The largest database of trusted experimental protocols
> Chemicals & Drugs > Inorganic Chemical > Saline Solution

Saline Solution

Saline Solution: A balanced electrolyte solution, typically containing sodium chloride, that is physiologically compatible and used for various medical and research purposes.
These solutions are essential for maintaining proper fluid and electrolyte balance, and are commonly employed in intravenous therapies, cell culture, and laboratory experiements.
PubCompare.ai can help optimize your saline solution research by locating the best protocols from literature, preprints, and patents, ensuring reproducibility and accuracy.
Leveraging data-driven comparisons, the platform enalbes you to identify the most effective saline solution formulations and procedures, enhancing your research today.

Most cited protocols related to «Saline Solution»

Standard IHC protocol was followed to stain the tumor tissue samples using the mouse monoclonal antibody against hNIS (human Sodium Iodide Symporter) (Abcam, ab17795), ER (Estrogen Receptor) (Abcam, ab16660, ab288). Briefly, 5 µm sized paraffin embedded tissue sections were de-paraffinized with xylene and endogenous peroxidase activity was quenched with 3% H2O2 in methanol for 30 minutes in the dark. Tissue sections were dehydrated through graded alcohols and subjected to antigen retrieval using 10mM sodium citrate. Sections were washed with TBST (Tris Borate Saline Tween-20) and then blocked with 5% BSA (Bovine Serum Albumin) for one hour. Slides were incubated with the respective mouse monoclonal primary antibody diluted with TBS. Slides were then washed for 5 minutes in TBST and incubated for 1 hour with the respective HRP (Horse Raddish Peroxidase) conjugated anti-mouse secondary antibody diluted with TBS in a ratio of 1∶200. After washing, slides were incubated with DAB (3,3′-diaminobenzidine tetrahydrochloride) (Sigma) and immediately washed under tap water after color development. Slides were then counter stained with hematoxylin. Slides were mounted with DPX (dibutyl phthalate xylene) and were then observed under a light microscope (Carl Zeiss).
Full text: Click here
Publication 2014
Antibodies, Anti-Idiotypic Antigens Borates Equus caballus estrogen receptor alpha, human Ethanol Homo sapiens Light Microscopy Methanol Monoclonal Antibodies Mus Neoplasms Paraffin Peroxidase Peroxide, Hydrogen Phthalate, Dibutyl Saline Solution Serum Albumin, Bovine SLC5A5 protein, human Sodium Citrate Stains Tissues Tromethamine Tween 20 Xylene
Four 9 month old male mice (C57Bl/SJL) were used. Animals were anesthetized with choral hydrate (15% aqueous solution, i.p.) and were perfused transcardially with 4% paraformaldehyde and 0.125% glutaraldehyde in phosphate buffer saline (PBS; pH 7.4). The brains were then carefully removed from the skull and postfixed for 6 hours. All procedures were conducted in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals and were approved by the Mount Sinai School of Medicine Institutional Animal Care and Uses Committee.
For intracellular injections, brains were coronally sectioned at 200 µm on a Vibratome (Leica, Nussloch, Germany). The sections were then incubated in 4,6-diamidino-2-phenylindole (DAPI; Sigma, St. Louis, MO, USA), a fluorescent nucleic acid stain, for 5 minutes, mounted on nitrocellulose filter paper and immersed in PBS. Using DAPI as a staining guide, individual layer II/III pyramidal neurons of the frontal cortex were loaded with 5% Lucifer Yellow (Molecular Probes, Eugene, OR, USA) in distilled water under a DC current of 3–8 nA for 10 minutes, or until the dye had filled distal processes and no further loading was observed [45] (link), [49] (link). Tissue slices were then mounted and coverslipped in Permafluor. Dendritic segment and spine imaging was performed using a Zeiss 410 confocal laser scanning microscope (Zeiss, Thornwood, NY, USA) using a 488 nm excitation wavelength, using a 1.4 N.A. Plan-Apochromat 100× objective with a working distance of 170 µm and a 5× digital zoom. After gain and offset settings were optimized, segments were digitally imaged at 0.1 µm increments, along the optical axis. The confocal stacks were then deconvolved with AutoDeblur (MediaCybernetics, Bethesda, MD, USA).
Supporting Information is available online (Box S1)
Full text: Click here
Publication 2008
Animals Animals, Laboratory Brain Buffers Cranium DAPI Dendrites Epistropheus Fingers Glutaral Lobe, Frontal lucifer yellow Males Mice, House Microscopy, Confocal Molecular Probes Nitrocellulose Nucleic Acids paraform Phosphates Protoplasm Pyramidal Cells Saline Solution Stains Tissues Vertebral Column Vision
