The ICEfinder online tool allows users to submit a GenBank file containing a nucleotide sequence and its annotation as a query. A FASTA format file of a raw nucleotide sequence is also accepted, which is annotated using our gene annotation tool CDSeasy (12 (link)) and is then used as the input for the following ICE detection. ICEfinder uses the CGView circular genome visualization tool (23 (link)) to display the distribution of the predicted T4SS-type ICEs, IMEs and AICEs in the query bacterial genome. In addition, the ICEfinder has a comparison module (
Ice
It can be found in various forms, such as glaciers, icebergs, and sea ice, and plays a crucial role in the Earth's climate and ecosystems.
Ice is an important subject of study in many scientific fields, including climatology, glaciology, and cryobiology.
Reserchers use advanced techniques, such as AI-driven platforms like PubCompare.ai, to optimize their ice-related studies, locate the best protocols, and improve reproducibility and accuracy.
By leveraging the power of these tools, scientists can discover new insights and advance our understanding of this fascinating natural phenomenon.
Most cited protocols related to «Ice»
The ICEfinder online tool allows users to submit a GenBank file containing a nucleotide sequence and its annotation as a query. A FASTA format file of a raw nucleotide sequence is also accepted, which is annotated using our gene annotation tool CDSeasy (12 (link)) and is then used as the input for the following ICE detection. ICEfinder uses the CGView circular genome visualization tool (23 (link)) to display the distribution of the predicted T4SS-type ICEs, IMEs and AICEs in the query bacterial genome. In addition, the ICEfinder has a comparison module (
Living cells, cultured on petri dishes or multi-well plates. Cells can be incubated with a labeled tracer (for example: 13C or 15N) for downstream flux analysis Cells should be confluent in the wells, with a consistent cell number between samples. The amount of cells will vary depending on cell type used, but we have found using around 1 million cells in each well of a 6-well multiwell plate gives good results for both techniques.
0.9% NaCl at room temperature
High purity (MS grade) methanol at −20 °C
High purity (MS grade) chloroform at −20 °C
Millipore or equivalently pure water on ice
Cell scrapers
Eppendorf tube shaker at 4 °C
Centrifuge at 4 °C
Note: This list does not include generic laboratory equipment, which are assumed to be available.
Once the metabolic processes have been quenched, the next step is to lyse the cells, separating both the polar and non-polar metabolites from the other cellular substances at the same time. While methanol and water will extract the polar metabolites from a sample, non-polar metabolites must be separated with a non-polar solvent. Therefore, we use chloroform [4] (link) with the methanol/water mixture to separate the polar and non-polar metabolites efficiently. Adherent cells quenched with methanol and water are scraped from the multi-well plates and added to cold chloroform to allow for separation of polar and non-polar phases. These extracts are agitated to complete cell lysis and centrifuged to fully separate the layers.
This is a crucial step for experimental consistency; different amounts of cells in different samples will lead to incorrect comparisons of metabolite levels (which can also occur with cell seeding). Therefore, care should be taken to adequately scrape all wells and transfer as much cellular material as possible from the wells to the chloroform.
After these steps, the cells are shaken to completely lyse the membranes allowing for a more efficient extraction of all possible biomolecules. After shaking, there should be a clear separation between the polar and non-polar phase for the metabolites, with a well-defined interphase containing proteins and nucleic acids.
Most recents protocols related to «Ice»
Example 161
To a solution of 2-(piperazin-1-yl)ethanol (0.73 g, 5.6 mmol, 1 eq.) in DMF (10 mL) was added K2CO3 (1.56 g, 11.3 mmol, 2 eq.) followed by 1,2,4-trifluoro-5-nitrobenzene (1 g, 5.6 mmol, 1 eq.) and the mixture was stirred at 0° C. for 1 hour. The mixture was poured into ice-water (100 mL), extracted by EA (3×40 mL), and the organic layers were combined, washed with brine (150 mL), concentrated and purified via column chromatography (10-95% CH3CN—H2O) to afford 2-(4-(2,5-difluoro-4-nitrophenyl)piperazin-1-yl)ethanol (0.65 g, 41%) as a yellow solid.
