The largest database of trusted experimental protocols
> Chemicals & Drugs > Inorganic Chemical > Manganese chloride

Manganese chloride

Manganese chloride is an inorganic compound with the chemical formula MnCl2.
It is a crystalline solid that is soluble in water and commonly used in various industrial and research applications.
Manganese chloride plays a role in many biological processes and is an essential trace element for human health.
Researchers can utilize PubCompare.ai's powerful AI-driven platform to easily locate and compare the best protocols from literature, pre-prints, and patents for optimizing their manganese chloride studies.
This can help identify the most accurate and reproducible methods, enhancing research and unlocking new insights.

Most cited protocols related to «Manganese chloride»

Here, we test the new methods described above on a wide range of real SAD, MAD and SIRAS merged diffraction data sets. For our tests, only the intensities or structure-factor amplitudes, along with the sequence for a protein monomer, the number of substructure atoms expected per monomer and the f′ and f′′ values for the substructure atoms were input. CRANK used AFRO and CRUNCH2 for substructure detection, BP3 for substructure phasing and SOLOMON with MULTICOMB for density modification. Three cycles of Buccaneer iterated with REFMAC were used for automated model building with iterative refinement. The default options or parameters were used in all programs. The defaults set by CRANK depend upon the particular experiment: for SAD data, AFRO uses the multivariate |FA| value calculation and MULTICOMB uses the multivariate SAD function for phase combination in density modification, while Buccaneer uses the SAD function implemented in REFMAC. For SIRAS data, AFRO calculates |FA| from either the anomalous signal or using isomorphous differences by determining which signal is greater. BP3 uses the uncorrelated SIRAS function described previously (Pannu et al., 2003 ▶ ) and SOLOMON uses MLHL phase combination in MULTICOMB, while Buccaneer uses the multivariate SIRAS function in REFMAC. Finally, for MAD data AFRO chooses the wavelength with the greatest anomalous signal and calculates multivariate FA values from it. Similar to SIRAS data, SOLOMON uses MLHL phase combination in MULTICOMB to perform density modification and Buccaneer uses the MLHL likelihood function in REFMAC for model refinement.
In the test cases below, the previous version of CRANK, version 1.3, is tested with the current version, version 1.4. The main differences between the two versions are the development version of AFRO that calculates multivariate |FA| values given SAD data and the use of MULTICOMB for phase combination in density modification, which were both introduced in version 1.4.
In total, we report results from 116 real data sets from several different sources listed in Appendix A. The data sets cover a wide range of resolutions (from 0.94 to 3.29 Å) and anomalous scatterers, including selenium, sulfur, chloride, sulfate, manganese, bromide, calcium and zinc. Of the 116 data sets, 63 are MAD data sets, 46 are SAD data sets and seven are SIRAS data sets.
Full text: Click here
Publication 2011
Amino Acid Sequence Bromides Calcium Chlorides Manganese Methamphetamine Selenium Sulfates, Inorganic Sulfur Zinc

Plant collection and identification. Fresh pods of A. nilotica were collected in June 2008 from Potiskum, Yobe State, Nigeria. The pods were identified by a taxonomist in Department of Biological Sciences, University of Maiduguri, Maiduguri, Nigeria. The pods were air dried for three weeks under the shade and ground into fine powder.
Preparation of aqueous extract. Three hundred and fifty grams (350 g) of the powdered extract sample were exhaustively extracted with distilled water using reflux method. The crude aqueous extract was concentrated in vacuo and a brown colored extract weighing two hundred and sixty three grams (263 g) w/w was obtained. It was thereafter stored in a refrigerator at 4 ˚C until used.4 Fractionation of the aqueous pod extract. The method used for fractionation of A. nilotica pod powder has already been reported.5 (link),6 The crude aqueous pod extract was suspended in cold distilled water and then filtered using Whatman filter paper. The filtrate was thereafter subjected to fractionation using, chloroform, ethyl acetate and n-butanol. The fractionation with the organic solvents of different polarity was done until the organic layers were visibly clear to obtain ethyl acetate (58 g), n-butanol (25 g) soluble fractions and the residue (180 g). The product did not dissolve in chloroform, hence no product was obtained as shown in Fig. 1.