The mammalian cell codon-optimized nucleotide sequence coding for the spike protein of the SARS-CoV-2 isolate (GenBank:MN908947.3) was synthesized commercially (Genewiz). The RBD (amino acids 319–541; RVQP…CVNF), along with the signal peptide (amino acids 1–14; MFVF…VSSQ) plus a hexahistidine tag, was cloned into mammalian expression vector pCAGGS as well as in a modified pFastBac Dual vector for baculovirus system expression. The soluble version of the spike protein (amino acids 1–1,213; MFVF…IKWP), including a C-terminal thrombin cleavage site, T4 foldon trimerization domain and hexahistidine tag, was also cloned into pCAGGS. The protein sequence was modified to remove the polybasic cleavage site (RRAR to A), and two stabilizing mutations were introduced as well (K986P and V987P; wild-type numbering). Recombinant proteins were produced using the well-established baculovirus expression system and this system has been published in detail in refs.20 (link)–22 , including a video guide. Recombinant proteins were also produced in Expi293F cells (Thermo Fisher Scientific) by transfections of these cells with purified DNA using an ExpiFectamine 293 Transfection Kit (Thermo Fisher Scientific). Supernatants from transfected cells were harvested on day 3 post-transfection by centrifugation of the culture at 4,000g for 20 min. Supernatant was then incubated with 6 ml Ni-NTA Agarose (Qiagen) for 1–2 h at room temperature. Next, gravity flow columns were used to collect the Ni-NTA agarose and the protein was eluted. Each protein was concentrated in Amicon centrifugal units (EMD Millipore) and re-suspended in phosphate-buffered saline (PBS). Proteins were analyzed by reducing SDS-PAGE. The DNA sequence for all constructs is available from the Krammer Laboratory and has also been deposited in GenBank (additional information in the ‘Data availability’ statement). Several of the expression plasmids and proteins have also been submitted to the BEI Resources repository and can be requested from their web page for free (https://www.beiresources.org/. S1 proteins of NL63 and 229E were obtained from Sino Biological (produced in hexahistidine-tagged 293HEK cells). A detailed protocol for protein expression of RBD and spike in mammalian cells is also available7 (link).
Publication 2020
Amino Acids Amino Acid Sequence Baculoviridae Biopharmaceuticals Cells Centrifugation Cloning Vectors Codon Cytokinesis DNA Sequence Gravity His-His-His-His-His-His isononanoyl oxybenzene sulfonate Mammals M protein, multiple myeloma Mutation Open Reading Frames Phosphates Plasmids Proteins Recombinant Proteins Saline Solution SARS-CoV-2 SDS-PAGE Sepharose Signal Peptides Staphylococcal Protein A Thrombin Transfection
We retrieved from the online supplemental material of [69 (link)] the 80 available metagenomes (42 viromes, 38 microbiomes). We identified three environments containing at least seven samples and grouped them into coral, hyper-saline, and marine subclasses; the fourth subclass, other, groups all environments with few samples.
Full text: Click here
Publication 2011
Coral Marines Metagenome Microbiome Saline Solution Virome
A vaginal swab was collected using a cotton tipped swab (Puritan Medical Products Company, LLC Guilford, ME) wetted with ambient temperature physiological saline and inserted into the vagina of the restrained mouse. The swab was gently turned and rolled against the vaginal wall and then removed. Cells were transferred to a dry glass slide by rolling the swab across the slide. The slide was air dried and then stained with approximately 400 µL of stain (Accustain, Sigma-Aldrich, St. Louis, MO) for 45 seconds. The slides were rinsed with water, overlaid with a coverslip, and viewed immediately at 200× magnification under bright field illumination. The stage of the estrous cycle was determined based on the presence or absence of leukocytes, cornified epithelial, and nucleated epithelial cells according to Felicio, et al [9] (link).
When the female is in proestrus, mostly nucleated and some cornified epithelial cells are present. Some leukocytes may be present if the female is in early proestrus. As the stage of the cycle advances to estrus, mostly cornified epithelial cells are present. If the cycle is not interrupted by pregnancy, pseudopregnancy, or other phenomena, metestrus will begin. Metestrus is a brief stage when the corpora lutea form but fail to fully luteinize due to a lack of progesterone. The uterine lining will begin to slough and evidence of this is seen in the form of cornified eipithelial cells and polymorphonuclear leukocytes present in vaginal swabs. Some nucleated epithelia cells will also be present in late metestrus. Diestrus is the longest of the stages lasting more than 2 days. Vaginal swabs during diestrus show primarily polymorphonuclear leukocytes and a few epithelial cells during late diestrus. Leukocytes remain the predominant cell type having removed cellular debris. The cycle then repeats.
Full text: Click here
Publication 2012
Cells Corpus Luteum Diestrus Epithelial Cells Epithelioid Cells Estrous Cycle Estrus Gossypium Granulocyte Leukocytes Lighting Metestrus Mus Neoplasm Metastasis physiology Pregnancy Proestrus Progesterone Pseudocyesis Saline Solution Stains Uterus Vagina Vision Woman

Most recents protocols related to «Saline Solution»

Not available on PMC !

Example 1

The particles are synthesized by adding between about 5 mg and about 20 mg of rituximab (or non-specific IgG) to 20 mg of ABRAXANE. Saline is then added to a final volume of 2 ml for a final concentration of 10 mg/ml ABRAXANE, and the mixture is allowed to incubate at room temperature for 30 minutes to allow particle formation. Particles average about 160 nm and are termed “AR160” nanoparticles.

Optionally, the composition is divided into aliquots and frozen at −80° C. Once frozen the aliquots are optionally lyophilized overnight with the Virtis 3L benchtop lyophilizer (SP Scientific, Warmister, PA) with the refrigeration on. A lyophilized preparation is generated.

