The largest database of trusted experimental protocols
> Chemicals & Drugs > Inorganic Chemical > Sodium polymetaphosphate

Sodium polymetaphosphate

Sodium polymetaphosphate is a complex inorganic compound with a chemical structure consisting of repeating sodium metaphosphate units.
It is commonly used in various industrial and commercial applications, such as water treatment, food additives, and detergents.
This versatile compound offers a range of desirable properties, including water solubility, chelating abilities, and the capacity to modify the viscosity of solutions.
Researchers and professionals can leverage PubCompare.ai's cutting-edge AI platform to effortlessly locate, compare, and optimize research protocols related to sodium polymetaphospahte, ensuring they find the best approach for their specific needs.
With seamless, data-driven research capabilities, PubCompare.ai empowers users to make informed decisions and drive their projects forward efficiently.

Most cited protocols related to «Sodium polymetaphosphate»

The polymer used to prepare all concretes presented in the study was synthetic vinyl-ester resin of low viscosity (350 ± 50 mPa·s at 25 °C) and high flexural strength and tensile strength (declared by the producer as respectively 110 MPa and 75 MPa). Therefore, concretes made from this resin should retain the high mechanical strength in long-term exploitation, even when exposed to aggressive media. The chemical formula of vinyl-ester (the polyester modified by introducing the fragments of the corresponding bisphenol epoxy resin to the structure of the molecule) is presented in Figure 3.
The fillers included coarse and fine aggregates, the same as those used in ordinary Portland cement concrete, two commercially available quartz powders (produced by mechanical milling of quartz sand), and three by-products of the combustion of two fossil fuels—hard coal and lignite. The fillers included in particular:

conventional coarse aggregate: natural gravel of a fraction of 4/8 mm (marked G),

conventional fine aggregate: standard sand (acc. to the EN-196-1 standard) or river sand of a fraction of 0/2 mm (marked S),

conventional commercial microfiller: two quartz powders (marked Q1 and Q2),

sustainable microfiller substitute: siliceous fly ash (conventional hard coal combustion by-product, marked FAS) and two fluidized fly ashes (hard coal FBC by-product, marked FAF, and lignite FBC by-product, marked FAF2).

Figure 4 presents the particle size distribution plots and SEM micrographs of all microfillers listed above. The particle size distribution measurements were done by the laser scattering method using the laser analyzer Horiba LA-300 (Kyoto, Japan). The method based on the Mie theory [23 ] involved passing laser beams through a 0.2% sodium polymetaphosphate solution containing microfiller particles (additionally dispersed by ultrasounds) and determining the particle size (in the range of 0.01–600 μm). The SEM micrographs were made with a Hitachi TM-1000 Scanning Electron Microscope (Tokyo, Japan) using a back scattered electrons (BSE) detector. The values of statistical parameters describing the fillers’ particle size distributions, as well as specific surface area (calculated from the distribution, making an assumption about the spherical shape of the particles) are given in Table 1.
The microfillers were characterized by different particle morphologies and grading. The lowest values of maximum particle size, Dmax (67.52 µm and 58.95 µm), were registered in the case of quartz powders (Q1 and Q2). On the contrary, siliceous fly ash (FAS) contained the largest particles (size up to 200 µm), and its particle size distribution showed the highest values of the mode and median (4.96 µm and 25.30 µm, respectively). In the case of fly ashes from fluidized combustion (FAF and FAF2), the mode was 0.25 µm, which was 20 times lower compared to siliceous fly ash, while the median was 0.26 µm or 0.27 µm—values two orders of magnitude lower than in the case of siliceous fly ash. It is worth noting that the grading of both fluidized fly ashes was described by a bimodal distribution. The abovementioned mode value applied to the increased number of particles smaller than 1 µm. A similar mode value (0.28 µm) was observed in the case of quartz powder Q1, which was why fly ashes from FBC seemed to be more similar to this conventional quartz filler in terms of grading. The fly ash originating from lignite fluidized bed combustion (FAF2) was slightly thicker and had a smaller specific surface area than the fly ash from hard coal fluidized bed combustion (FAF). Both, however, had a more developed specific surface area than quartz powders. Meanwhile, in terms of morphology, siliceous fly ash containing spherical grains was more similar to quartz powders, which contained angular grains resulting from mechanical milling of quartz.
The density was also determined for all microfillers. The test was performed in a Le Chatelier volumenometer (consisting of a flat-bottomed flask) according to the procedure described in the EN 1936 standard. The results of density are given in Table 1.
Polymer concrete-like composites prepared for testing contained vinyl-ester binder, conventional fine (S) and coarse (G) aggregate, and a mix of quartz powder (Q1 or Q2) and chosen fly ash (FAS, FAF, or FAF2). The quantitative compositions of tested composites are presented on Figure 5. The compositions were determined according to the statistical Box design (variant of the CCD design [24 (link)]) assuming three factors that were expressed as the mass ratios of the components. The first variable was the ratio of the amount of binder and the amount of basic aggregate (i.e., gravel and sand), B/(G + S), in the range 6.0–10.0. The second variable was the ratio of the amount of binder and the total amount of microfiller fraction (including quartz powder and fly ash), B/(FA + Q), in the range of 0.4–0.6. The third variable was the ratio of the amount of fly ash and the amount of microfiller fraction, FA/(FA + Q), in the range of 0.0–1.0. The use of such a design allowed obtaining composites of various quantitative composition, which were predestined for statistical analysis. The quantitative compositions were identical to the compositions of concretes tested in previously mentioned studies, so it was possible to compare the results.
Specimens tested in the presented research were the halves of prisms with dimensions of 40 × 40 × 160 mm3 remaining after the flexural test (there-point bending test). The presented compressive strength values were the average (of 4 or 2 results). Specimens were stored in the laboratory conditions for periods of 14 days (time of curing of the polymer concretes recommended in the EN 1542 standard), 9 years in the case of concretes with fly ashes remaining from hard coal combustion (FAF and FAS), or 9.5 years in the case of concretes with fly ash remaining from lignite combustion (FAF2).
The change in the compressive strength in time was considered the measure of the long-term performance. It was legitimate to speak of “change” in compressive strength, because the specimens originated from the same prisms, and the results obtained for the halves of the same prisms were compared. Each time, one half of a prism was compressed after 14 days, and the other half was stored and destroyed after 9 or 9.5 years.
Before the destructive tests were carried out, the specimens were also examined in terms of the volumetric density. The density was determined according to the method described in the EN 12390-7 standard. The density was calculated on the basis of measurements of mass and volume obtained by water displacement (i.e., the method for determining the density of irregularly-shaped specimens; in this particular case, the abovementioned halves of prisms remaining after flexural test).
Full text: Click here
Publication 2020

EXAMPLE 1

An effervescent cleansing composition was prepared according to the formulation reported in Table 1. Phase A was dry blended in a high speed shearing mixer. Fragrance was then sprayed onto the resultant powder as a Phase B. Three grams of the resultant powder are then placed into a pocket of a 5 cm by 8 cm oval pouch. Walls of the pouch are formed by heat sealing the circumferences of a non-woven spun lace web to a non-woven SMMS composite web. The spun lace web is a material whose fibers have been oriented in a direction perpendicular of the major axis of the pouch (i.e. in the cross direction).

TABLE I
INGREDIENTWEIGHT %
PHASE A
Sodium Bicarbonate34.5
Citric Acid (Anhydrous)40.4
Sodium Cocoyl Isethionate (Powder)11.6
Sodium Sesquicarbonate5.0
Lipothix 100B ® (Potassium0.5
Polymetaphosphate/Bicarbonate 70:30)
Optigel SH ® (Sodium Magnesium Silicate)1.0
Kelacid ® (Alginic Acid)1.0
Sorbitol5.0
PHASE B
Fragrance1.0

EXAMPLE 2

Another effervescent cleansing composition was prepared according to the formulation reported in Table II. The composition is then sealed into a pouch as described in Example 1.

