Exposure to air pollution for each cohort member was assigned by three different approaches, two based on the regulatory monitoring network and one based on dedicated sampling campaigns. The regulatory monitoring network was operated by the British Columbia Ministry of Environment and Metro Vancouver and includes daily measurements at 24 monitors for ozone, 22 for nitric oxide/ nitrogen dioxide, 14 for sulfur dioxide, 19 for carbon monoxide, 19 for particulate matter < 10 μm in aerodynamic diameter (PM10), and 7 for PM < 2.5 μm in aerodynamic diameter (PM2.5). The monitoring data were assigned to individuals at their 6-digit postal code of residence. The 6-digit postal code typically corresponds to one block-face in urban areas; areas may be considerably larger in rural areas with low population density.
Concentrations were assigned to postal codes by nearest monitor and inverse-distance weighting (IDW) approaches. This approach provided high temporal resolution (daily measures for most days) with less precise spatial resolution than land use regression estimates. For the nearest monitor assignment, we assigned for each day a concentration from the operational monitor closest to the postal code of interest and within 10 km. We then computed monthly averages for each individual for the full duration of their pregnancy. For the IDW approach we used an inverse-distance (1/distance) weighted average of the three closest monitors within 50 km to compute a monthly mean concentration. For both approaches, a month was considered missing if there was a gap of > 5 consecutive days in air monitoring data or if there were > 10 missing days in a given month. Using the monthly averages, we then computed mean exposures for each mother for the full duration of pregnancy, the first and last 30 days of pregnancy, and the first and last 3 months of pregnancy. Exposures were updated with change in postal code of residence and weighted by time spent in multiple residences. Postal code information for mothers was obtained from the provincial health registration and health care contact records.
Concentrations were assigned to postal codes by nearest monitor and inverse-distance weighting (IDW) approaches. This approach provided high temporal resolution (daily measures for most days) with less precise spatial resolution than land use regression estimates. For the nearest monitor assignment, we assigned for each day a concentration from the operational monitor closest to the postal code of interest and within 10 km. We then computed monthly averages for each individual for the full duration of their pregnancy. For the IDW approach we used an inverse-distance (1/distance) weighted average of the three closest monitors within 50 km to compute a monthly mean concentration. For both approaches, a month was considered missing if there was a gap of > 5 consecutive days in air monitoring data or if there were > 10 missing days in a given month. Using the monthly averages, we then computed mean exposures for each mother for the full duration of pregnancy, the first and last 30 days of pregnancy, and the first and last 3 months of pregnancy. Exposures were updated with change in postal code of residence and weighted by time spent in multiple residences. Postal code information for mothers was obtained from the provincial health registration and health care contact records.
Full text: Click here