The dried aliquots are stored at room temperature. These samples are reconstituted in saline at room temperature for 30 minutes, followed by centrifugation for 7 minutes at 2000×g. The resulting sample is then resuspended in the appropriate buffer, as needed.

Full text: Click here
Patent 2024
Abraxane Albumins Buffers Centrifugation Freezing Rituximab Saline Solution

Example 1

A 1 g compressed SAM sheet was formed without embossing. To ensure that Comparative Example 1 had the same compactness as Example 1, meaning that both samples experienced the same compressing pressure, the SAM sheets were each placed between two flat metal plates and compressed twice with a 1000 lb load for 10 minutes using the Carver hydraulic compressor (CE, Model 4350). In this way, the void volumes between and within SAM particles are quite close, if not the same, for Comparative Example 1 and Example 1. The sample was dried in a convection oven at 80° C. for 12 hours before testing.

A 1 g compressed SAM sheet was formed without embossing. The prepared SAM sheet was placed on a flat metal plate, covered with a 1″×1″ metal patterned plate with protruding balls of 250 μm diameter, the balls side facing downward towards the SAM sheet (FIG. 1). The Carver hydraulic compressor (CE, Model 4350) was used to create the embossing pattern by applying a 1000 lb load to a plasticized SAM sheet for 5 minutes. After that, the SAM sheet was flipped over and compressed one more time with the metal balls under same pressure and same dwell time. The resultant SAM sheet has a clear pattern on the surface (FIG. 2). The scale bar shows the diameter of dent of 243 μm. The size of the dent is consistent with the size of metal balls of the embossing plate.

The final 1 g compressed SAM sheet had two-sided embossing. The sample was dried in a convection oven at 80° C. for 12 hours before testing.

The protrusions of this example were ball-shaped, but the protrusion of the pins could be any shape. Shapes without sharper corners, such as spheres, could be less damaging to the SAM particles. The depth of the indentations from the shapes could be in the range of from about 10 μm to 200

Absorbency Evaluation.

Equal masses of embossed and non-embossed SAM sheet samples were each individually dropped in a 100 mL beaker containing 30 mL NaCl solution, which contained blue dye to improve visualization during testing. The time and process of the SAM sheet completely absorbing the saline solution was monitored and compared.

The testing process for both samples to compare their absorbency properties is shown in FIGS. 3a-3e. FIG. 3a shows the testing beakers with 30 mL NaCl solution and blue dye. FIG. 3b shows at the start of the testing (0 min) by adding SAM sheets into the respective NaCl solutions. FIG. 3c shows the completion of absorption of liquid for Example 1 at 27 minutes. After completion, the swollen SAM particles were cast off onto white paper to verify the complete absorption of the fluid (FIG. 3d). At 40 min, Comparative Example 1 completed absorbing all fluid and was cast off onto white paper to verify completion (FIG. 3e). By the time Comparative Example 1 was cast off onto white paper, Example 1 had already turned white because it had finished the absorbing process 13 minutes earlier and the absorbed fluid already diffused into the center of each SAM particle. Absorbency times are summarized in Table 1.

TABLE 1
Absorbency times for SAM sheets.
SampleIntake time (min)
Comparative Example 140
Example 127

Compressing SAM particles into sheets generally leads to lower intake rates and higher intake times compared with SAM particles that are not compressed into sheets due to the loss of free volume within SAM molecular structure and surface area. However, the results demonstrated herein prove that SAM with surface embossing could lead to increase of surface area, thereby increasing the absorbency intake rate compared to the compressed SAM without embossing.

Flexible Absorbent Binder Film.

FAB is a proprietary crosslinked acrylic acid copolymer that develops absorbency properties after it is applied to a substrate and dried, FAB itself can also be casted into film and dried, yet the resultant 100% FAB film is quite rigid and stiff. The chemistry of FAB is similar to standard SAPs except that the latent crosslinking component allows it to be applied onto the substrate of choice as an aqueous solution and then converted into a superabsorbent coating upon drying. When the water is removed, the crosslinker molecules in the polymeric chain come into contact with each other and covalently bond to form a crosslinked absorbent.

In the examples of this disclosure, FAB was coated on a nonwoven substrate to provide a single layer with both intake and retention functions, as well as flexibility. FAB solution with 32% (wt/wt) solids was coated on a nonwoven substrate through a slot die with two rolls. After coating, the coated film was cured by drying in a convection oven at 55° C. for 20-30 minutes, or until the film was dry, to remove the water.

Compression embossing was applied on FAB films. Two-sided embossing was applied on a FAB film. The absorbent properties were characterized and compared through saline absorption testing. The FAB film with an embossed pattern showed 91.67% faster intake rate compared with the FAB film without an embossed pattern.

Full text: Click here
Patent 2024
acrylate Convection Electroplating Metals Molecular Structure Muscle Rigidity Polymers Pressure Retention (Psychology) Saline Solution SKAP2 protein, human Sodium Chloride Urination
Not available on PMC !

Example 7

The MTT Cell Proliferation assay determines cell survival following apple stem cell extract treatment. The purpose was to evaluate the potential anti-tumor activity of apple stem cell extracts as well as to evaluate the dose-dependent cell cytotoxicity.