TABLE II
INGREDIENTWEIGHT %
PHASE A
Sodium Bicarbonate32.3
Citric Acid (Anhydrous)41.1
Sodium Cocoyl Isethionate (Powder)11.6
Sodium Sesquicarbonate5.0
Lipothix 100B ® (Potassium0.5
Polymetaphosphate/Bicarbonate 70:30)
Optigel SH ® (Sodium Magnesium Silicate)1.0
Kelacid ® (Alginic Acid)1.0
Sorbitol5.0
Laracare A200 ® (Arabinogalactan)1.0
Ascorbic Acid0.5
PHASE B
Fragrance1.0

EXAMPLE 3

A face cleansing effervescent composition was prepared according to the formulation reported in Table III. The composition is then sealed into a pouch as described in Example 1.

TABLE III
INGREDIENTWEIGHT %
PHASE A
Sodium Bicarbonate33.6
Citric Acid (Anhydrous)39.0
Sodium Cocyl Isethionate (Powder)3.0
Sodium Methyl Cocoyl Taurate6.0
Sodium Lauryl Sulfate2.5
Sodium Sesquicarbonate5.0
Lipothix 100B ® (Potassium0.5
Polymetaphosphate/Bicarbonate 70:30)
Optigel SH ® (Sodium Magnesium Silicate)2.0
Tapioca5.5
Methyl Gluceth 20-Benzoate2.0
Guar Hydroxypropyl Trimonium Chloride0.25
PHASE B
Fragrance0.65

Full text: Click here
Patent 2005

EXAMPLE 1

An effervescent cleansing composition was prepared according to the formulation reported in Table I. Phase A was dry blended in a high speed shearing mixer. Fragrance was then sprayed onto the resultant powder as a Phase B. Three grams of the resultant powder were then placed into a two inch by three inch pouch formed of non-woven rayon. All sides were closed by double stitching with thread.

TABLE I
INGREDIENTWEIGHT %
PHASE A
Sodium Bicarbonate34.5
Citric Acid (Anhydrous)40.4
Sodium Cocoyl Isethionate (Powder)11.6
Sodium Sesquicarbonate5.0
Lipothix 100B ® (Potassium0.5
Polymetaphosphate/Bicarbonate 70:30)
Optigel SH ® (Sodium Magnesium Silicate)1.0
Kelacid ® (Alginic Acid)1.0
Sorbitol5.0
PHASE B
Fragrance1.0

Full text: Click here
Patent 2005

EXAMPLE 3

Another personal care cleansing article of the effervescent type is prepared having the composition reported in Table II. Phase A is dry blended in a high speed shearing mixer. Fragrance is then sprayed onto the resultant powder as a Phase B. Only those particles with average particle size from 75 to 900 micron are employed for the cleansing composition. These are separated by sifting through a set of wire screens. Three grams of the selected sifted powder are then placed into a 5 by 7.5 cm square pouch formed of non-woven rayon/polyester. All sides are closed by thermal heat sealing.

TABLE II
IngredientRelative Weight
PHASE A
Sodium Bicarbonate33.6
Citric Acid (Anhydrous)39.0
Sodium Cocoyl Isethionate (Powder)3.0
Sodium Methyl Cocoyl Taurate6.0
Sodium Lauryl Sulfate2.5
Sodium Sesquicarbonate5.0
Lipothix 100B ® (Potassium0.5
Polymetaphosphate/Bicarbonate 70:30)
Optigel SH ® (Sodium Magnesium Silicate)2.0
Tapioca1.75
Methyl Gluceth 20-Benzoate2.0
Guar Hydroxypropyl Trimonium Chloride4.0
PHASE B
Fragrance0.65

Full text: Click here
Patent 2007

EXAMPLE 4

A still further effervescent cleansing composition according to the present invention may be prepared according to the formulation reported under Table IV. Phase A is prepared by dry mixing of the ingredients in a high speed shear mixer. Three grams of resultant powder are placed into a two inch by three inch pouch formed of non-woven cotton polyester (50:50). The mesh size of the pouch walls is sufficient to allow transfer of dissolved ingredients. All sides of the pouch are welded by ultrasonic heat to insure against powder escaping from the pouch.

TABLE IV
INGREDIENTWEIGHT %
PHASE A
Potassium Bicarbonate29.5
Lactic Acid (Anhydrous)45.4
Sodium Sulfosuccinate11.6
Sodium Sesquicarbonate5.0
Lipothix 100B ® (Potassium0.5
Polymetaphosphate/Bicarbonate 70:30)
Optigel SH ® (Sodium Magnesium Silicate)1.0
Kelacid ® (Alginic Acid)1.0
Sorbitol5.0
PHASE B
Fragrance1.0
Licorice Extract0.1

Full text: Click here
Patent 2005

Most recents protocols related to «Sodium polymetaphosphate»

Not available on PMC !

Example 1

Typical flavor systems of oral care compositions (liquid peppermint flavor only) are tested against the defined organoleptic criteria defined in Table 1. Oxidized note criteria are listed in Table 2. The organoleptic properties are listed in Table 3. The quality of base coverage performance is ranked on a scale of 0 to 5 by a flavor expert.

TABLE 1
Base Coverage Scores.
Base
CoverageComments
Score5Highest organoleptic performance of base coverage,
pleasant brushing experience similar to a traditional
toothpaste, no underlying tastes of active ingredients,
solvents, polymers, etc. No lingering aftertaste.
Score4Pleasant brushing experience. No underlying tastes
of active ingredients, solvents, polymers, etc. Slight
negative lingering aftertaste from the active
ingredient.
Score3Underlying taste of active ingredients, solvents,
polymers, etc. are present during brushing. Negative
lingering aftertaste from the active ingredient.
Score2Perceivable taste of active ingredients, solvents,
polymers, etc. are present during brushing. Negative
lingering aftertaste from the formula ingredients.
Score1Minimally pleasant experience with strong taste of
active ingredients, solvents, polymers, etc. Negative
lingering aftertaste from formula ingredients.
Score0Unpleasant brushing experience, obvious and un-
pleasant tastes of active ingredients, solvents,
polymers, etc. Negative lingering aftertaste from
formula ingredients.

Quality of oxidized taste notes is ranked on a scale of 0 to 5 by a flavor expert. Oxidized taste notes are observed as flavor ingredients are oxidized over time. Oxidized flavors create unpleasant taste attributes and off-tastes in oral care formulas.

TABLE 2
Oxidized Note
Oxidized
NoteComments
Score5Extreme amount of an oxidized note, sharp, and
harsh taste that lingers
Score4High oxidized note, unacceptable
Score3Moderate oxidized note that is borderline acceptable
Score2Perceivable oxidized note that is acceptable
Score1Slight oxidized note that may not be detectable by a
non-expert
Score0No perceived oxidized note

TABLE 3
Comparison of Flavor Systems in Oral Care Formulations:
Stability
Flavoring Organoleptic Control RoomAccelerated
SystemCriteriaInitialTempAged Range
Toothpaste ABase Coverage:3.52.52
(MPS)Oxidized Notes:2.544
Toothpaste BBase Coverage:332
(4% HP)Oxidized Notes:33.54

TABLE 4
Toothpaste A Formulation.
IngredientWeight %
Potassium peroxymonosulfate0.1-5% (e.g., 1%)
Calcium pyrophosphate21-30% (e.g., 25%)
PEG/PPG triblock copolymer25-35% (e.g., 31%)
(e.g., Pluronic L35)
Polyvinylpyrrolidone1-15% (e.g., 5%)
PEG-PPG random copolymer6-15% (e.g., 10%)
Polyethylene glycol10-20% (e.g., 12.5%)
Polyphosphate2.5-5% (e.g., 4%)
Anionic Surfactant (e.g., 1-5% (e.g., 2%)
sodium lauryl sulfate)
Zwitterionic Surfactant (e.g.,0.1-1% (e.g., 0.3%)
cocamidopropyl betaine)
Fluoride source0.1 to 2% (e.g., 0.75%)
Antioxidant0 to 0.3% (e.g., 0.03%)
Thickener2.5-5% (e.g., 4%)
Totalca. 100