Phytochemicalanalysis of theextracts of A.nilotica. The aqueous extract and ethyl acetate, N-butanol and residual fractions of A. nilotica extracts were subjected to qualitative chemical screening for identification of various classes of active chemical constituents.7 , 9 Test for tannins (Ferric chloride test). Two millilitres (2 mL) of the aqueous solution of the extract were added to a few drops of 10% Ferric chloride solution (light yellow). The occurrence of blackish blue colour showed the presence of gallic tannins and a green-blackish colour indicated presence of catechol tannins.
Test for saponins (Frothing Test). Three millilitres (3 mL) of the aqueous solution of the extract were mixed with 10 mL of distilled water in a test-tube. The test-tube was stoppered and shaken vigorously for about 5 min, it was allowed to stand for 30 min and observed for honeycomb froth, which was indicative of the presence of saponins.
Test for alkaloids. One gram (1 g) of the extract was dissolved in 5 mL of 10% ammonia solution and extracted with 15 mL of chloroform. The chloroform portion was evaporated to dryness and the resultant residue dissolved in 15 mL of dilute sulphuric acid. One quarter of the solution was used for the general alkaloid test while the remaining solution was used for specific tests.
Mayer’s reagent (Bertrand’s reagent). Drops of Mayer’s reagent was added to a portion of the acidic solution in a test tube and observed for an opalescence or yellowish precipitate indicative of the presence of alkaloids.
Dragendorff’s reagent. Two millilitres (2 mL) of acidic solution in the second test-tube were neutralized with 10% ammonia solution. Dragendorff’s reagent was added and turbidity or precipitate was observed as indicative of presence of alkaloids.
Tests for carbohydrate (Molisch’s test). A few drops of Molischs solution was added to 2 mL of aqueous solution of the extract, thereafter a small volume of concentrated sulphuric acid was allowed to run down the side of the test tube to form a layer without shaking. The interface was observed for a purple colour as indicative of positive for carbohydrates.
Testsforcarbohydrate (Barfoed’stest). One milliliter (1 mL) of aqueous solution of the extract and 1ml of Barfoed’s reagent were added into a test-tube, heated in a water bath for about 2 min. Red precipitate showed the presence of monosaccharaides.
Standard test for combined reducing sugars. One milliliter (1 mL) of the aqueous solution of the extract was hydrolyzed by boiling with 5 mL of dilute hydrochloric acid (HCl). This was neutralized with sodium hydroxide solution. The Fehling’s test was repeated as indicated above and the tube was observed for brick-red precipitate that indicated the presence of combine reducing sugars.
StandardtestforfreereducingSugar (Fehling’stest). Two milliliters (2 mL) of the aqueous solution of the extract in a test tube was added into 5 mL mixture of equal volumes of Fehling’s solutions I and II and boiled in a water bath for about 2 min. The brick-red precipitate was indicative of the presence of reducing sugars.
Test for ketones. Two millilitres (2 mL) of aqueous solution of the extract were added to a few crystals of resorcinol and an equal volume of concentrated HCl, and then heated over a spirit lamp flame and observed for a rose colouration that showed the presence of ketones.
Testforpentoses. Two millilitres (2 mL) of the aqueous solution of the extract were added into an equal volume of concentrated HCl containing little phloroglucinol. This is heated over a spirit lamp flame and observed for red colouration as indicative of the presence of pentoses.
Test for phlobatannins (HCl test). Two millilitres (2 mL) of the aqueous solution of the extract were added into dilute HCl and observed for red precipitate that was indicative the presence of phlobatannins.
Test for cardiac glycosides. Two millilitres (2 mL) of the aqueous solution of the extract was added into 3 drops of strong solution of lead acetate. This was mixed thoroughly and filtered. The filtrate was shaken with 5 mL of chloroform in a separating funnel. The chloroform layer was evaporated to dryness in a small evaporating dish. The residue was dissolved in a glacial acetic acid containing a trace of ferric chloride; this was transferred to the surface of 2 mL concentrated sulphuric acid in a test tube. The upper layer and interface of the two layers were observed for bluish-green and reddish-brown colouration respectively as indicative of the presence of cardiac glycosides.
Test for steroids (Liebermann-Burchard’s test). The amount of 0.5 g of the extract was dissolved in 10 mL anhydrous chloroform and filtered. The solution was divided into two equal portions for the following tests. The first portion of the solution above was mixed with one ml of acetic anhydride followed by the addition of 1 mL of concentrated sulphuric acid down the side of the test tube to form a layer underneath. The test tube was observed for green colouration as indicative of steroids.
Test for steroids (Salkowski’s test). The second portion of solution above was mixed with concentrated sulphuric acid carefully so that the acid formed a lower layer and the interface was observed for a reddish-brown colour indicative of steroid ring.
