of high-purity graphite (purity: 99.5%; purchased from Taewon Scientific Co., Ltd.) were placed in a water-cooled copper crucible of an argon plasma arc melting apparatus (manufactured by Labold AG, Germany, Model: vacuum arc melting furnace Model LK6/45), and melted at 2,000 K under an argon atmosphere. The melt was cooled to room temperature at a cooling rate of 104 K/min to obtain an alloy ingot. The alloy ingot was crushed to a particle size of 1 mm or less by hand grinding. Thereafter, the obtained powders were magnetically separated using a Nd-based magnet to remove impurities repeatedly, and the Mn4C magnetic powders were collected. The collected Mn4C magnetic powders were subjected to X-ray diffraction (XRD) analysis (measurement system: D/MAX-2500 V/PO, Rigaku; measurement condition: Cu—Kα ray) and energy-dispersive X-ray spectroscopy (EDS) using FE-SEM (Field Emission Scanning Electron Microscope, MIRA3 LM).
As can be seen in
The M-T curve of the field aligned Mn4C powder obtained in Example 1 was measured under an applied field of 4 T and at a temperature ranging from 50 K to 400 K. Meanwhile, the M-T curve of the randomly oriented Mn4C powder was measured under an applied field of 1 T. The Curie temperature of Mn4C was measured under 10 mT while decreasing temperature from 930 K at a rate of 20 K/min.
According to the Néel theory, the ferrimagnets that contain nonequivalent substructures of magnetic ions may have a number of unusual forms of M-T curves below the Curie temperature, depending on the distribution of magnetic ions between the substructures and on the relative value of the molecular field coefficients. The anomalous M-T curves of Mn4C, as shown in
According to one embodiment of the present disclosure, the saturation magnetization of Mn4C increases linearly with increasing temperature within the range of 50 K to 590 K and remains stable at temperatures below 50 K. The increases in anomalous magnetization of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which are partially oxidized into the manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is about 870 K. The positive temperature coefficient (about 0.0072 Am2/kgK) of magnetization in Mn4C is potentially important in controlling the thermodynamics of magnetization in magnetic materials.
The Curie temperature Te of Mn4C is measured to be about 870 K, as shown in
As shown in
The magnetic properties of Mn4C measured are different from the previous theoretical results. A corner MnI moment of 3.85μB antiparallel to three face-centered MnII moments of 1.23μB in Mn4C was expected at 77 K. The net moment per unit cell was estimated to be 0.16μB. In the above experiment, the net moment in pure Mn4C at 77 K is 0.26μB/unit cell, which is much larger than that expected by Takei et al. It was reported that the total magnetic moment of Mn4C was calculated to be about 1μB, which is almost four times larger than the 0.258μB per unit cell measured at 4.2 K, as shown in
The thermomagnetic behaviors of Mn4C are related to the variation in the lattice parameters of Mn4C with temperature. It is known that the distance of near-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms. Ferromagnetic coupling of Mn atoms is possible only when the Mn—Mn distance is large enough.
Thus, it can be seen that the abnormal increase in magnetization of Mn4C with increasing temperature occurs due to the variation in the lattice parameters of Mn4C with temperature.
The powder produced in Example 1 was annealed in vacuum for 1 hour at each of 700 K and 923 K, and then subjected to X-ray spectroscopy, and the results thereof are shown in
The magnetization reduction of Mn4C at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by the XRD patterns of the powders after annealing Mn4C at elevated temperatures.
These results prove that the metastable Mn4C decomposes into stable Mn23C6 at temperatures above 590 K. The presence of Mn4C in the powder annealed at 923 K indicates a limited decomposition rate of Mn4C, from which the Tc of Mn4C can be measured. Both Mn23C6 and Mn are weak paramagnets at ambient temperature and elevated temperatures. Therefore, the magnetic transition of the Mn4C magnetic material at 870 K is ascribed to the Curie point of the ferrimagnetic Mn4C.
The Mn4C shows a constant magnetization of 0.258μB per unit cell below 50 K and a linear increment of magnetization with increasing temperature within the range of 50 K to 590 K, above which Mn23C6 precipitates from Mn4C. The anomalous M-T curves of Mn4C can be considered in terms of the Néel's P-type ferrimagnetism.
Example 3
Example 4
Example 6
A sample alloy composition including a plurality of grains with a predetermined average grain size may be prepared according to the present prophetic example. Pure iron foil, for example, having a thickness of between about 1 μm to about 1 cm, is used as a precursor. The iron foil is heated at a temperature between about 650° C. and about 1600° C. for a period of time between about 0.5 hours and about 10 hours, followed by quenching in a liquid medium. The liquid medium includes cold water, brine, oil, liquid nitrogen, or liquid CO2. A grain structure associated with an average grain size between about 20 nm and about 100 nm is formed. The sample is nitrided using ammonia, at a temperature between about 120° C. and about 500° C., subject to a pressure between about 1 atmosphere and about 100 atmospheres. The nitride sample is annealed by a strained workpiece technique.
Example 2
Suppose there is a qualitative distributed parameter model (represented by Tonti diagrams) of a 3D metallic box 910 made of aluminum alloy with cracks 920, as shown in
Example 4
The reaction inhibitor can be used to render inactive the lithium or lithium-based alloy contained in a primary or secondary battery, in order to recover commercially valuable materials and/or to recycle them. For example, the recycling process comprises shredding batteries by grinding in presence of an aqueous solution containing the organic inhibitor. When using this process lithium oxidizes in aqueous solution to form LiOH. Once the lithium is completely dissolved in this form, the shredded (and non-reactive) materials are rinsed with water to remove traces of LiOH. The lithium can then be recycled from the aqueous solution of LiOH in the form of LiOH·H2O or converted in the form of Li2CO3 or another lithium salt. These compounds can then be reused for the production of electrochemically active materials such as, for example, LiFePO4, Li4Ti5O12, or metallic lithium, or for the production of lithium salts used in the manufacture of liquid, solid or gel electrolytes.
Top products related to «Alloys»
More about "Alloys"
Alloys are versatile and widely-used engineered materials composed of two or more chemical elements, at least one of which is a metal.
These composite metals are designed to exhibit enhanced properties such as increased strength, corrosion resistance, or thermal conductivity compared to their individual components.
Alloys are crucial in a variety of industries including aerospace, automotive, construction, and electronics.
Researchers continually explore new alloy compositions and production methods, such as leveraging advanced analytical tools like the S-4800 and D8 Advance scanning electron microscopes, the FBS and JSM-5910 SEMs, the Vitrobot Mark IV for sample preparation, and the JEM-2100F and JEM-2100 transmission electron microscopes, to optimize alloy performance and cost-effectiveness.
The JSM-7800F and Ultima IV SEMs also play a key role in alloy characterization.
PubCompare.ai revolutionizes this process by using AI to identify the best alloy protocols and products for specific applications, enhancing reproducibility and accuracy in alloy research and development.