TABLE 5
Toothpaste B Formulation.
IngredientsWeight (%)
Humectants45-60% (e.g., 55%)
(e.g., non-crystal sorbitol, 99.5%
vegetable refined glycerin polyhydric
alcohols, polyoxyethylene glycols)
Abrasives10%-20% (e.g., 15%)
(e.g., high cleaning silica, potassium
silicate, perlite, synthetic amorphous
silica, synthetic abrasive silica,
core shell silica, precipitated silica,
precipitated calcium carbonate,
dicalcium phosphate, calcium
carbonate, sodium bicarbonate)
Thickening Agents15%-25% (e.g., 19.5)
(e.g., thickening silica, xanthan gum,
gums, carbomers, carrageenans, sodium
carboxymethyl cellulose, polyanionic
cellulose, fumed silica)
Foam Modulator1%-5% (e.g., 2%)
(e.g., sodium lauroyl sarcosinate, sodium
lauryl sulfate powder, sodium lauryl
sulfate liquid, polyethylene glycols)
Stain Prevention Agents0.5%-2.5% (e.g., 1.3%)
(e.g., tetrasodium pyrophosphate,
disodium pyrophosphate, sodium
tripolyphosphate, sodium
hexametaphosphate, zinc citrate)
Anticalculus/Anti tartar Agents0.5-2.5% (e.g., 1.30)
(e.g., stannous ion sources, poly-
carboxylate polymers, polyamino-
propane sulfonic acid, azacycloalkane-
2,2-diphosphonates, tetrasodium pyro-
phosphates, calcium pyrophosphate,
alumina, dicalcium orthophosphate
dihydrate, n-calcium pyrophosphate,
tricalcium phosphate, calcium polymeta-
phosphate, insoluble sodium
polymetaphosphate)
Anticariogenic Agents0.5%-2% (e.g., 0.8)
(e.g., fluoride ion sources, stannous ion
sources, xylitol, sodium monofluoro-
phosphate)
Hydrogen Peroxide1%-5% (e.g., 4%)
Nutrients, Colorants, Flavoring agents, q.s.
Saliva stimulating source, Desensitizing
agents, Preservatives,
Antioxidants, Water, pH Modifiers

Full text: Click here
Patent 2023

Example 1

Approximately 100 gram samples are prepared in accordance with polymetaphosphate composition formula 1 wherein X sodium and M calcium or magnesium, respectively. The samples are each prepared by mixing together sufficient powdered sodium phosphate dehydrate dibasic, ammonium phosphatedibasic and either calcium of magnesium oxide in accordance with formula 1 in amounts sufficient to yield approximately 100 grams of polymetaphosphate. The samples are well blended and poured into a crucible (part number C42, 4.2″ top diameter, 6.45 in height, available from Sundance Art Glass, 6052 Foster Rd, Paradise, Calif. 95969). The crucible is left uncovered and placed into a high temperature ceramic kiln. The mixture is heated within the crucible at 260° C. per hour to about 800° C. The individual sample is held at about 800° C. for about one hour after which the furnace is turned off and the sample permitted to cool to room temperature without forced cooling. The sample then is removed from the crucible and broken up into pieces. Pieces of approximately 6 to 8 mesh on the US Sieve Series were retained for testing. The test samples then were placed in water to determine the rate of dissolution.

The results of the dissolution tests of the individual samples at room temperature (approximately 23 degrees Celsius, about 73° F.), 65 degrees Celsius (about 150° F.) and 93 degrees Celsius (about 200° F.) are shown in FIGS. 5 and 6.

Example 2

Samples are prepared and tested as in Example 1 utilizing the composition formula 2 wherein X is sodium and M calcium and magnesium, respectively. The results of the dissolution tests of the individual samples are shown in FIGS. 7 and 8. Surprisingly, the composition utilizing magnesium exhibits a lower solubility rate in both examples than the composition utilizing calcium.

The following are additional enumerated embodiments of the concepts disclosed herein.

A first embodiment which is a method of plugging the perforations in a casing which has been set in a wellbore which penetrates a subterranean formation comprising: flowing down said casing a well bore fluid having dispersed therein a plurality of substantially spherical high strength degradable compositions being sized to seal said perforations and being comprised of polymetaphosphates of the formula
AXH2PO4·2H2O+BMO+2(NH4)2HPO4−>(l/n)[XM(PO3)3]n+ammonia+waterwherein A and B are numbers of moles of reactants and the ratio of A:B is in the range of from about 1:1 to about 6:1, X is selected from Li, Na or K, M is selected from Be, Mg, Ca, Zn, Pb, Cu or Ni and n is from about 1 to about 100 or greater; and continuing the flow of said wellbore fluid until at least a portion of said perforations are sealed by said structures.

A second embodiment which is the method of the first embodiment wherein said high strength structure has a coating of a polymer selected from the group consisting of polylactide, crosslinked polylactide, polyglycolide, crosslinked polyglycolide and mixtures thereof.

A third embodiment which is the method of the first embodiment wherein said high strength structures are substantially spherical with a diameter greater than one-quarter inch.

A fourth embodiment which is the method of any of the first to third embodiments wherein X Na and M is Ca or Mg.

A fifth embodiment which is a method of constructing a downhole well tool, the method comprising: forming a structure or a solid mass being comprised of a polymetaphosphate composition of the general formula:
AXH2PO4·2H2O+BMO+2(NH4)2HPO4−>(l/n)[XM(PO3)3]n+ammonia+waterwherein A and B are numbers of moles of reactants and the ratio of A:B is in the range of from about 1:1 to about 6:1, X is selected from Li, Na or K, M is selected from Be, Mg, Ca, Zn, Pb, Cu or Ni and n is from about 1 to about 100 or greater; forming a housing which supports the structure in the well tool; incorporating the structure into the well tool; and then positioning the housing in a wellbore.

A sixth embodiment which is the method of the fifth embodiment wherein the structure has a barrier coating which at least temporarily prevents the polymetaphosphates from hydrating.

A seventh embodiment which is the method of the fifth embodiment wherein the barrier comprises a polymer selected from the group consisting of polylactide, crosslinked polylactide, polyglycolide, crosslinked polyglycolide and mixtures thereof.

A eighth embodiment which is the method of the fifth embodiment wherein the barrier prevents hydrating of the polymetaphosphates composition until after the well tool is installed in the wellbore.

A ninth embodiment which is the method of the sixth embodiment wherein a pressure differential is applied across the structure prior to the barrier permitting the anhydrous boron compound to hydrate.

A tenth embodiment which is the method of the sixth embodiment wherein the barrier dissolves in an aqueous fluid at a rate slower than a rate at which the polymetaphosphate composition dissolves in the aqueous fluid.

An eleventh embodiment which is the method of any of the fifth to tenth embodiments wherein X is Na and M is Ca or Mg.

A twelfth embodiment which is a method of constructing a downhole well tool, the method comprising: forming a structure of a solid mass comprising a high strength degradable composition comprised of polymetaphosphatcs of the formula
AXH2P04·2H2O+BMO+2(NH4)2HPO4−>(l/n)[XM(PO3)3]n+ammonia+waterwherein A and B are numbers of moles of reactants and the ratio of A:B is in the range of from about 1:1 to about 6:1, X is selected from Li, Na or K, M is selected from Be, Mg, Ca, Zn, Pb, Cu or Ni and n is from about 1 to about 100 or greater; incorporating the structure into the well tool, wherein the structure comprises a closure device of a valve; and then positioning the well tool in a wellbore.

A thirteenth embodiment which is the method of the twelfth embodiment wherein X is Na and M is Ca or Mg.

A fourteenth embodiment which is the method of the twelfth embodiment wherein the closure device comprises a flapper.

A fifteenth embodiment which is the method of the twelfth embodiment wherein the closure device comprises a ball.

A sixteenth embodiment which is the method of the twelfth embodiment, wherein the closure device is frangible.

A seventeenth embodiment which is a well tool, comprising: a well screen assembly; a flow path; and a flow blocking device which selectively prevents flow through the flow path, the device including a high strength degradable composition comprised of polymetaphosphatcs of the formula
AXH2P04·2H2O+BMO+2(NH4)2HP04−>(l/n)[XM(P03)3]n+ammonia+waterwherein A and B are numbers of moles of reactants and the ratio of A:B is in the range of from about 1:1 to about 6:1, X is selected from Li, Na or K, M is selected from Be, Mg, Ca, Zn, Pb, Cu or Ni and n is from about 1 to about 100 or greater, wherein fluid which flows through the flow path also flows through a filter portion of the well screen assembly, and wherein a barrier at least temporarily prevents the polymetaphosphates composition from hydrating until after the well screen assembly is installed in a wellbore.