Test for flavonoids (Shibita’s reaction test). One gram (1 g) of the water extract was dissolved in methanol (50%, 1-2 mL) by heating, then metal magnesium and 5 - 6 drops of concentrated HCl were added. The solution when red was indicative of flavonols and orange for flavones.
Testforflavonoids (pew’stest). Five millilitres (5 mL) of the aqueous solution of the water extract was mixed with 0.1 g of metallic zinc and 8ml of concentrated sulphuric acid. The mixture was observed for red colour as indicative of flavonols.
Test for anthraquinones (Borntrager’s reaction for free anthraquinones). One gram (1 g) of the powdered seed was placed in a dry test tube and 20 mL of chloroform was added. This was heated in steam bath for 5 min. The extract was filtered while hot and allowed to cool. To the filtrate was added with an equal volume of 10% ammonia solution. This was shaken and the upper aqueous layer was observed for bright pink colouration as indicative of the presence of Anthraquinones. Control test were done by adding 10 mL of 10 % ammonia solution in 5ml chloroform in a test tube.
Elemental analysis. The elemental content was determined using the standard calibration curve method.10 (link),11 (link) Zero point (0.5 g) of air dried sample in an evaporating dish was placed in an oven at 80 ˚C and dried to a constant weight. The sample was placed in a weighing crucible and ashed at 500 ˚C in a hot spot furnance for three hours. The ashed material was prepared for the determination of trace element. A portion of zero point (0.5 g) of the ashed sample was digested by heating for two min with a mixture of 10 mL each of nitric acid (HNO3), HCl and a perechloric acid in a 500 mL flask. The aliquot obtained from this mixture by filtration was mixed with a 10 mL of 2M HNO3 and 30 mL of distilled water in a 100 mL volumetric flask. The volume was made up to zero mark with distilled water. Blank sample and standard solution for the various elements were similarly done. All samples placed in a plastic container and stored in a refrigerator maintained at 4 ˚C prior to analysis. Flame emission spectrometer (Model FGA-330L; Gallenkamp, Weiss, UK) was used to determine sodium (Na) and potassium (K) concentrations. Other elements, magnesium (Mg), calcium (Ca), iron (Fe), lead (Pb), zinc (Zn), manganese (Mn), cadmium (Cd), copper (Cu) and arsenic (As) were determined by atomic absorption spectrometry with (Model SPG No. 1; Unicam, Cambridge, UK) at the appropriate wave-length, temperature and lamp current for each element.12
Full text: Click here
Publication 2014

M. smegmatis cells expressing different M. tuberculosis proteins were grown in identical conditions to late log phase or stationary phase. In all expression cultures the ZYP–5052 autoinduction media was used for F420 production experiments and the media to flask volume ratio was kept constant at 20%. In order to optimize the media for F420 production, the ZY component of ZYM–5052 media was replaced by commonly used media bases including 2× ZY, YT (0.8% tryptone, 0.5% yeast extract and 42.77 mM NaCl), TB (1.2% tryptone, 2.4% yeast extract and 0.4% glycerol), SOB (2% tryptone, 0.5% yeast extract, 8.56 mM NaCl, 2.5 mM KCl and 10 mM MgCl2) and SOC (SOB with 20 mM glucose). Iron and sulphur supplements (ferric ammonium citrate, ferric citrate and ferrous sulphate all at 0.1 mg/mL and L–cysteine at 1 mM) were also added to the expression media as a possible requirement for the FbiC enzyme. L–glutamate and manganese chloride (1 mM final concentration) were also added to the expression media to evaluate their necessity for FbiB–mediated F420 production [22] (link).
To ascertain the optimum growth period for F420 production, eight identical cultures of M. smegmatis cells expressing the recombinant FbiABC construct were set up. Each culture had a wild type M. smegmatis culture as a control. At 24 h intervals, one culture each of control and recombinant FbiABC–expressing M. smegmatis cells were harvested and processed to monitor the F420 production level. The procedure was carried out for eight days and the F420 production ratio for each day was calculated by dividing the F420 fluorescence from FbiABC–expressing cells by fluorescence of the wild type control.