Principle: Treated cells are exposed to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). MTT enters living cells and passes into the mitochondria where it is reduced by mitochondrial succinate dehydrogenase to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with DMSO and the released, solubilized formazan is measured spectrophotometrically. The MTT assay measures cell viability based on the generation of reducing equivalents. Reduction of MTT only occurs in metabolically active cells, so the level of activity is a measure of the viability of the cells. The percentage cell viability is calculated against untreated cells.

Method: A549 and NCI-H520 lung cancer cell lines and L132 lung epithelial cell line were used to determine the plant stem cell treatment tumor-specific cytotoxicity. The cell lines were maintained in Minimal Essential Media supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 μg/ml) in a 5% CO2 at 37 Celsius. Cells were seeded at 5×103 cells/well in 96-well plates and incubated for 48 hours. Triplicates of eight concentrations of the apple stem cell extract were added to the media and cells were incubated for 24 hours. This was followed by removal of media and subsequent washing with the phosphate saline solution. Cell proliferation was measured using the MTT Cell Proliferation Kit I (Boehringer Mannheim, Indianapolis, IN) New medium containing 50 μl of MTT solution (5 mg/ml) was added to each well and cultures were incubated a further 4 hours. Following this incubation, DMSO was added and the cell viability was determined by the absorbance at 570 nm by a microplate reader.

In order to determine the effectiveness of apple stem cell extracts as an anti-tumor biological agent, an MTT assay was carried out and IC50 values were calculated. IC50 is the half maximal inhibitory function concentration of a drug or compound required to inhibit a biological process. The measured process is cell death.

Results: ASC-Treated Human Lung Adenocarcinoma Cell Line A549.

TABLE 7
Results of cytotoxicity of apple stem cell extract on lung cancer cell
line A549 as measured by MTT assay (performed in triplicate).
Values of replicates are % of cell death.
Concentration*replicatereplicatereplicateMean of% Live
(μg/ml)123replicatesSDSEMCells
25093.1890.8690.3491.461.510.878.54
10086.8885.1885.6985.920.870.5014.08
5080.5879.4981.0480.370.800.4619.63
2574.2873.8176.3974.831.380.7925.17
12.567.9868.1371.7569.282.131.2330.72
6.2561.6762.4567.1063.742.931.6936.26
3.12555.3756.7762.4558.203.752.1641.80
1.56249.0751.0857.8052.654.572.6447.35
0.78142.7745.4053.1547.115.403.1252.89

Results: ASC-Treated Human Squamous Carcinoma Cell Line NCI-H520.

TABLE 8
Results of cytotoxicity of apple stem cell extract on lung cancer
cell line NCI-H520 measured by MTT assay (performed in triplicate).
Values of replicates are % of cell death.
Concen-%
tration*replicatereplicatereplicateMean ofLive
(μg/ml)123replicatesSDSEMcell
25088.2889.2987.7388.430.790.4611.57
10078.1379.1978.1378.480.610.3521.52
5067.9869.0968.5468.540.560.3231.46
2557.8358.9958.9458.590.660.3841.41
12.547.6848.8949.3448.640.860.5051.36
6.2537.5338.7939.7538.691.110.6461.31
3.12527.3728.6930.1528.741.390.8071.26
1.56217.2218.5920.5618.791.680.9781.21
0.781 7.07 8.4810.96 8.841.971.1491.16

Results: ASC-treated Lung Epithelial Cell Line L132.

TABLE 9
Results of cytotoxicity of apple stem cell extract on
lung epithelial cell line L132 as measured by MTT assay
(performed in triplicate). Values of replicates are % of cell death.
Concen-rep-rep-rep-Mean%
tration*licatelicatelicateofLive
(μg/ml)123replicatesSDSEMcell
25039.5142.5244.0342.022.301.3357.98
10032.9334.4433.6933.690.750.4466.31
5030.6028.9430.5230.020.940.5469.98
2527.9627.8127.1327.630.440.2572.37
12.525.6225.5525.4025.520.120.0774.48
6.2523.1320.8718.6120.872.261.3179.13
3.12513.3411.0811.8312.081.150.6687.92
1.562 6.56 7.31 9.57 7.811.570.9192.19
0.781 8.06 4.30 3.54 5.302.421.4094.70

Summary Results: Cytotoxicity of Apple Stem Cell Extracts.

TABLE 10
IC50 values of the apple stem cell extracts on the on the target
cell lines as determined by MTT assay.
Target Cell
LineIC50
A54912.58
NCI-H52010.21
L132127.46

Apple stem cell extracts killed lung cancer cells lines A549 and NCI-H520 at relatively low doses: IC50s were 12.58 and 10.21 μg/ml respectively as compared to 127.46 μg/ml for the lung epithelial cell line L132. Near complete anti-tumor activity was seen at a dose of 250 μg/ml in both the lung cancer cell lines. This same dose spared more than one half of the L132 cells. See Tables 7-10. The data revealed that apple stem cell extract is cytotoxic to lung cancer cells while sparing lung epithelial cells. FIG. 6 shows a graphical representation of cytotoxicity activity of apple stem cell extracts on lung tumor cell lines A549, NCIH520 and on L132 lung epithelial cell line (marked “Normal”). The γ-axis is the mean % of cells killed by the indicated treatment compared to unexposed cells. The difference in cytotoxicity levels was statistically significant at p≤05.