An eighteenth embodiment which is a well tool, comprising: a flow path; and a flow blocking device which selectively prevents flow through the flow path, the device including a high strength degradable composition comprised of polymetaphosphates of the formula
AXH2PO4·2H2O+BMO+2(NH4)2HPO4−>(l/n)[XM(PO3)3]n+ammonia+waterwherein A and B arc numbers of moles of reactants and the ratio of A:B is in the range of from about 1:1 to about 6:1, X is selected from Li, Na or K, M is selected from Be, Mg, Ca, Zn, Pb, Cu or Ni and n is from about 1 to about 100 or greater, wherein the well tool comprises a valve, and wherein the flow blocking device comprises a closure device of the valve.

A nineteenth embodiment which is the tool of the eighteenth embodiment wherein the closure device comprises a flapper.

A twentieth embodiment which is the tool of the eighteenth embodiment wherein the closure device comprises a ball.

A twenty first embodiment which is the tool of the eighteenth embodiment wherein the closure device prevents flow in a first direction through the flow path, and the closure device permits flow through the flow path in a second direction opposite to the first direction.

A twenty second embodiment which is the tool of the eighteenth embodiment wherein the closure device is frangible.

It is to be understood that the various examples described above may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present disclosure. The embodiments illustrated in the drawings are depicted and described merely as examples of useful applications of the principles of the disclosure, which are not limited to any specific details of these embodiments. In the above description of the representative examples of the disclosure, directional terms, such as “above,” “below;” “upper,” “lower,” etc., are used for convenience in referring to the accompanying drawings. In general, “above,” “upper,” “upward” and similar terms refer to a direction toward the earth's surface along a wellbore, and “below,” “lower,” “downward” and similar terms refer to a direction away from the earth's surface along the wellbore.

Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art, having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified, and all such variations are considered within the scope and spirit of the present invention. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood as referring to the power set (the set of all subsets) of the respective range or values, and set forth every range encompassed within the broader range of values. It should be understood that the compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. Moreover, the indefinite articles “a” or “an”, as used in the claims and the description, are defined herein to mean one or more than one of the element that it introduces. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to these specific embodiments, and such changes are within the scope of the principles of the present disclosure. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims and their equivalents.

Full text: Click here
Patent 2022
Not available on PMC !

Example 2

Two experimental resins were used, BS1 and BS1-SOK (solids content of 50%). Particle boards (PB), oriented strand boards (OSB) and medium density fibreboards (MDF) were manufactured with those two resin systems.

Manufacture of test particle boards:

Single layer particleboards were manufactured. Wood chips for the manufacture of the particleboards were for commercial particleboard manufacture, these chips would have consisted of a mixture of wood species and was thought to consist mainly of recycled timber. Prior to use the chips were sieved to remove oversize material and shives. Before resination, the chips were dried to constant moisture content (MC). Hereinafter, moisture content will be expressed as the weight of water contained in wood as a percentage of the oven dry weight of wood.

12% or 14% resin was added to the wood chips (weight of resin solids to weight of dry wood). The resin and chips were blended together in a Kenwood or Drum blender. The dry chip moisture content and the moisture content of the sprayed chips were all measured; the information is summarised in Table 6. The mass of chips per board was adjusted according to moisture content in order to achieve a target density of 650 kg/m3.

After blending the resin, additives and chips, the resultant “furnish” was transferred to a forming box and lightly compacted before being hot pressed for final consolidation and resin curing.

Boards were pressed using a target platen temperature of 220° C. and a total press time of 5-12 minutes. Panels were 500 mm by 500 mm or 300 mm by 300 mm square and 12 mm thick. On removal from the hot press the boards were labelled and after cooling the edges were trimmed.

Manufacture of test orientated strand boards:

The flakes are sifted and separated into core and surface flakes. Large size flakes are used in surface layers, small size in core layer.

The surface material is blended with 14% BS1 resin (resin to timber, dry basis) and water in two benders. Resin is mixed with water through a static mixer. Water is added to reduce the viscosity of the resin and increase the flake MC to 12%.

The core material is blended with 12% BS1 resin and water in a single bender. Target core flake MC is at 10-12%.

The blended material is conveyed to three forming stations, surface, core and surface. The surface formers align the flakes parallel to the machine direction, whilst the core former arranges the flakes perpendicular to the machine direction. Flake alignment is achieved by a series of paddles or rollers in the forming stations.

The boards information was shown in table 7. PB-1 to PB-11 were made with BS1 resin, PB12 to PB14 made with BS1-SOK resin.

TABLE 6
Particle boards information
Resin Moisture content, % Processing
Loading,Pre- Post- Temp, Time,
Type % blend blend ° C. min Additives
PB-1 BS1 12 3.22 12.1 220 5 No
PB-2 BS1 12 4.24 12.26 220 9 No
PB-3 BS1 12 3.22 12.1 220 10 No
PB-4 BS1 12 3.54 12.32 220 10 No
PB-5 BS1 12 3.54 12.32 220 10 No
PB-6 BS1 12 4.78 12.27 220 10 No
PB-7 BS1 12 3.36 12.25 220 10 No
PB-8 BS1 12 4.24 12.92 220 10 No
PB-9 BS1 12 4.24 12.92 220 10 No
PB-10 BS1 12 3.78 11.8 220 10 Wax
PB-11 BS1 14 3.22 12 220 10 No
PB-12 BS1- 12 3.68 15.68 220 5 No
SOK
PB-13 BS1- 12 3.68 14.44 220 9 No
SOK
PB-14 BS1- 12 3.47 12.86 220 10 No
SOK

TABLE 7
Oriented strand boards information
Moisture content, %Processing
Pre-blendPost-blendTemp, ° C.Time, min
OSB-1Surface4.8412.12209
Core5.3911.65
OSB-2Surface2.8411.2122010
Core2.8610.03
OSB-3Surface3.7112.0422012
Core3.5611.37
OSB-4Surface3.229.8922015
Core3.228.23

Manufacture of test Medium density fibreboards:

A standard raw material was used: chipped softwood (primarily spruce) obtained from Kronospan.

12% BS1 resin was added to the MDF (weight of resin solids to weight of dry fibres). The MC before and post blend was 8.26 and 16.23%, respectively.

Boards were pressed using a target platen temperature of 220° C. and a total press time of 10 minutes.

Preparation of samples for testing:

After cooling each board was cut to a specified pattern, see FIG. 1 for details. The sample size (from positions 1-12) was 50 mm by 50 mm squares, sample width from positions 13 and 14 was 50 mm.

From each board six samples (from positions 1, 3, 5, 8, 10 and 12) were tested for internal bond strength in accordance with EN319, six (from positions 2, 4, 6, 7, 9 and 11) for thickness swelling and water absorption with EN317. Two from positions 13 and 14 were tested for modulus of elasticity in bending and of bending strength according to EN310.

Testing:

Internal Bond Strength

    • Internal Bond Strength. (EN 319 for PB and EN 300 for OSB)

Moisture Absorption & Thickness Swelling

    • Thickness Swelling after 24 hrs in Water at 20° C. (EN 317)
    • Water Absorption after 24 hrs in Water at 20° C.

Modulus of elasticity in bending and of bending strength.

    • Modulus of elasticity (MOE), (EN 310)
    • Bending strength (MOR)

Test results for particle boards:

Table 8 summarises the results for internal bond strength (IB) of particle boards.

FIGS. 2 and 3 show the effects of pressing times on IB. It was noted that PB-3 to PB-9 shared the same processing (temperature and times) and IB varied within error, so the average at 0.43 N/mm2 with STD 0.03 was included in FIG. 2. The general requirement of 0.4 N/mm2 for IB from standards was also indicated in FIGS. 2 and 3.

It was apparent that resins in PB-I and PB-12 pressed for 5 min had developed no significant bond strengths due to insufficient press times, bond strengths were improved when increased the pressing times to 9 min (PB-2 and PB-13), bond strength over standard value was obtained for PB with BS1 resin (PB-3 to PB-9) when further increased the pressing times to 10 min. However, with BS1-SOK resin system, IB (PB14) was lower than the standard requirement.