M. smegmatis cells were centrifuged for 15 min at 16000×g and the resulting media were used for FO characterization. The cell pellets were washed with 25 mM sodium phosphate buffer, pH 7.0 and were subsequently resuspended in 1 mL of the same buffer per 100 mg of cells (wet weight). The cell suspensions were autoclaved at 121°C for 15 min to break the cells open and were then centrifuged for 15 min at 16000×g. Fluorescence of the media and the extract were monitored using excitation wavelength of 420 nm (405±10 nm filter) and emission wavelength of 480 nm (485±15 nm filter). All fluorescence experiments were performed using an EnVision Multilabel plate reader (Perkin Elmer) in a 96–well plate format and were carried out in triplicate.
The autoclaved cell extracts were further purified using a HiTrap QFF ion exchange column (GE Healthcare) to separate the intracellular FO from the F420. The extract was run on the column pre–equilibrated with 25 mM sodium phosphate buffer, pH 7.0 and was subsequently washed with five column volumes of buffer. Two yellow fractions were eluted at 200 and 500 mM NaCl, respectively. The purified fractions were used for mass spectrometry analysis, together with the media from the previous step. The media (1 mL) was treated with an equal volume of cold acetone to precipitate the protein and the solution was then evaporated down to <0.5 mL to drive off the acetone. A mix of water and 5% aqueous methanol with 0.1% formic acid was added to bring the final concentration of methanol to less than 1% (total volume 4 mL). All samples were then applied to a pre–equilibrated Alltech Maxi–Clean 300 mg large pore 100Å C–18 SPE cartridge and washed with 4 mL 5% methanol containing 0.1% formic acid followed by 4 mL 10% methanol. Compounds were eluted with 4 mL 80% methanol containing 5 mM ammonium bicarbonate pH 8.5. Eluates were evaporated under nitrogen and redissolved in 80% methanol and 20 mM ammonium acetate ready for mass spectrometry. Samples were infused at 3 µL/min under negative electrospray conditions into an LTQ–FT mass spectrometer (Thermo Scientific). The ion intensity data were obtained using a source voltage of 2.5 kV and capillary temperature of 225°C. Ions were examined in both the ion trap and ion cyclotron resonance cells, the latter to obtain high resolution (100,000 at m/z 400) accurate mass data. This was necessary to confirm the atomic composition of the ions and help deconvolute the contribution of metal ion adducts (Na+/K+) to the levels of individual poly–glutamate species. Up to four sodium ions were adducted to produce some double charged negative ions.
Full text: Click here
Publication 2010
Acetone ammonium acetate ammonium bicarbonate Buffers Capillaries Cell Culture Techniques Cell Extracts Cells Cold Temperature Cyclotrons Cysteine Dietary Supplements Enzymes ferric ammonium citrate ferric citrate ferrous sulfate Fluorescence formic acid Glucose Glutamate Glycerin Ion Exchange Ions Iron Magnesium Chloride manganese chloride Mass Spectrometry M Cells Metals Methanol M protein, multiple myeloma Mycobacterium tuberculosis Nitrogen Pellets, Drug Poly A Proteins Protoplasm Sodium Sodium Chloride sodium phosphate Sulfur Tuberculosis Vibration Yeast, Dried Z-100
Selection of cases and controls. We used data from the Nurses’ Health Study II, a cohort of 116,430 female nurses from 14 U.S. states that was established in 1989 and has been followed over time with biennial questionnaires. Initially nurses were recruited from 14 U.S. states, but since that time they have moved throughout the United States. Thus, children in the current analyses were born in all 50 U.S. states. In the 2005 questionnaire, respondents were asked “Have any of your children been diagnosed with the following diseases?” with autism, Asperger’s syndrome, or other ASD listed as separate responses. In 2007–2008, we sent a questionnaire to the 756 women who had reported having a child with any of these conditions, querying the affected child’s sex, birth date, and whether they were adopted. In addition, they were asked “What ASD diagnosis has the child been given?” with autism, Asperger syndrome, and PDD-NOS (PDD not otherwise specified) as possible answers. Women were also asked about other diagnoses (such as attention deficit hyperactivity disorder and obsessive compulsive disorder) (response rate = 84%, n = 636). The Partners Healthcare Institutional Review Board approved this research. Completion and return of questionnaires sent by U.S. mail constituted implied consent.
Cases were excluded for the following overlapping reasons: women reported on the follow-up questionnaire that the child did not have ASD (n = 32); the child was adopted (n = 9); they did not want to participate (n = 20); or they did not report the child’s birth year (n = 71). Children reported to have trisomy 18, fragile X, an XXY genotype, or Down’s, Angelman’s, Jacobsen’s, or Rett’s syndrome also were excluded (n = 11). Of the remaining children, 329 were born after 1987, when air pollution data were available, but 4 had insufficient address information for geocoding, yielding 325 cases. In this study we refer to children with autism, Asperger’s syndrome, or other autism spectrum disorder as cases and use “ASD” to refer to this case definition.
