Aluminum Chloride
It is a white, crystalline solid that is soluble in water and organic solvents.
Aluminum chloride has a wide range of industrial and laboratory applications, including as a catalyst in organic synthesis, a dehydrating agent, and a component in antiperspirants.
It is also used in water treatment, textile dyeing, and the production of other aluminum compounds.
Researchers studying aluminum chloride can leverage AI-driven platforms like PubCompare.ai to easily locate the most accurate and reproducible experimental protocols from scientific literature, preprints, and patents.
This can help streamline the research process, improve experimental accuracy and efficacy, and identify the best products for your aluminum chloroide studies.
Most cited protocols related to «Aluminum Chloride»
Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
The total flavonoids content was determined using AlCl3 method (Zengin et al., 2014 (link)). Briefly, sample solution (1 mg/mL; 1 mL) was mixed with the same volume of aluminum trichloride (2%) in methanol. Similarly, a blank was prepared by adding sample solution (1 mL) to methanol (1 mL) without AlCl3. The sample and blank absorbances were read at 415 nm after a 10 min incubation at room temperature. The absorbance of the blank was subtracted from that of the sample. Rutin was used as a reference standard and the total flavonoid content was expressed as milligrams of rutin equivalents (mg RE/g extract) (Mocan et al., 2015 (link)).
The total saponins content of the extract was determined by the vanillin-sulfuric acid method (Aktumsek et al., 2013 (link)). Sample solution (1 mg/mL; 0.25 mL) was mixed with vanillin (0.25 mL, 8%) and sulfuric acid (2 mL, 72%). The mixture was incubated for 10 min at 60°C. Then the mixture was cooled for another 15 min, followed by the sample absorbance measurement at 538 nm. The total saponin content was expressed as milligrams of quillaja equivalents (mg QAE/g extract).
The total triterpenoids content of the extracts was determined according to Zhang et al. (2010) (link) method with some modifications. Briefly, sample solution (1 mg/mL; 500 μL) was mixed with the vanillin–glacial acetic acid (5%, w/v, 0.5 mL) and 1 mL of perchloric acid. The mixture was incubated at 60°C for 10 min, cooled in an ice water bath for 15 min and then 5 mL glacial acetic acid was added and mixed well. After 6 min, the absorbance was read at 538 nm. Oleanolic acid was used as a reference standard and the content of total triterpenoids was expressed as oleanolic acid equivalents (mg OAE/g extract) through a calibration curve with oleanolic acid.
HPLC-PDA analyses were performed on a Waters liquid chromatograph equipped with a model 600 solvent pump and a 2996 photodiode array detector, and Empower v.2 Software (Waters Spa, Milford, MA, United States) was used for acquisition of data. A C18 reversed-phase packing column (Prodigy ODS (3), 4.6 × 150 mm, 5 μm; Phemomenex, Torrance, CA, United States) was used for the separation and the column was thermostated at 30 ± 1°C using a Jetstream2 Plus column oven. The injection volume was 20 μL. The mobile phase was directly on-line degassed by using Biotech DEGASi, mod. Compact (LabService, Anzola dell’Emilia, Italy). Gradient elution was performed using the mobile phase water-acetonitrile (93:7, v/v, 3% acetic acid) (Zengin et al., 2016 (link)). The UV/Vis acquisition wavelength was set in the range of 200–500 nm. The quantitative analyses were achieved at maximum wavelength for each compound.
Most recents protocols related to «Aluminum Chloride»
Example 1
In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).
After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.
After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 25° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).
Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.
In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).
Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).
To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles. The produced hydrotalcite particles were subjected to an elemental analysis, resulting in that Mg/Al (molar ratio)=2.1.
In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2003-048712, hydrotalcite particles were synthesized.
In 150 g/L of NaOH solution in an amount of 3 L were dissolved 90 g of metal aluminum to give a solution. After 399 g of MgO were added to the solution, 174 g of Na2CO3 were added thereto and they were reacted with each other for 6 hours with stirring at 95° C. As a result, hydrotalcite particles slurry was synthesized.
To the hydrotalcite particles slurry were added 30 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After the hydrotalcite particles slurry of which particles were surface treated was cooled, filtered and washed to give solid matters, a drying treatment was performed on the solid matters at 100° C. to give solid products of hydrotalcite particles.
Example 2
In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).
After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.
After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).
Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.
In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).
Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).
To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.
Solid products of hydrotalcite particles were produced in a same manner as in Comparative Example 1 except that reaction conditions of 95° C. and 6 hours for synthesis of the hydrotalcite particles slurry in Comparative Example 1 were changed to hydrothermal reaction conditions of 170° C. and 6 hours.
Example 3
In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).
After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.
After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 60° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).
Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.
In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).
Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).
To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.
In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2013-103854, hydrotalcite particles were synthesized.
Into a 5 L container were added 447.3 g of magnesium hydroxide (d50=4.0 μm) and 299.2 g of aluminum hydroxide (d50=8.0 μm), and water was added thereto to achieve a total amount of 3 L. They were stirred for 10 minutes to prepare slurry. The slurry had physical properties of d50=10 μm and d90=75 μm. Then, the slurry was subjected to wet grinding for 18 minutes (residence time) by using Dinomill MULTILAB (wet grinding apparatus) with controlling a slurry temperature during grinding by using a cooling unit so as not to exceed 40° C. As a result, ground slurry had physical properties of d50=1.0 μm, d90=3.5 μm, and slurry viscosity=5000 cP. Then, sodium hydrogen carbonate was added to 2 L of the ground slurry such that an amount of the sodium hydrogen carbonate was ½ mole with respect to 1 mole of the magnesium hydroxide. Water was added thereto to achieve a total amount of 8 L, and they were stirred for 10 minutes to give slurry. Into an autoclave was put 3 L of the slurry, and a hydrothermal reaction was caused at 170° C. for 2 hours. As a result, hydrotalcite particles slurry was synthesized.