For PB-10, Wax was added in, it seems there was no significant effects on IB.

IB for PB-11 which had a resin loading at 14%, 2% higher than the rest boards, was 0.5 This suggested that the increase of resin loading will increase the bond strengths.

TABLE 8
Internal bond strength of panels
Density, Kg/m3STDIB, N/mm2STD
PB-155222.20.020.01
PB-259818.750.370.02
PB-356512.90.460.02
PB-461710.50.460.03
PB-55928.30.440.02
PB-65916.90.430.04
PB-761015.80.410.05
PB-861523.40.460.04
PB-961339.40.400.07
PB-1063020.60.470.05
PB-116176.040.50.03
PB-1263837.60.050.02
PB-136278.90.250.06
PB-1456712.10.350.05

The results of the tests for thickness swelling and water absorption are summarised FIGS. 4 and 5.

PB-8, 9 and 10 were processed at same temperature and times, the only difference between PB-8, 9 and 10 was the addition of wax. 0.8% wax was added in PB-10.

There were no significant differences on thickness swelling and water absorption between PB-8 and PB-9, both thickness swelling and water absorption were much higher than the requirement by standard, as indicated by solid line in FIG. 6. Significant difference were apparent in addition of wax, sample had the lowest thickness swelling and water absorption, which also was lower than the requirement by standard. This suggested that use of wax helped to improve thickness swelling and water absorption.

Modulus of elasticity in bending and of bending strength

Only the boards (PB-8 and PB-9) made at 220° C. for 10 min were tested for modulus of elasticity and bending strength. The average for MOE was 2314 N/mm2 with STD of 257.68, which was much higher than the requirement by standard of 1800 N/mm2. This means the board was much stiffer. Average for MOR was 10.4 N/mm2, which was lower than the requirement of 14 N/mm2. To improve MOR to match the requirement, increasing the resin loading may be the right way.

Results for Oriented Strand Boards (OSB)

FIG. 6 summarises the results for internal bond of oriented strand board, the solid line indicated the requirement of 0.28 N/mm2 by standard (EN300) for OSB.

IB was always lower than the requirement; to improve the bond strength for OSB boards with BS1 resin, the processing parameters and/or the resin loading should be considered.

Modulus of Elasticity in Bending and of Bending Strength

Boards OSB-2 and OBS-3 were tested for MOR and MOE, the results are summarized in table 9. The requirements by standard were 18 N/mm2 and 2500 N/mm2. Both OSB-2 and OSB-3 had much higher MOR and MOE than the requirements for general purpose boards, though the IB was lower. Not only the bonding strength between fibres and resin but also the fibre dimension and orientation would be of benefit to MOR and MOE.

The current values also were greater than the requirements for load bearing boards for use in both dry and humid conditions which are 20 N/mm2 and 3500 N/mm2, however, lower than the requirement for heavy duty load bearing boards 28 N/mm2 and 4800 N/mm2.

TABLE 9
MOR and MOE results for OSB
MOR, N/mm2STDMOE, N/mm2STD
OSB-226.474.114158.0564.58
OSB-324.892.423861.9428.73

Results for Medium Density Board

Internal Bond Strength

Only one trial of medium density board was manifested. The pressing temperature was 220° C. and time was 10 min. The average of IB was 0.43 N/mm2 with STD at 0.03, which was higher than the requirement of 0.4 N/mm2 by standard.

Modulus of Elasticity in Bending and of Bending Strength

The average for MOR was 22.26 N/mm2 with STD of 1.31, which was 60% higher than the requirement by standard of 14 N/mm2. Average for MOE was 2771.62 N/mm2 STD 204.17 which was over 50% greater than the requirement of 1800 N/mm2.

Note that 14 N/mm2 and 1800 N/mm2 are the requirement for general purpose boards of use in dry condition. The requirements for load-bearing boards of use in dry or humid conditions are 18 N/mm2 and 2500 N/mm2, IB of 0.45 N/mm2. The current MOR and MOE were greater than this requirements as well though IB was slighter lower. However, with the optimisation of processing, MDF must achieve all the requirements for load-bearing boards or even for heavy duty load bearing ones.

Discussion of results from Example 2:

The pressing times and resin loading played an important role in IB of particle board made with BS1 resin, IB increased with the increase of pressing times and resin loading. However, for particle boards made with BS1-SOK resin, IB varied with the increase of pressing time, and which was always lower than the requirement by standard. Optimisation of process parameters would be expected to lead to improvements.

Thickness swelling and water absorption was improved by the addition of wax in particle board, the values were lower than the requirement by standard. Optimisation should bring improvements.

Oriented strand boards made by BS1 resin had lower IB but higher MOR and MOE than the requirements by standards. IB strongly depended on the bonding strength between fibres and matrix, however, MOR and MOE would be benefited from the fibre dimension and orientation.

By using BS1 resin, medium density fibre boards showed greater mechanical properties than the requirements of general purposes boards, with possibility to achieve the requirements for load-bearing boards by optimising the processing.

The problem for oriented strand boards with BS1 resin is lower IB, to improve this, increasing resin loading may be the right way forward.

Medium density boards with BS1 resin showed great performance; optimisation of the processing may meet the requirements for load-bearing boards or even heavy duty load bearing boards.

Whilst particular binders have been used in the examples, other binders particularly binders which are discussed below, may be used in the context of the invention.

Discussion of Binders:

Cured or uncured binders useful in connection with the present invention may comprise one or more of the following features or combinations thereof. In addition, materials in accordance with the present invention may comprise one or more of the following features or combinations thereof:

Initially it should be appreciated that the binders may be utilized in a variety of fabrication applications to produce or promote cohesion in a collection of non or loosely assembled matter. A collection includes two or more components. The binders produce or promote cohesion in at least two of the components of the collection. For example, subject binders are capable of holding a collection of matter together such that the matter adheres in a manner to resist separation. The binders described herein can be utilized in the fabrication of any material.

One potential feature of the present binders is that they are formaldehyde free. Accordingly, the materials the binders are disposed upon may also be formaldehyde free. In addition, the present binders may have a reduced trimethylamine content as compared to other known binders. With respect to the present binder's chemical constituents, they may include ester and/or polyester compounds. The binders may include ester and/or polyester compounds in combination with a vegetable oil, such as soybean oil. Furthermore, the hinders may include ester and/or polyester compounds in combination with sodium salts of organic acids. The binders may include sodium salts of inorganic acids. The binders may also include potassium salts of organic acids. Moreover, the binders may include potassium salts of inorganic acids. The described binders may include ester and/or polyester compounds in combination with a clay additive, such as montmorillonite.

Furthermore, the binders of the present invention may include a product of a Maillard reaction. For example, see FIG. 8. As shown in FIG. 8, Maillard reactions produce melanoidins, i.e., high molecular weight, furan ring and nitrogen-containing polymers that vary in structure depending on the reactants and conditions of their preparation. Melanoidins display a C:N ratio, degree of unsaturation, and chemical aromaticity that increase with temperature and time of heating. (See, Ames, J. M. in The Maillard Browning Reaction—an update, Chemistry and Industry (Great Britain), 1988, 7, 558-561, the disclosure of which is hereby incorporated herein by reference). Accordingly, the subject binders may be made via a Maillard reaction and thus contain melanoidins. It should be appreciated that the subject binders may contain melanoidins, or other Maillard reaction products, which products are generated by a separate process and then simply added to the composition that makes up the binder. The melanoidins in the binder may be water insoluble. Moreover, the binders may be thermoset binders.

The Maillard reactants to produce a melanoidin may include an amine reactant reacted with a reducing-sugar carbohydrate reactant. For example, an ammonium salt of a monomeric polycarboxylic acid may be reacted with (i) a monosaccharide in its aldose or ketose form or (ii) a polysaccharide or (iii) with combinations thereof. In another variation, an ammonium salt of a polymeric polycarboxylic acid may be contacted with (i) a monosaccharide in its aldose or ketose form or (ii) a polysaccharide, or (iii) with combinations thereof. In yet another variation, an amino acid may be contacted with (i) a monosaccharide in its aldose or ketose form, or (ii) with a polysaccharide or (iii) with combinations thereof. Furthermore, a peptide may be contacted with (i) a monosaccharide in its aldose or ketose form or (ii) with a polysaccharide or (iii) with combinations thereof. Moreover, a protein may be contacted with (i) a monosaccharide in its aldose or ketose form or (ii) with a polysaccharide or (iii) with combinations thereof.