We validated the ASD diagnosis by telephone administration of the Autism Diagnostic Interview–Revised (ADI-R) (Lord et al. 1994 (link)) to 50 randomly selected case mothers who indicated willingness to complete the interview (81% of the 636 mothers who responded to the follow up questionnaire were willing to be interviewed). Diagnoses reported by women who were willing versus unwilling to participate in the substudy were similar (25% autism, 51% Asperger’s, and 25% PDD-NOS compared with 25% autism, 49% Asperger’s, and 23% PDD-NOS, respectively). For the subsample of mothers who completed the ADI-R, 43 children (86%) met full ADI-R criteria for an autism diagnosis (based on minimum scores in all three domains and onset by 3 years of age). The remaining children met the onset criterion and communication domain score, but missed full diagnosis by one point in one domain (n = 5) or had qualifying scores in one or two domains only (n = 2). Thus, all of the children in the subsample exhibited some autistic behaviors and may have been on the autism spectrum.
Controls were children born during 1987–2002 (the years when air pollution data were available) to mothers who indicated that they never had a child with ASD on the 2005 questionnaire and who responded to a supplemental 2001–2002 questionnaire that queried the calendar year and sex of each of their live births and whether they smoked during pregnancy. We randomly selected one child per mother if more than one child was eligible. Of 25,828 potential controls, 3,711 were excluded because of insufficient address information, and 19 were excluded because their mothers reported that they had ASD on the 2009 questionnaire, leaving 22,098 controls. We did not include the 19 new cases because we did not follow up with mothers to confirm their case status.
Geocoding. The mailing address used for the biennial Nurses’ Health Study II questionnaire at the approximate time of the index child’s birth was geocoded and classified according to state, county, and census tract identifier. Children born from 1987 through 1990 were assigned the geographic location of their mother in 1989 (the first year of study). Children born in 1991 or 1992 were assigned the mother’s mailing address in 1991, and births from 1993 through 2002 were assigned the nurses’ addresses, updated every other year, in similar manner.
Exposure assessment. Hazardous air pollutant (HAP) concentrations were assessed by the U.S. EPA National Air Toxics Assessments in 1990, 1996, 1999, and 2002, which uses an inventory of outdoor sources of air pollution, including both stationary sources (e.g., waste incinerators, small businesses) and mobile sources (e.g., traffic) to estimate average ambient concentrations of pollutants for each census tract based on dispersion models (U.S. EPA 2011 ). Data were downloaded from the U.S. EPA website on 23 June 2010; additional archived data was received on compact disc from the U.S. EPA. Air pollution concentrations were linked to nurses’ residential locations at the time of the birth of their child through census tract codes (Neighborhood Change Database 2013 ). Children were assigned pollution concentrations from the U.S. EPA assessment closest to their year of birth (births 1987–1993 used 1990 concentrations; births 1994–1997 used 1996 concentrations; births 1998–2000 used 1999 concentrations; births 2001–2002 used 2002 concentrations). We categorized each pollutant according to quintiles of concentration in the entire study population.
Covariates. We examined family and community socioeconomic indicators that may be associated with ASD ascertainment. To characterize community circumstances around the time by which ASD was likely to have been diagnosed, we used two U.S. Census tract variables (linked by mother’s mailing address) measured 6 years after the birth of the child: median income and percent of residents with a college education, which we divided into quartiles. We used the maximum of the mother’s parents’ education during her infancy as a proxy measure of maternal childhood socioeconomic status. The index child’s current family income was based on the family income reported by the mother in 2001. The educational attainment of the mother’s partner or spouse was reported in 1999. We also examined factors that may be associated with both ASD and air pollutant exposure: smoking, year of birth, maternal age at birth, and air pollution prediction model year. Smoking during the index pregnancy was assessed in 2001. Year of birth was by mother’s report. Maternal age at birth was calculated by subtracting the child’s birth year from the mother’s birth year. The air pollution prediction model year (HAP year), 1990, 1996, 1999, or 2002, was modeled as a categorical variable.