Example 9

The experiment of Example 7 was repeated substituting other plant materials for ASC. Plant stem cell materials included Dandelion Root Extract (DRE), Aloe Vera Juice (AVJ), Apple Fiber Powder (AFP), Ginkgo Leaf Extract (GLE), Lingonberry Stem Cells (LSC), Orchid Stem Cells (OSC) as described in Examples 1 and 2. The concentrations of plant materials used were nominally 250, 100, 50, 25, 6.25, 3.125, 1.562, and 0.781 μg/mL. These materials were tested only for cells the human lung epithelial cell line L132 (as a proxy for normal epithelial cells) and for cells of the human lung adenocarcinoma cell line A549 (as a proxy for lung cancer cells).

A549 cells lung cancer cell line cytotoxicity results for each of the treatment materials.

DRE-Treated Lung Cancer Cell Line A549 Cells.

TABLE 11
Triplicate results of cell death of DRE-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-DRE-Live
treated A549% of cell deathMeanSDSEMcell
25080.4376.4074.8477.232.891.6722.77
10067.6075.2663.7768.885.853.3831.12
5065.3262.9459.9462.732.701.5637.27
2556.8357.9748.1454.315.383.1145.69
6.2555.5949.6949.1751.483.572.0648.52
3.12551.7648.4545.3448.523.211.8551.48
1.56243.6944.0036.0241.244.522.6158.76
0.78137.4726.1919.5727.749.055.2372.26

AVJ-Treated Lung Cancer Cell line A549 Cells.

TABLE 12
Triplicate results of cell death of AVJ-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-AVJ-treatedLive
A549% of cell deathMeanSDSEMcell
25076.8178.1675.8876.951.140.6623.05
10076.4075.2673.7175.121.350.7824.88
5065.3266.1559.9463.803.371.9536.20
2550.1048.4556.6351.734.322.5048.27
6.2547.5246.3846.1746.690.720.4253.31
3.12539.8638.6143.7940.752.701.5659.25
1.56232.4019.7730.5427.576.823.9472.43
0.78120.5015.6332.1922.778.514.9277.23

AFP-Treated Lung Cancer Cell line A549 Cells.

TABLE 13
Triplicate results of cell death of AFP-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-AFP-treatedLive
A549% of cell deathMeanSDSEMcell
25086.1387.9986.6586.920.960.5613.08
10079.5081.0682.0980.881.300.7519.12
5073.6072.4671.3372.461.140.6627.54
2568.0167.7066.9867.560.530.3132.44
6.2560.8762.1160.7761.250.750.4338.75
3.12549.4851.7650.7250.661.140.6649.34
1.56240.0641.7247.0042.933.622.0957.07
0.78139.2337.7836.8537.961.200.6962.04

GLE-treated Lung Cancer Cell line A549 Cells.

TABLE 14
Triplicate results of cell death of GLE-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-GLE-treatedLive
A549% of cell deathMeanSDSEMcell
25088.4291.4990.4490.121.560.909.88
10084.3983.7783.1683.770.610.3516.23
5079.4781.5876.7579.272.421.4020.73
2573.6072.5471.4072.511.100.6327.49
6.2562.8963.6859.9162.161.991.1537.84
3.12550.1854.4751.8452.162.171.2547.84
1.56246.9344.3043.3344.851.861.0755.15
0.78139.5639.3940.9639.970.870.5060.03

LSC-treated lung cancer cell lines A549 cells.

TABLE 15
Triplicate results of cell death of LSC-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration
(μg/mL)% Live
LSC treated A549% of cell deathMeanSDSEMcell
25077.5478.8578.2078.200.650.3821.80
10077.1476.0476.5976.590.550.3223.41
5066.4268.5266.8267.251.120.6532.75
2559.8067.2264.1663.733.732.1536.27
6.2550.5348.8248.0749.141.260.7350.86
3.12541.1443.6042.7242.491.240.7257.51
1.56239.4739.7440.6139.940.600.3460.06
0.78138.5531.8336.7935.723.482.0164.28

OSC-treated Lung Cancer Cell line A549 Cells.

TABLE 16
Triplicate results of cell death of OSC-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration
(μg/mL)% Live
OSC-treated A549% of cell deathMeanSDSEMcell
25070.8465.5771.4969.303.251.8730.70
10048.8150.9157.2852.334.412.5547.67
5046.5949.6053.3349.843.381.9550.16
2538.7740.8136.5838.722.111.2261.28
6.2535.7440.7941.0539.193.001.7360.81
3.12534.5533.6837.0235.081.731.0064.92
1.56233.8633.4427.6331.643.482.0168.36
0.78121.3220.0034.8225.388.214.7474.62

L132 cells (“normal” lung epithelial cell line) cytotoxicity results for each of the treatment materials.

DRE-Treated Lung Epithelial Cell Line L132 cells.