To the hydrotalcite particles slum were added 6.8 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After solids were filtered by filtration, the filtrated cake was washed with 9 L of ion exchange water at 35° C. The filtrated cake was further washed with 100 mL of ion exchange water, and a conductance of water used for washing was measured. As a result, the conductance of this water was 50 μS/sm (25° C.). The water-washed cake was dried at 100° C. for 24 hours and was ground to give solid products of hydrotalcite particles.
Example 5
In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).
After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.
After 192 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 1.6 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).
Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.
In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).
Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).
To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.
In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. H06-136179, hydrotalcite particles were synthesized.
To 1 L of water were added 39.17 g of sodium hydroxide and 11.16 g of sodium carbonate with stirring, and they were heated to 40° C. Then, to 500 mL of distilled water were added 61.28 g of magnesium chloride (19.7% as MgO), 37.33 g of aluminum chloride (20.5% as Al2O3), and 2.84 g of ammonium chloride (31.5% as NH3) such that a molar ratio of Mg to Al, Mg/Al, was 2.0 and a molar ratio of NH3 to Al, NH3/Al, was 0.35. As a result, an aqueous solution A was prepared. The aqueous solution A was gradually poured into a reaction system of the sodium hydroxide and the sodium carbonate. The reaction system after pouring had pH of 10.2. Moreover, a reaction of the reaction system was caused at 90° C. for about 20 hours with stirring to give hydrotalcite particles slurry.
To the hydrotalcite particles slurry were added 1.1 g of stearic acid, and a surface treatment was performed on particles with stirring to give a reacted suspension. The reacted suspension was subjected to filtration and water washing, and then the reacted suspension was subjected to drying at 70° C. The dried suspension was ground by a compact sample mill to give solid products of hydrotalcite particles.
Example 1
A mixture of about 2 g of para-cymene and 0.1 g of anhydrous aluminum chloride was heated to 60° C. for 5 hours. At the end of 5 hours, the reaction mixture was quenched with water and the resulting organic layer was analyzed by GC and GCMS. The product showed a mixture of cymene isomers (67.6%), toluene (10.8%) and methyl di-isopropyl benzene isomers (20.8%). Para-cymene has a by of 177.10° C.; meta-cymene has a bp of 175.14° C.; and ortho-cymene has a bp of 178.15° C.
Example 7
First, 120 g of a titanium-aluminum-vanadium chloride mixture was prepared, by mixing liquid titanium chloride (from Sigma Aldrich), aluminum chloride powder (from Strem Chemical) and liquid vanadium chloride (from Acros Organics). The mixture was stirred constantly to maintain a dispersion of the aluminum chloride.
Next, 140 g of sodium metal was heated to 250° C. in an Inconel vessel and stirred by a Cowles blade mixer at speeds ranging from 1000 rpm initially, to 2500 rpm as the reaction progressed. The chloride mixture was pumped into the reactor until 74 g had been added, over approximately 90 minutes. The reaction stopped when the vortex in the sodium could no longer be maintained.
The reactor vessel was then sealed and transferred to a furnace, brought to 825° C. and held at that temperature for approximately one hour before being allowed to cool.
The recovered product was then washed to remove the sodium chloride coating the metal powder, and the powder was dried in a vacuum oven at 100 C for 24 hours.
Analysis of the metal powder using ICPMS showed the product contained under 50 ppm iron and under 150 ppm total transition metals. The results demonstrate that the titanium powder falls within the purity limits as described in UNS No. R56400.
Example 6
120 g of a 55% aluminum, 45% titanium powder (measured by metal content) was first prepared, by adding aluminum chloride powder (from Strem Chemical) to an aluminum-titanium chloride Ziegler Natta catalyst powder (also from Strem Chemical).
Next, 140 g of sodium metal was placed in an Inconel reactor and heated to 250° C. Over approximately 2 hours, 94 g of the titanium-aluminum chloride powder mix was pulse fed into the sodium, which was continuously stirred by a Cowles blade mixer at between 1600 and 2500 rpm. Powder addition continued until the mixer could no longer maintain a vortex in the sodium. At the end of the reaction the sodium temperature had increased to 292° C.
The Inconel reactor was then sealed, transferred to a furnace, and heated to 900° C. for 1 hour. After this step, the unreacted sodium was removed and the metal powder washed to remove its salt coating. Washing continued until the wash water conductivity fell below 2 microsiemens. Finally, the powder was dried in a vacuum over for 24 hours.
The titanium-aluminum metal thus produced was found by ICPMS analysis to contain below 1000 ppm iron and below 1500 ppm total transition metals.
Example 1
A reference electrolyte used for the examples described below was produced according to the method described in patent specification EP 2 954 588 B1 (hereinafter referred to as [V4]). First, lithium chloride (LiCl) was dried under vacuum at 120° C. for three days. Aluminum particles (Al) were dried under vacuum for two days at 450° C. LiCl, aluminum chloride (AlCl3) and Al were mixed together in an AlCl3:LiCl:Al molar ratio of 1:1.06:0.35 in a glass bottle having an opening to allow gas to escape. This blend was thereafter heat-treated in stages to produce a molten salt. After cooling, the salt melt formed was filtered, then cooled to room temperature and finally SO2 was added until the desired molar ratio of SO2 to LiAlCl4 was formed. The reference electrolyte thus formed had the composition LiAlCl4*x SO2, wherein x is dependent on the amount of SO2 supplied.