Analyses. We examined the association of demographic covariates with ASD case status to assess possible confounding. To calculate odds ratios (ORs) for ASD associated with exposure to specific pollutants, we fit separate logistic regression models with ASD case status as the dependent variable and quintiles of each pollutant as the independent variable, both adjusted for child’s sex and stratified by sex. To test a linear dose–response relationship of pollutant exposure with ASD while reducing the influence of outliers, we assigned to each child the median pollutant concentration for his or her quintile and conducted logistic regression with these concentrations entered as a continuous independent variable. To test for sex differences in the association of pollutant quintile with ASD, we multiplied a continuous term for pollutant quintile (1–5) by an indicator of male sex and included this term in models with pollutant quintile, male sex, and demographic covariates. To adjust for multiple tests of significance, we calculated p-values adjusted for false discovery rate using the SAS Multtest procedure (SAS Institute Inc., Cary, NC).
Because individual metal concentrations were moderately or highly correlated in preliminary analyses [Pearson correlation coefficient range, 0.13–0.66; see Supplemental Material, Table S1 (http://dx.doi.org/10.1289/ehp.1206187)], we calculated an overall estimate of association with metal exposure by pooling ORs estimated for individual metals (antimony, arsenic, cadmium, chromium, lead, manganese, mercury, nickel), using a random-effects meta-analysis with the SAS Mixed procedure (Higgins et al. 2009 ). Additionally, we estimated associations between ASD and an overall measure of metal exposure that was derived by summing the quintile category score (1–5, with 1 representing the lowest quintile) for each metal (antimony, arsenic, cadmium, chromium, lead, manganese, mercury, nickel) to create an overall score with values ranging from 8 to 40.
We examined the association of the covariates with the overall metals metric and conducted additional analyses using this metric, examining the effects of state of residence, family income, smoking during pregnancy, HAP model year and urbanicity on the association between this metals metric and ASD [see Supplemental Material, Methods (http://dx.doi.org/10.1289/ehp.1206187)]. All models were adjusted for HAP year, tract median income, tract percent college educated, maternal age at birth, child’s year of birth, and maternal parents’ education. We did not adjust for family income or spouse/partner’s education in main analyses because they were measured after the child’s birth for most children, and the child’s ASD status may have affected income and educational attainment. Additionally, we did not adjust for smoking during pregnancy in the main analyses because 65 cases were missing smoking data (Table 1).
To investigate further whether one or two pollutants were driving the association between correlated pollutants and ASD, we conducted analyses with diesel, lead, manganese, mercury, methylene chloride, and nickel—the pollutants most strongly associated with ASD based on tests of highest versus lowest quintile as well as linear trend—in a single model.
Full text: Click here
Publication 2013
All imaging experiments were performed at 3T (GE HDxt 16.0, GE Healthcare, Waukesha, Wisconsin, USA). The volume body coil was used for excitation, and an eight-channel receive brain coil was used for signal reception. T2 mapping accuracy obtained with COMP and mBIR-4 designs was compared on four water phantoms doped with 1.0, 0.4, 0.2, and 0.1 mM manganese chloride (MnCl2). The FAST-T2 phantom imaging parameters were as follows: axial field of view = 24 cm; matrix size = 192 × 192 (interpolated to 256 × 256); slice thickness = 5 mm; number of slices = 32; spiral TR = 7.8 ms; spiral TE = 0.5 ms; number of spiral leaves per stack = 32; flip angle = 10°; readout bandwidth = ±125 kHz; sequence TR (time between consecutive T2preps) = 2500 ms; nominal TEs = 0 ms (T2prep turned off), 10, 20, 40, 80, 160, 320 ms (COMP), and 0, 7.6, 17.6, 37.6, 77.6, 157.6, 317.6 ms (mBIR-4, after ΔTE correction as determined by Bloch simulation). The relative B1 amplitude reduction of the T2prep was varied from 0% to 20% with a 10% step. This was achieved by manually setting the amplitudes of the RF pulse stored in the scanner’s waveform memory before the scan. Reference T2 values were obtained with a 2D CPMG MESE sequence.
Publication 2015
Brain COMP protocol Human Body manganese chloride Memory Pulse Rate Radionuclide Imaging

Most recents protocols related to «Manganese chloride»

Bovine aortic endothelial cells were cultured in a 5% CO 2 atmosphere at 37°C in DMEM supplemented with 10% fetal bovine serum until confluent. The medium was subsequently removed and the cells were washed twice with serum-free DMEM and exposed to cadmium chloride (1, 3, or 5 μM) or manganese chloride (5 or 10 μM) or both in serum-free DMEM for 6 or 24 hr, which we defined as the simultaneous treatment with manganese. For the pretreatment condition, the cells were washed twice with serum-free DMEM and then treated with manganese chloride (5 or 10 μM) in serum-free DMEM for 24 hr. The conditioning medium was then removed and the cells were exposed to cadmium chloride (1, 3, or 5 μM) in serum-free DMEM for 6 or 24 hr.