TABLE 17
Triplicate results of cell death of DRE-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration% of %
(μg/mL)cellLive
DRE-treated L132deathMeanSDSEMcell
25086.6686.6186.6686.640.030.0213.36
10076.2977.3976.8476.840.550.3223.16
5065.9268.1767.0167.031.130.6532.97
2555.5458.9557.1957.231.700.9842.77
6.2545.1749.7347.3747.422.281.3252.58
3.12534.8040.5037.5437.612.851.6562.39
1.56224.4231.2827.7227.813.431.9872.19
0.78114.0522.0617.8918.004.012.3182.00

AVJ-Treated Lung Epithelial Cell Line L132 cells.

TABLE 18
Triplicate results of cell death of AVJ-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration % of %
(μg/mL)cellLive
AVJ-treated L132deathMeanSDSEMcell
25057.0355.9353.6255.531.741.0044.47
10050.9949.7847.0449.272.031.1750.73
5044.9543.6340.4543.012.311.3456.99
2538.9137.4933.8636.752.601.5063.25
6.2532.8831.3427.2830.502.891.6769.50
3.12526.8425.1920.6924.243.181.8475.76
1.56220.8019.0514.1117.983.472.0082.02
0.78114.7612.90 7.5211.733.762.1788.27

AFP-Treated Lung Epithelial Cell Line L132 cells.

TABLE 19
Triplicate results of cell death of AFP-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
AFP-treated L132% of cell deathMeanSDSEMcell
25056.1555.4357.1956.260.880.5143.74
10049.9548.2447.6448.611.200.6951.39
5043.7441.0538.0940.962.831.6359.04
2537.5433.8628.5433.324.532.6166.68
6.2531.3426.6718.9925.676.243.6074.33
3.12525.1419.489.4418.027.954.5981.98
1.56218.9412.2910.8714.034.312.4985.97
0.78112.73 5.10 6.81 8.214.002.3191.79

GLE-Treated Lung Epithelial Cell Line L132 cells.

TABLE 20
Triplicate results of cell death of GLE-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
GLE-treated L132% of cell deathMeanSDSEMcell
25084.4283.2083.0883.570.740.4316.43
10080.0579.2978.5979.310.730.4220.69
5072.7571.5974.1072.811.260.7227.19
2580.0581.8679.9980.631.060.6119.37
6.2568.2670.1368.2668.881.080.6231.12
3.12560.6263.0760.6261.441.410.8238.56
1.56248.0748.7748.8348.560.420.2451.44
0.78146.2745.5746.6746.170.560.3253.83

LSC-Treated Lung Epithelial Cell Line L132 cells.

TABLE 21
Triplicate results of cell death of LSC-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
LSC-treated L132% of cell deathMeanSDSEMcell
25086.4185.8285.7686.000.350.2014.00
10081.2181.2779.9980.820.720.4219.18
5075.9674.7473.5174.741.230.7125.26
2574.7472.7571.4772.991.650.9527.01
6.2570.1368.3268.2668.901.060.6131.10
3.12554.0358.0553.4455.172.511.4544.83
1.56253.9751.9851.9852.641.150.6647.36
0.78146.7945.6244.9245.78 0.940.54 54.22

OSC-Treated Lung Epithelial Cell Line L132 cells.

TABLE 22
Triplicate results of cell death of OSC-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration %
(μg/mL)Live
OSC-treated L132% of cell deathMeanSDSEMcell
25061.8462.3760.4461.551.000.5738.45
10054.1453.4452.1053.231.040.6046.77
5042.9442.3040.3241.851.370.7958.15
2535.9434.4833.3134.581.320.7665.42
6.2533.9632.6732.0332.890.980.5767.11
3.12527.4826.2026.7226.800.650.3773.20
1.562 9.80 7.29 7.35 8.151.430.8391.85
0.781 7.29 8.98 8.05 8.110.850.4991.89

Calculated values.

TABLE 23
Calculated IC50 doses (ug/mL) and therapeutic ratios
(IC50 for L132 cells/IC50 for A549 cells) for each
treatment material. Values greater than one indicate
that a material would be more selective in killing cancer
cells than normal cells. ASC results imported from
Example 8. These studies indicate that at least
some of the materials may be effective anti-cancer agents.
ASC has outstanding selectivity compared to other materials.
ASCDREAVJAFPGLELSCOSC
A549 12.589.82211.4811.9811.1 13.733.9 
IC50
L132 127.4656.88 62.6682.6577.6369.26715.38
IC50
Ther.10.15.8 5.56.97.0 0.70.5
Ratio

Full text: Click here
Patent 2024
14-3-3 Proteins 43-63 61-26 A549 Cells Action Potentials Adenocarcinoma of Lung Aloe Aloe vera Antineoplastic Agents Biological Assay Biological Factors Biological Processes Bromides Cardiac Arrest Cell Death Cell Extracts Cell Lines Cell Proliferation Cells Cell Survival Cytotoxin diphenyl DNA Replication Epistropheus Epithelial Cells Fibrosis Formazans Genetic Selection Ginkgo biloba Ginkgo biloba extract Homo sapiens Lingonberry Lung Lung Cancer Lung Neoplasms Malignant Neoplasms Mitochondria Mitochondrial Inheritance Neoplasms Neoplastic Stem Cells Oral Cavity PEG SD-01 Penicillins Pharmaceutical Preparations Phosphates Plant Cells Plant Leaves Plant Roots Plants Powder Psychological Inhibition Saline Solution SD 31 SD 62 SEM-76 Squamous Cell Carcinoma Stem, Plant Stem Cells Streptomycin Succinate Dehydrogenase Sulfoxide, Dimethyl Taraxacum Tetrazolium Salts