It should also be appreciated that the binders may include melanoidins produced in non-sugar variants of Maillard reactions. In these reactions an amine reactant is contacted with a non-carbohydrate carbonyl reactant. In one illustrative variation, an ammonium salt of a monomeric polycarboxylic acid is contacted with a non-carbohydrate carbonyl reactant such as, pyruvaldehyde, acetaldehyde, crotonaldehyde, 2-furaldehyde, quinone, ascorbic acid, or the like, or with combinations thereof. In another variation, an ammonium salt of a polymeric polycarboxylic acid may be contacted with a non-carbohydrate carbonyl reactant such as, pyruvaldehyde, acetaldehyde, crotonaldehyde, 2-furaldehyde, quinone, ascorbic acid, or the like, or with combinations thereof. In yet another illustrative variation, an amino acid may be contacted with a non-carbohydrate carbonyl reactant such as, pyruvaldehyde, acetaldehyde, crotonaldehyde, 2-furaldehyde, quinone, ascorbic acid, or the like, or with combinations thereof. In another illustrative variation, a peptide may be contacted with a non-carbohydrate carbonyl reactant such as, pyruvaldehyde, acetaldehyde, crotonaldehyde, 2-furaldehyde, quinone, ascorbic acid, or the like, or with combinations thereof. In still another illustrative variation, a protein may contacted with a non-carbohydrate carbonyl reactant such as, pyruvaldehyde, acetaldehyde, crotonaldehyde, 2-furaldehyde, quinone, ascorbic acid, and the like, or with combinations thereof.

The melanoidins discussed herein may be generated from melanoidin reactant compounds. These reactant compounds are disposed in an aqueous solution at an alkaline pH and therefore are not corrosive. That is, the alkaline solution prevents or inhibits the eating or wearing away of a substance, such as metal, caused by chemical decomposition brought about by, for example, an acid. The reactant compounds may include a reducing-sugar carbohydrate reactant and an amine reactant. In addition, the reactant compounds may include a non-carbohydrate carbonyl reactant and an amine reactant.

It should also be understood that the binders described herein may be made from melanoidin reactant compounds themselves. That is, once the Maillard reactants are mixed, this mixture can function as a binder of the present invention. These binders may be utilized to fabricate uncured, formaldehyde-free matter, such as fibrous materials.

In the alternative, a binder made from the reactants of a Maillard reaction may be cured. These binders may be used to fabricate cured formaldehyde free matter, such as, fibrous compositions. These compositions are water-resistant and, as indicated above, include water-insoluble melanoidins.

It should be appreciated that the binders described herein may be used in manufacturing products from a collection of non or loosely assembled matter. For example, these binders may be employed to fabricate fiber products. In one illustrative embodiment, the binders are used to make cellulosic compositions. With respect to cellulosic compositions, the binders may be used to bind cellulosic matter to fabricate, for example, wood fiber board which has desirable physical properties (e.g., mechanical strength).

One embodiment of the invention is directed to a method for manufacturing products from a collection of non-or loosely assembled matter. The method may include contacting the fibers with a thermally-curable, aqueous binder. The binder may include (i) an ammonium salt of a polycarboxylic acid reactant and (ii) a reducing-sugar carbohydrate reactant. These two reactants are melanoidin reactants (i.e., these reactants produce melanoidins when reacted under conditions to initiate a Maillard reaction.) The method can further include removing water from the binder in contact with the fibers (i.e., the binder is dehydrated). The method can also include curing the binder in contact with the fibers (e.g., thermally curing the binder).

An example of utilizing this method is in the fabrication of cellulosic materials. The method may include contacting the cellulosic material (e.g., cellulose fibers) with a thermally-curable, aqueous binder. The binder may include (i) an ammonium salt of a polycarboxylic acid reactant and (ii) a reducing-sugar carbohydrate reactant. As indicated above, these two reactants are melanoidin reactant compounds. The method can also include removing water from the binder in contact with the cellulosic material. As before, the method can also include curing the binder (e.g., thermal curing).

A fibrous product is described that includes a binder in contact with cellulose fibers, such as those in a mat of wood shavings or sawdust. The mat may be processed to form one of several types of wood fiber board products. In one variation, the binder is uncured. In this variation, the uncured binder may function to hold the cellulosic fibers together. In the alternative, the cured binder may function to hold the cellulosic fibers together.

As used herein, the phrase “formaldehyde-free” means that a binder or a material that incorporates a binder liberates less than about 1 ppm formaldehyde as a result of drying and/or curing. The 1 ppm is based on the weight of sample being measured for formaldehyde release.

Cured indicates that the binder has been exposed to conditions to so as to initiate a chemical change. Examples of these chemical changes include, but are not limited to, (i) covalent bonding, (ii) hydrogen bonding of binder components, and chemically cross-linking the polymers and/or oligomers in the binder. These changes may increase the binder's durability and solvent resistance as compared to the uncured binder. Curing a binder may result in the formation of a thermoset material. Furthermore, curing may include the generation of melanoidins. These melanoidins may be generated from a Maillard reaction from melanoidin reactant compounds. In addition, a cured binder may result in an increase in adhesion between the matter in a collection as compared to an uncured binder. Curing can be initiated by, for example, heat, electromagnetic radiation or, electron beams.

In a situation where the chemical change in the binder results in the release of water, e.g., polymerization and cross-linking, a cure can be determined by the amount of water released above that would occur from drying alone. The techniques used to measure the amount of water released during drying as compared to when a binder is cured, are well known in the art.

In accordance with the above paragraph, an uncured binder is one that has not been cured.

As used herein, the term “alkaline” indicates a solution having a pH that is greater than or equal to about 7. For example, the pH of the solution can be less than or equal to about 10. In addition, the solution may have a pH from about 7 to about 10, or from about 8 to about 10, or from about 9 to about 10.

As used herein, the term “ammonium” includes, but is not limited to, +NH4, +NH3R1, and +NH2R1R2, where R1 and R2 are each independently selected in +NH2R1R2, and where R1 and R2 are selected from alkyl, cycloalkyl, alkenyl, cycloalkenyl, heterocyclyl, aryl, and heteroaryl.

The term “alkyl” refers to a saturated monovalent chain of carbon atoms, which may be optionally branched; the term cycloalkyl refers to a monovalent chain of carbon atoms, a portion of which forms a ring; the term alkenyl refers to an unsaturated monovalent chain of carbon atoms including at least one double bond, which may be optionally branched; the term cycloalkenyl refers to an unsaturated monovalent chain of carbon atoms, a portion of which forms a ring; the term heterocyclyl refers to a monovalent chain of carbon and heteroatoms, wherein the heteroatoms are selected from nitrogen, oxygen, and sulfur, a portion of which, including at least one heteroatom, form a ring; the term aryl refers to an aromatic mono or polycyclic ring of carbon atoms, such as phenyl, naphthyl, and the like; and the term heteroaryl refers to an aromatic mono or polycyclic ring of carbon atoms and at least one heteroatom selected from nitrogen, oxygen, and sulfur, such as pyridinyl, pyrimidinyl, indolyl, benzoxazolyl, and the like. It is to be understood that each of alkyl, cycloalkyl, alkenyl, cycloalkenyl, and heterocyclyl may be optionally substituted with independently selected groups such as alkyl, haloalkyl, hydroxyalkyl, aminoalkyl, carboxylic acid and derivatives thereof, including esters, amides, and nitriles, hydroxy, alkoxy, acyloxy, amino, alkyl and dialkylamino, acylamino, thio, and the like, and combinations thereof. It is further to be understood that each of aryl and heteroaryl may be optionally substituted with one or more independently selected substituents, such as halo, hydroxy, amino, alkyl or dialkylamino, alkoxy, alkylsulfonyl, cyano, nitro, and the like.