Publication 2024
Redistilled solvents and Milli-Q water (>18
MΩ cm) were used for substrate cleaning and preparation of solutions.
An FEP (30 μm, DAIKIN) film was used for triboelectrification
with liquid droplets. Sodium chloride (99.5%), sodium iodide (99.5%),
sodium nitrate (99%), sodium bicarbonate (99.5%), sodium carbonate
(99.5%), sodium sulfite (98%), sodium sulfate (99%), magnesium sulfate
(99%), potassium chloride (99.5%), potassium ferricyanide (99.5%),
calcium chloride (97%), chromic nitrate (99%), manganese(II) chloride
(99%), manganese(II) sulfate (99%), ferric nitrate (98.5%), nickel(II)
chloride (99%), copper sulfate (99%), copper(II) nitrate (99%), zinc
nitrate (99%), zinc acetate (98%), hydrochloric acid (37%), sulfuric
acid (98%), nitric acid (68%), potassium hydroxide (99.9%), and sodium
hydroxide (97%) were purchased from Macklin. Ethanol (99.7%) and acetone
(99.5%) were obtained from Yong Da Chemical.
Full text: Click here
Publication 2024
Iron(III) chloride (FeCl3), Chromium(II) chloride (CrCl2), Cobalt(II) chloride hexahydrate (CoCl2·6H2O), Nickel(II) chloride hexahydrate (NiCl2·6H2O), Copper(II) chloride dihydrate (CuCl2·2H2O), Manganese(II) chloride tetrahydrate (MnCl2·4H2O), Chloroplatinic acid (H2PtCl6·6H2O) and polyvinyl pyrrolidone (PVP) were purchased from Sigma Aldrich. All chemicals are of analytical purity and used without further purification.
Full text: Click here
Publication 2024
Ammonium chloride (NH4Cl, AR), Dipotassium hydrogen phosphate (K2HPO4·3H2O, AR), Potassium hydroxide (KOH, AR), Hydrochloric acid (HCl, 1 M), Potassium nitrate (KNO3, AR), Potassium nitrite (KNO2, AR), Anhydrous calcium chloride (CaCl2, AR), Nickel chloride (NiCl2, AR), Manganese chloride (MnCl2, AR), and Cobalt chloride (CoCl2, AR) were obtained from Tianjin Kermel Chemical Reagent Co., Ltd. (Tianjin, China).
Full text: Click here
Publication 2024
Not available on PMC !
Magnetic manganese ferrite (MnFe 2 O 4 ) was synthesized by in situ co-precipitation technique as follows (Scheme 1B): First, manganese chloride tetrahydrate and ferric chloride hexa hydrated salts with a molar ratio of 1:2 were dissolved in 100 mL of distilled water. Then, the above solution was added drop by drop to the sodium hydroxide solution (10 mL, 10%) to pH reached 10. Finally, the dark brown precipitate was formed and separated by a magnet and washed with distilled water until the pH of the residual solution reached 7. The obtained precipitate was then dried in an oven at
Publication 2024

Top products related to «Manganese chloride»

Sourced in United States, Germany
Manganese (II) chloride tetrahydrate is a chemical compound with the formula MnCl2⋅4H2O. It is a crystalline solid that is used as a source of manganese in various applications. The compound has a pale pink color and is soluble in water.
Sourced in United States, Germany, India
Manganese chloride is a chemical compound with the formula MnCl2. It is a solid, crystalline material that is soluble in water. Manganese chloride is commonly used as a source of manganese ions in chemical reactions and analytical procedures.
Sourced in Germany, United States, India, United Kingdom, Italy, China, Spain, France, Australia, Canada, Poland, Switzerland, Singapore, Belgium, Sao Tome and Principe, Ireland, Sweden, Brazil, Israel, Mexico, Macao, Chile, Japan, Hungary, Malaysia, Denmark, Portugal, Indonesia, Netherlands, Czechia, Finland, Austria, Romania, Pakistan, Cameroon, Egypt, Greece, Bulgaria, Norway, Colombia, New Zealand, Lithuania
Sodium hydroxide is a chemical compound with the formula NaOH. It is a white, odorless, crystalline solid that is highly soluble in water and is a strong base. It is commonly used in various laboratory applications as a reagent.