Example 11

0.18 of 1-benzoyl-3-(5′-azido-1′-pentyl)pyrrolidine (14) was dissolved in 5 ml of tetrahydrofuran, and then 0.15 g of triphenylphosphine and 2 drops of water were added and refluxed overnight. After concentration under reduced pressure, 10 ml of dichloromethane was added, and washed sequentially with water and a saturated sodium chloride solution. The reaction solution was concentrated under reduced pressure, and separated by column chromatography (dichloromethane/methanol/aqueous ammonia=10:1:0.1 vol/vol/vol), to obtain 0.16 g of an oily product 1-benzoyl-3-(5′-amino-1′-pentyl)pyrrolidine (15). LCMS: 261[M+H].

The following compounds can be prepared according to the above method of preparing the compound 15 starting from the compound 12:

PreparationMS
numberName of CompoundStructure(m/z)
161-(2,6-dimethoxybenzoyl)- 3-(5′-amino-1′- pentyl)pyrrolidine[Figure (not displayed)]
321 (M + 1)
171-(2,6-dimethoxybenzoyl)- 3-(6′-amino-1′- hexyl)pyrrolidine[Figure (not displayed)]
335 (M + 1)
181-benzoyl-3-(6′-amino-1′- hexyl)pyrrolidine[Figure (not displayed)]
275 (M + 1)
191-furoyl-3-(5′-amino-1′- pentyl)pyrrolidine[Figure (not displayed)]
251 (M + 1)
19-11-furoyl-3-(6′-amino-1′- hexyl)pyrrolidine[Figure (not displayed)]
265 (M + 1)
201-(2-thienylformyl)-3-(5′- amino-1′-pentyl)pyrrolidine[Figure (not displayed)]
267 (M + 1)
20-11-(2-thienylformyl)-3-(6′- amino-1′-hexyl)pyrrolidine[Figure (not displayed)]
281 (M + 1)
211-(2-pyrrolylformyl)-3-(5′- amino-1′-pentyl)pyrrolidine[Figure (not displayed)]
250 (M + 1)
221-(2-pyrrolylformyl)-3-(6′- amino-1′-hexyl)pyrrolidine[Figure (not displayed)]
264 (M + 1)
231-(2-pyrrolidinylformyl)-3- (5′-amino-1′- pentyl)pyrrolidine[Figure (not displayed)]
254 (M + 1)
23-11-(2-pyrrolidinylformyl)-3- (6′-amino-1′- hexyl)pyrrolidine[Figure (not displayed)]
268 (M + 1)
241-(2-tetrahydrofurylfuryl)-3- (5′-amino-1′- pentyl)pyrrolidine[Figure (not displayed)]
255 (M + 1)
251-(2- tetrahydrothienylformyl)-3- (5′-amino-1′- pentyl)pyrrolidine[Figure (not displayed)]
271 (M + 1)
25-11-(2- tetrahydrothienylformyl)-3- (6′-amino-1′- hexyl)pyrrolidine[Figure (not displayed)]
285 (M + 1)
25-21-(3-fluoro-2-thienylformyl)- 3-(5′-amino-1′- pentyl)pyrrolidine[Figure (not displayed)]
285 (M + 1)
25-31-(3-fluoro-2- pyrrolylformyl)-3-(5′-amino- 1′-pentyl)pyrrolidine[Figure (not displayed)]
268 (M + 1)
25-41-(3-fluoro-2-furylformyl)-3- (5′-amino-1′- pentyl)pyrrolidine[Figure (not displayed)]
269 (M + 1)
261-(2-indolylformyl)-3-(5′- amino-1′-pentyl)pyrrolidine[Figure (not displayed)]
300 (M + 1)
26-11-(2-indolylformyl)-3-(6′- amino-1′-hexyl)pyrrolidine[Figure (not displayed)]
314 (M + 1)
271-(2-benzofurylformyl)-3- (5′-amino-1′- pentyl)pyrrolidine[Figure (not displayed)]
301 (M + 1)
27-11-(2-benzofurylformyl)-3- (6′-amino-1′- hexyl)pyrrolidine[Figure (not displayed)]
315 (M + 1)
27-21-(2- benzyltetrahydrofurylfuryl)- 3-(5′-amino-1′- pentyl)pyrrolidine[Figure (not displayed)]
303 (M + 1)

[Figure (not displayed)]

Full text: Click here
Patent 2024
Ammonia Chromatography Lincomycin Methanol Methylene Chloride Oils Pressure pyrrolidine Saline Solution tetrahydrofuran triphenylphosphine

Example 5

2F2B mouse endothelial cells (ATCC, Manassas, Va., USA) were incubated for 2 days in media, upregulated with 10 nM nicotine or 10 μM angiotensin II to express αvβ3 integrin. The cells may then be exposed to integrin-targeted versus nontargeted paclitaxel-GNB nanoparticle treatments with varying drug loads (0.5 to 5 mole %). The cells were also exposed to equivalent amounts of free drug for 30 minutes as a control. Unbound nanoparticles or unabsorbed drug was washed from wells, and cultures were grown for 6 days, and attached viable cell numbers were counted. The number of cells was significantly decreased when treated with paclitaxel-PC prodrug nanoparticles (PC-PTXL), versus equivalent amounts of free Taxol, αvβ3 integrin-targeted nanoparticles alone, or saline (FIG. 9).