As used herein, the term “polycarboxylic acid” indicates a dicarboxylic, tricarboxylic, tetracarboxylic, pentacarboxylic, and like monomeric polycarboxylic acids, and anhydrides, and combinations thereof, as well as polymeric polycarboxylic acids, anhydrides, copolymers, and combinations thereof. In one aspect, the polycarboxylic acid ammonium salt reactant is sufficiently non-volatile to maximize its ability to remain available for reaction with the carbohydrate reactant of a Maillard reaction (discussed below). In another aspect, the polycarboxylic acid ammonium salt reactant may be substituted with other chemical functional groups. Illustratively, a monomeric polycarboxylic acid may be a dicarboxylic acid, including, but not limited to, unsaturated aliphatic dicarboxylic acids, saturated aliphatic dicarboxylic acids, aromatic dicarboxylic acids, unsaturated cyclic dicarboxylic acids, saturated cyclic dicarboxylic acids, hydroxy-substituted derivatives thereof, and the like. Or, illustratively, the polycarboxylic acid(s) itself may be a tricarboxylic acid, including, but not limited to, unsaturated aliphatic tricarboxylic acids, saturated aliphatic tricarboxylic acids, aromatic tricarboxylic acids, unsaturated cyclic tricarboxylic acids, saturated cyclic tricarboxylic acids, hydroxy-substituted derivatives thereof, and the like. It is appreciated that any such polycarboxylic acids may be optionally substituted, such as with hydroxy, halo, alkyl, alkoxy, and the like. In one variation, the polycarboxylic acid is the saturated aliphatic tricarboxylic acid, citric acid. Other suitable polycarboxylic acids are contemplated to include, but are not limited to, aconitic acid, adipic acid, azelaic acid, butane tetracarboxylic acid dihydride, butane tricarboxylic acid, chlorendic acid, citraconic acid, dicyclopentadiene-maleic acid adducts, diethylenetriamine pentaacetic acid, adducts of dipentene and maleic acid, ethylenediamine tetraacetic acid (EDTA), fully maleated rosin, maleated tall-oil fatty acids, fumaric acid, glutaric acid, isophthalic acid, itaconic acid, maleated rosin oxidized with potassium peroxide to alcohol then carboxylic acid, maleic acid, malic acid, mesaconic acid, biphenol A or bisphenol F reacted via the KOLBE-Schmidt reaction with carbon dioxide to introduce 3-4 carboxyl groups, oxalic acid, phthalic acid, sebacic acid, succinic acid, tartaric acid, terephthalic acid, tetrabromophthalic acid, tetrachlorophthalic acid, tetrahydrophthalic acid, trimellitic acid, trimesic acid, and the like, and anhydrides, and combinations thereof.

Illustratively, a polymeric polycarboxylic acid may be an acid, for example, polyacrylic acid, polymethacrylic acid, polymaleic acid, and like polymeric polycarboxylic acids, copolymers thereof, anhydrides thereof, and mixtures thereof. Examples of commercially available polyacrylic acids include AQUASET-529 (Rohm & Haas, Philadelphia, Pa., USA), CRITERION 2000 (Kemira, Helsinki, Finland, Europe), NFl (H. B. Fuller, St. Paul, Minn., USA), and SOKALAN (BASF, Ludwigshafen, Germany, Europe). With respect to SOKALAN, this is a watersoluble polyacrylic copolymer of acrylic acid and maleic acid, having a molecular weight of approximately 4000. AQUASET-529 is a composition containing polyacrylic acid cross-linked with glycerol, also containing sodium hypophosphite as a catalyst. CRITERION 2000 is an acidic solution of a partial salt of polyacrylic acid, having a molecular weight of approximately 2000. With respect to NFl, this is a copolymer containing carboxylic acid functionality and hydroxy functionality, as well as units with neither functionality; NFl also contains chain transfer agents, such as sodium hypophosphite or organophosphate catalysts.

Further, compositions including polymeric polycarboxylic acids are also contemplated to be useful in preparing the binders described herein, such as those compositions described in U.S. Pat. Nos. 5,318,990, 5,661,213, 6,136,916, and 6,331,350, the disclosures of which are hereby incorporated herein by reference. In particular, in U.S. Pat. Nos. 5,318,990 and 6,331,350 an aqueous solution of a polymeric polycarboxylic acid, a polyol, and a catalyst is described.

As described in U.S. Pat. Nos. 5,318,990 and 6,331,350, the polymeric polycarboxylic acid comprises an organic polymer or oligomer containing more than one pendant carboxy group. The polymeric polycarboxylic acid may be a homopolymer or copolymer prepared from unsaturated carboxylic acids including, but not necessarily limited to, acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, maleic acid, cinnamic acid, 2-methylmaleic acid, itaconic acid, 2-methylitaconic acid, α,β-methyleneglutaric acid, and the like. Alternatively, the polymeric polycarboxylic acid may be prepared from unsaturated anhydrides including, but not necessarily limited to, maleic anhydride, itaconic anhydride, acrylic anhydride, methacrylic anhydride, and the like, as well as mixtures thereof. Methods for polymerizing these acids and anhydrides are well-known in the chemical art. The polymeric polycarboxylic acid may additionally comprise a copolymer of one or more of the aforementioned unsaturated carboxylic acids or anhydrides and one or more vinyl compounds including, but not necessarily limited to, styrene, α-methylstyrene, acrylonitrile, methacrylonitrile, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, methyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, glycidyl methacrylate, vinyl methyl ether, vinyl acetate, and the like. Methods for preparing these copolymers are well-known in the art. The polymeric polycarboxylic acids may comprise homopolymers and copolymers of polyacrylic acid. The molecular weight of the polymeric polycarboxylic acid, and in particular polyacrylic acid polymer, may be is less than 10000, less than 5000, or about 3000 or less. For example, the molecular weight may be 2000.

As described in U.S. Pat. Nos. 5,318,990 and 6,331,350, the polyol (in a composition including a polymeric polycarboxylic acid) contains at least two hydroxyl groups. The polyol should be sufficiently nonvolatile such that it will substantially remain available for reaction with the polymeric polycarboxylic acid in the composition during heating and curing operations. The polyol may be a compound with a molecular weight less than about 1000 bearing at least two hydroxyl groups such as, ethylene glycol, glycerol, pentaerythritol, trimethylol propane, sorbitol, sucrose, glucose, resorcinol, catechol, pyrogallol, glycollated ureas, 1,4-cyclohexane diol, diethanolamine, triethanolamine, and certain reactive polyols, for example, [bet]-hydroxyalkylamides such as, for example, bis(N,N-di(β-hydroxyethyl))adipamide, or it may be an addition polymer containing at least two hydroxyl groups such as, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, and homopolymers or copolymers of hydroxyethyl(meth)acrylate, hydroxypropyl(meth)acrylate, and the like.

As described in U.S. Pat. Nos. 5,318,990 and 6,331,350, the catalyst (in a composition including a polymeric polycarboxylic acid) is a phosphorous-containing accelerator which may be a compound with a molecular weight less than about 1000 such as, an alkali metal polyphosphate, an alkali metal dihydrogen phosphate, a polyphosphoric acid, and an alkyl phosphinic acid or it may be an oligomer or polymer bearing phosphorous-containing groups, for example, addition polymers of acrylic and/or maleic acids formed in the presence of sodium hypophosphite, addition polymers prepared from ethylenically unsaturated monomers in the presence of phosphorous salt chain transfer agents or terminators, and addition polymers containing acid-functional monomer residues, for example, copolymerized phosphoethyl methacrylate, and like phosphoric acid esters, and copolymerized vinyl sulfonic acid monomers, and their salts. The phosphorous-containing accelerator may be used at a level of from about 1% to about 40%, by weight based on the combined weight of the polymeric polycarboxylic acid and the polyol. A level of phosphorous containing accelerator of from about 2.5% to about 10%, by weight based on the combined weight of the polymeric polycarboxylic acid and the polyol may be used. Examples of such catalysts include, but are not limited to, sodium hypophosphite, sodium phosphite, potassium phosphite, disodium pyrophosphate, tetrasodium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate, potassium phosphate, potassium polymetaphosphate, potassium polyphosphate, potassium tripolyphosphate, sodium trimeta phosphate, and sodium tetrameta phosphate, as well as mixtures thereof. Compositions including polymeric polycarboxylic acids described in U.S. Pat. Nos. 5,661,213 and 6,136,916 that are contemplated to be useful in preparing the binders described herein comprise an aqueous solution of a polymeric polycarboxylic acid, a polyol containing at least two hydroxyl groups, and a phosphorous-containing accelerator, wherein the ratio of the number of equivalents of carboxylic acid groups, to the number of equivalents of hydroxyl groups is from about 1:0.01 to about 1:3.