Sourced in United States, Germany
Manganese(II) chloride is an inorganic compound with the chemical formula MnCl2. It is a crystalline solid that is soluble in water and other polar solvents. Manganese(II) chloride is commonly used in various applications, including as a micronutrient supplement, a catalyst, and a precursor for other manganese-containing compounds.
Sourced in Germany, United States, United Kingdom, India, Italy, France, Spain, Australia, China, Poland, Switzerland, Canada, Ireland, Japan, Singapore, Sao Tome and Principe, Malaysia, Brazil, Hungary, Chile, Belgium, Denmark, Macao, Mexico, Sweden, Indonesia, Romania, Czechia, Egypt, Austria, Portugal, Netherlands, Greece, Panama, Kenya, Finland, Israel, Hong Kong, New Zealand, Norway
Hydrochloric acid is a commonly used laboratory reagent. It is a clear, colorless, and highly corrosive liquid with a pungent odor. Hydrochloric acid is an aqueous solution of hydrogen chloride gas.
Sourced in United States
Manganese chloride tetrahydrate is an inorganic compound with the chemical formula MnCl2·4H2O. It is a crystalline solid that is soluble in water and produces a pale pink solution. Manganese chloride tetrahydrate is commonly used as a source of manganese in various applications.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.
Sourced in Germany, United States, United Kingdom, Italy, India, France, China, Australia, Spain, Canada, Switzerland, Japan, Brazil, Poland, Sao Tome and Principe, Singapore, Chile, Malaysia, Belgium, Macao, Mexico, Ireland, Sweden, Indonesia, Pakistan, Romania, Czechia, Denmark, Hungary, Egypt, Israel, Portugal, Taiwan, Province of China, Austria, Thailand
Ethanol is a clear, colorless liquid chemical compound commonly used in laboratory settings. It is a key component in various scientific applications, serving as a solvent, disinfectant, and fuel source. Ethanol has a molecular formula of C2H6O and a range of industrial and research uses.
Sourced in United States, Germany, Hungary, Spain, France, Italy, Poland, Canada, United Kingdom
Iron (III) chloride is a chemical compound with the formula FeCl3. It is a crystalline solid that is soluble in water and has a variety of laboratory and industrial applications. The core function of iron (III) chloride is as a coagulant and flocculating agent, which is used in water treatment processes to remove suspended particles and impurities.
Sourced in United States, Germany, United Kingdom, Japan, China, India, Cameroon, Singapore, Belgium, Italy, Spain
Oleylamine is a chemical compound used as a surfactant, emulsifier, and lubricant in various industrial applications. It is a long-chain aliphatic amine with a hydrocarbon backbone and an amino group at one end. Oleylamine is commonly used in the formulation of lubricants, coatings, and personal care products.

More about "Manganese chloride"

Manganese (II) chloride, also known as manganese chloride or manganous chloride, is an inorganic compound with the chemical formula MnCl2.
It is a crystalline solid that is soluble in water and commonly used in various industrial and research applications.
Manganese chloride plays a crucial role in many biological processes and is considered an essential trace element for human health.
It is involved in enzyme activation, antioxidant defense, and metabolic regulation, among other functions.
Researchers often utilize manganese chloride in studies exploring its physiological and biochemical effects.
To optimize their manganese chloride studies, researchers can leverage the powerful AI-driven platform provided by PubCompare.ai.
This innovative tool helps scientists effortlessly locate and compare the best protocols from literature, pre-prints, and patents, enabling them to identify the most accurate and reproducible methods.
By utilizing PubCompare.ai, researchers can enhance their manganese chloride studies and unlock new insights.
The platform's cutting-edge capabilities allow for the efficient identification of the most reliable and effective protocols, ultimately improving the quality and reproducibility of research findings.
In addition to manganese chloride, researchers may also work with related compounds such as manganese (II) chloride tetrahydrate, sodium hydroxide, hydrochloric acid, manganese chloride tetrahydrate, DMSO, ethanol, and iron (III) chloride.
These substances may be used in various experimental setups or as part of the preparation and analysis of manganese chloride samples.
By incorporating the insights and capabilities offered by PubCompare.ai, researchers can streamline their manganese chloride studies, optimize their experimental designs, and uncover new scientific discoveries that contribute to our understanding of this essential trace element and its diverse applications.