Full text: Click here
Patent 2024
130-nm albumin-bound paclitaxel Angiotensin II Cells Endothelial Cells Integrins Mus Nevus Nicotine Paclitaxel Pharmaceutical Preparations Prodrugs Saline Solution Taxol

Top products related to «Saline Solution»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Belgium, Italy, Switzerland, Ireland, Spain, Netherlands, Poland, Denmark, India, Norway, Austria, Sweden, Macao, Singapore, Israel, Sao Tome and Principe, New Zealand, Hong Kong, Portugal, Panama, Malaysia, Lithuania, Brazil
Phosphate-buffered saline (PBS) is a widely used buffer solution in biological research and laboratory procedures. It is a balanced salt solution that maintains a physiological pH and osmolarity, making it suitable for a variety of applications. PBS is primarily used to maintain the viability and integrity of cells, tissues, and other biological samples during various experimental protocols.
Sourced in United States, Germany, United Kingdom, Italy, Poland, Spain, France, Sao Tome and Principe, Australia, China, Canada, Ireland, Japan, Macao, Switzerland, India, Belgium, Denmark, Israel, Brazil, Austria, Portugal, Sweden, Singapore, Czechia, Malaysia, Hungary
PBS (Phosphate-Buffered Saline) is a widely used buffer solution in biological and medical research. It is a balanced salt solution that maintains a stable pH and osmotic pressure, making it suitable for a variety of applications. PBS is primarily used for washing, diluting, and suspending cells and biological samples.
Sourced in United States, Germany, China, United Kingdom, Morocco, Ireland, France, Italy, Japan, Canada, Spain, Switzerland, New Zealand, India, Hong Kong, Sao Tome and Principe, Sweden, Netherlands, Australia, Belgium, Austria
PVDF membranes are a type of laboratory equipment used for a variety of applications. They are made from polyvinylidene fluoride (PVDF), a durable and chemically resistant material. PVDF membranes are known for their high mechanical strength, thermal stability, and resistance to a wide range of chemicals. They are commonly used in various filtration, separation, and analysis processes in scientific and research settings.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, Germany, United Kingdom, Italy, China, Japan, France, Canada, Sao Tome and Principe, Switzerland, Macao, Poland, Spain, Australia, India, Belgium, Israel, Sweden, Ireland, Denmark, Brazil, Portugal, Panama, Netherlands, Hungary, Czechia, Austria, Norway, Slovakia, Singapore, Argentina, Mexico, Senegal
Triton X-100 is a non-ionic surfactant commonly used in various laboratory applications. It functions as a detergent and solubilizing agent, facilitating the solubilization and extraction of proteins and other biomolecules from biological samples.
Sourced in United States, Germany, United Kingdom, China, Canada, Japan, Italy, France, Belgium, Switzerland, Singapore, Uruguay, Australia, Spain, Poland, India, Austria, Denmark, Netherlands, Jersey, Finland, Sweden
The FACSCalibur is a flow cytometry system designed for multi-parameter analysis of cells and other particles. It features a blue (488 nm) and a red (635 nm) laser for excitation of fluorescent dyes. The instrument is capable of detecting forward scatter, side scatter, and up to four fluorescent parameters simultaneously.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.

More about "Saline Solution"

Saline solution, also known as physiological saline or normal saline, is a balanced electrolyte solution that is widely used in various medical and research applications.
This solution is typically composed of sodium chloride (NaCl) dissolved in water, providing a concentration that is compatible with the human body's fluid and electrolyte balance.
Saline solutions are essential for maintaining proper hydration and electrolyte levels, and are commonly employed in intravenous (IV) therapies, cell culture experiments, and a variety of laboratory procedures.
These solutions can also be used to dilute or reconstitute other substances, such as Fetal Bovine Serum (FBS), Phosphate-Buffered Saline (PBS), and Bovine Serum Albumin (BSA).
In addition to their medical applications, saline solutions are often used in conjunction with other laboratory reagents and equipment, such as PVDF (polyvinylidene fluoride) membranes, DMSO (Dimethyl Sulfoxide), Penicillin/Streptomycin, Triton X-100, and FACSCalibur flow cytometry systems.
PubCompare.ai can help optimize your saline solution research by locating the best protocols from literature, preprints, and patents, ensuring reproducibility and accuracy.
Leveraging data-driven comparisons, the platform enables you to identify the most effective saline solution formulations and procedures, enhancing your research today.
Whether you're working with cell cultures, conducting immunological assays, or performing any other laboratory-based experiments, PubCompare.ai can be a valuable tool in your research arsenal.