To a solution of 2-(4-(2,5-difluoro-4-nitrophenyl)piperazin-1-yl)ethanol (0.65 g, 2.3 mmol) in MeOH (50 mL) was added Pd/C (100 mg) and the resulting mixture was stirred at r.t. overnight. The Pd/C was removed by filtration and the filtrate was concentrated to afford 2-(4-(4-amino-2,5-difluorophenyl)piperazin-1-yl)ethanol (0.58 g, 99%).
To a suspension of 2-(4-(4-amino-2,5-difluorophenyl)piperazin-1-yl)ethanol (270 mg, 0.88 mmol, 1 eq.) and N-(3-(2-chloroquinazolin-8-yl)phenyl)acrylamide (225 mg, 0.88 mmol, 1 eq.) in n-BuOH (10 mL) was added TFA (0.5 mL, 4.4 mmol, 5 eq.) and the resulting mixture was stirred at 90° C. overnight. The mixture was concentrated, diluted with DCM (20 mL), washed with Na2CO3 solution (20 mL), dried, concentrated and purified via column chromatography (DCM/MeOH=10/1) to afford N-(3-(2-((2,5-difluoro-4-(4-(2-hydroxyethyl)piperazin-1-yl)phenyl)amino)quinazolin-8-yl)phenyl)acrylamide (120 mg, 26%) as yellow solid. LRMS (M+H+) m/z calculated 531.2, found 531.2. 1H NMR (DMSO-d6, 400 MHz) δ 10.18 (s, 1H), 9.37 (s, 1H), 9.17 (s, 1H), 7.97-7.94 (m, 3H), 7.83-7.74 (m, 2H), 7.50-7.39 (m, 3H), 6.90-6.85 (m, 1H), 6.48-6.41 (m, 1H), 6.23 (dd, 1H), 5.73 (dd, 1H), 4.42 (t, 1H), 3.55-3.50 (m, 2H), 2.94-2.91 (m, 4H), 2.55-2.54 (m, 4H), 2.44 (t, 2H).
Example 19
To a solution of 15 (408 g, 0.77 mol, 1.0 eq.) and methyl iodide (145 mL, 2.32 mol, 3.0 eq.) in THF (4 L) was added sodium hydride (60% dispersion in mineral oil, 62.2 g, 1.55 mol, 2.0 eq.) at 0° C. The resulting mixture was stirred at 0° C. overnight and then poured onto ice-water cooled saturated ammonium chloride (5 L) with vigorous stirring. The mixture was then extracted with EtOAc (3×500 mL) and the organic layers were dried, filtered, concentrated and purified by column chromatography with a gradient of 15-35% EtOAc in petroleum ether to afford product 16 (388 g, 93% yield) as a light yellow oil. 1H NMR (500 MHz, CDCl3) δ 8.09 (s, 1H), 4.95 (d, J=6.6 Hz, 1H), 4.41 (q, J=7.1 Hz, 2H), 3.56 (d, J=9.5 Hz, 1H), 2.98 (s, 3H), 2.27-2.06 (m, 4H), 1.83-1.70 (m, 2H), 1.41 (t, J=7.2 Hz, 3H), 1.29 (ddd, J=8.9, 6.8, 1.6 Hz, 3H), 1.01 (d, J=6.6 Hz, 3H), 0.96 (dt, J=8.0, 2.9 Hz, 15H), 0.92 (d, J=6.6 Hz, 3H), 0.90 (d, J=6.7 Hz, 3H). MS ESI m/z calcd for C25H46N5O4SSi [M+H]+ 540.30, found 540.30.
Example 45
A stirring solution of 5-(p-chlorophenyl)-6-(1-{[p-(trifluoromethyl)phenyl]methyl}-1H-pyrazol-4-yl)-4-pyrimidinylamine (example 4, 150 mg, 0.35 mmol) in THF (1.8 mL) under an inert atmosphere of N2 was treated with sodium hydride (56 mg of a 60% dispersion in oil, 1.40 mmol) and the resulting mixture was stirred for 30 minutes at room temperature. Methanesulfonyl chloride (41 μL, 0.53 mmol) was added via syringe and the resulting mixture was stirred at room temperature for 2 hours. The reaction was carefully poured onto ice/water and the product was extracted with ethyl acetate. The organic layer was washed with 1 N aqueous HCl solution and brine, dried over anhydrous MgSO4, filtered and evaporated. The crude product was purified by silica-gel column chromatography, eluting with hexanes/EtOAc mixture to provide the title compound as a white solid (63 mg, 0.124 mmol, 35%). HPLC/MS (ESI) m/z 508.3 (M++H+). Method 1 retention time=2.70 min.
Example 50
Synthesis of AM393-A.
To a cooled (0° C.) solution of NaH (190 mg, 50% in mineral oil, 4.0 mmol) in DMF (5 mL) was added AM351-A (400 mg, 1.6 mmol) and the mixture was stirred at room temperature for 20 min. The reaction mixture was cooled to 0° C. and methyl iodide was added. The reaction mixture was stirred with slow warming to room temperature for 1 h. The reaction mixture was quenched with ice-cold water (10 mL) and the product was extracted with DCM (20 mL×3). The combined organic layer was washed with brine (20 mL) and dried over anhydrous Na2SO4. The solvent was removed in vacuo and the residue was purified by column chromatography on silica gel (PE:EtOAc=90:10˜85:15) to give AM393-A (360 mg, 85%) as a yellowish gum.
Compound AM393 (120 mg, 99%, a grey solid) was synthesized in a similar procedure used for AM351 from AM351-I)
Example 4
A PTFE bottom reactor was charged with 2 Kg of compound 12a, and 2.1 Kg of concentrated sulfuric acid was added. Then the mixture was heated with stirring for about 4 hours at 45-55° C. (30% aq NaOH scrubber was used to absorb HF generated in the reaction). The mixture was then added dropwise to ice water (5 kg/5 kg). Quench temperature was maintained at 0° C. The organic phase was separated and the aqueous layer was extracted with DCM (2L, 1 V) once. The organic layers were combined together and DCM was removed under vacuum. The crude sample was purified by vacuum distillation. Main fraction of compound 12b was collected at 62-66° C./20 mmHg. 1H NMR (400 MHz, CDCl3): δ=3.89 ppm (s, 6H); 13C NMR (100 MHz, CDCl3): δ=53.95 ppm (—CH3), 105.98 ppm (—CF2—, 1JCF 259.1 Hz), 160.94 ppm (—CO—, 2JCF 30.9 Hz); 19F NMR (188 MHz, CDCl3): δ=−112.05 ppm (s, 2F).
Top products related to «Ice»
More about "Ice"
It plays a crucial role in the planet's climate and ecosystems, and is an important subject of study in fields like climatology, glaciology, and cryobiology.
Researchers use advanced techniques, such as AI-driven platforms like PubCompare.ai, to optimize their ice-related research, locate the best protocols, and improve reproducibility and accuracy.
PubCompare.ai is a leading AI-driven platform that can help scientists discover new insights and advance their understanding of this fascinating natural phenomenon.
By leveraging the power of this tool, researchers can locate the best protocols from literature, pre-prints, and patents using advanced AI comparisons.
This can help improve the reproducibility and accuracy of their ice-related studies, whether they are working with glaciers, icebergs, or sea ice.
Beyond ice research, PubCompare.ai can also be used to optimize studies in other areas, such as those involving SAS version 9.4, TRIzol, Cellulase, BCA protein assay kit, UV-mini 1240 PC, Histodenz, Protease inhibitor cocktail, Pectinase, BCA assay, and PVDF membranes.
By taking advantage of the platform's advanced capabilities, scientists can streamline their workflow, reduce errors, and unlock new discoveries.