As disclosed in U.S. Pat. Nos. 5,661,213 and 6,136,916, the polymeric polycarboxylic acid may be, a polyester containing at least two carboxylic acid groups or an addition polymer or oligomer containing at least two copolymerized carboxylic acid-functional monomers. The polymeric polycarboxylic acid is preferably an addition polymer formed from at least one ethylenically unsaturated monomer. The addition polymer may be in the form of a solution of the addition polymer in an aqueous medium such as, an alkali-soluble resin which has been solubilized in a basic medium; in the form of an aqueous dispersion, for example, an emulsion-polymerized dispersion; or in the form of an aqueous suspension. The addition polymer must contain at least two carboxylic acid groups, anhydride groups, or salts thereof. Ethylenically unsaturated carboxylic acids such as, methacrylic acid, acrylic acid, crotonic acid, fumaric acid, maleic acid, 2-methyl maleic acid, itaconic acid, 2-methyl itaconic acid, α,β-methylene glutaric acid, monoalkyl maleates, and monoalkyl fumarates; ethylenically unsaturated anhydrides, for example, maleic anhydride, itaconic anhydride, acrylic anhydride, and methacrylic anhydride; and salts thereof, at a level of from about 1% to 100%, by weight, based on the weight of the addition polymer, may be used. Additional ethylenically unsaturated monomer may include acrylic ester monomers including methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, methyl methacrylate, butyl methacrylate, isodecyl methacrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, and hydroxypropyl methacrylate; acrylamide or substituted acrylamides; styrene or substituted styrenes; butadiene; vinyl acetate or other vinyl esters; acrylonitrile or methacrylonitrile; and the like. The addition polymer containing at least two carboxylic acid groups, anhydride groups, or salts thereof may have a molecular weight from about 300 to about 10,000,000. A molecular weight from about 1000 to about 250,000 may be used. When the addition polymer is an alkali-soluble resin having a carboxylic acid, anhydride, or salt thereof, content of from about 5% to about 30%, by weight based on the total weight of the addition polymer, a molecular weight from about 10,000 to about 100,000 may be utilized Methods for preparing these additional polymers are well-known in the art.

As described in U.S. Pat. Nos. 5,661,213 and 6,136,916, the polyol (in a composition including a polymeric polycarboxylic acid) contains at least two hydroxyl groups and should be sufficiently nonvolatile that it remains substantially available for reaction with the polymeric polycarboxylic acid in the composition during heating and curing operations. The polyol may be a compound with a molecular weight less than about 1000 bearing at least two hydroxyl groups, for example, ethylene glycol, glycerol, pentaerythritol, trimethylol propane, sorbitol, sucrose, glucose, resorcinol, catechol, pyrogallol, glycollated ureas, 1,4-cyclohexane diol, diethanolamine, triethanolamine, and certain reactive polyols, for example, [bet]-hydroxyalkylamides, for example, bis(N,N-di(β-hydroxyethyl)) adipamide, bis(N,N-di(β-hydroxypropyl)) azelamide, bis(N,N-di(-hydroxypropyl)) adipamide, bis(N,N-di(β-hydroxypropyl)) glutaramide, bis(N,N-di(β-hydroxypropyl)) succinamide, and bis(N-methyl-N-(β-hydroxyethyl)) oxamide, or it may be an addition polymer containing at least two hydroxyl groups such as, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, and homopolymers or copolymers of hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and the like.

As described in U.S. Pat. Nos. 5,661,213 and 6,136,916, the phosphorous-containing accelerator (in a composition including a polymeric polycarboxylic acid) may be a compound with a molecular weight less than about 1000 such as, an alkali metal hypophosphite salt, an alkali metal phosphite, an alkali metal polyphosphate, an alkali metal dihydrogen phosphate, a polyphosphoric acid, and an alkyl phosphinic acid or it may be an oligomer or polymer bearing phosphorous-containing groups such as, addition polymers of acrylic and/or maleic acids formed in the presence of sodium hypophosphite, addition polymers prepared from ethylenically unsaturated monomers in the presence of phosphorous salt chain transfer agents or terminators, and addition polymers containing acid-functional monomer residues such as, copolymerized phosphoethyl methacrylate, and like phosphoric acid esters, and copolymerized vinyl sulfonic acid monomers, and their salts. The phosphorous-containing accelerator may be used at a level of from about 1% to about 40%, by weight based on the combined weight of the polyacid and the polyol. A level of phosphorous-containing accelerator of from about 2.5% to about 10%, by weight based on the combined weight of the polyacid and the polyol, may be utilized.

As used herein, the term “amine base” includes, but is not limited to, ammonia, a primary amine, i.e., NH2R1, and a secondary amine, i.e., NHR1R2, where R1 and R2 are each independently selected in NHR1R2, and where R1 and R2 are selected from alkyl, cycloalkyl, alkenyl, cycloalkenyl, heterocyclyl, aryl, and heteroaryl, as defined herein. Illustratively, the amine base may be substantially volatile or substantially non-volatile under conditions sufficient to promote formation of the thermoset binder during thermal curing. Illustratively, the amine base may be a substantially volatile base, such as, ammonia, ethylamine, diethylamine, dimethylamine, and ethylpropylamine. Alternatively, the amine base may be a substantially non-volatile base, for example, aniline, 1-naphthylamine, 2-naphthylamine, and para-aminophenol.

As used herein, “reducing sugar” indicates one or more sugars that contain aldehyde groups, or that can isomerize, i.e., tautomerize, to contain aldehyde groups, which groups are reactive with an amino group under Maillard reaction conditions and which groups may be oxidized with, for example, Cu+2 to afford carboxylic acids. It is also appreciated that any such carbohydrate reactant may be optionally substituted, such as with hydroxy, halo, alkyl, alkoxy, and the like. It is further appreciated that in any such carbohydrate reactant, one or more chiral centers are present, and that both possible optical isomers at each chiral center are contemplated to be included in the invention described herein. Further, it is also to be understood that various mixtures, including racemic mixtures, or other diastereomeric mixtures of the various optical isomers of any such carbohydrate reactant, as well as various geometric isomers thereof, may be used in one or more embodiments described herein.

FIG. 7 shows examples of reactants for a Maillard reaction. Examples of amine reactants include proteins, peptides, amino acids, ammonium salts of polymeric polycarboxylic acids, and ammonium salts of monomeric polycarboxylic acids. As illustrated, ammonium can be [+NH4]x, [+NH3R1]x and [+NH2R1R2]x, where x is at least about 1. With respect to +NH2R1R2, R1 and R2 are each independently selected. Moreover, R1 and R2 are selected from alkyl, cycloalkyl, alkenyl, cycloalkenyl, heterocyclyl, aryl, and heteroaryl, as described above. FIG. 7 also illustrates examples of reducing-sugar reactants for producing melanoidins, including monosaccharides, in their aldose or ketose form, polysaccharides, or combinations thereof. Illustrative non-carbohydrate carbonyl reactants for producing melanoidins are also shown in FIG. 7 and include various aldehydes, e.g., pyruvaldehyde and furfural, as well as compounds such as ascorbic acid and quinone.

FIG. 8 shows a schematic of a Maillard reaction, which culminates in the production of melanoidins. In its initial phase, a Maillard reaction involves a carbohydrate reactant, for example, a reducing sugar (note that the carbohydrate reactant may come from a substance capable of producing a reducing sugar under Maillard reaction conditions). The reaction also involves condensing the carbohydrate reactant (e.g., reducing sugar) with an amine reactant, i.e., a compound possessing an amino group. In other words, the carbohydrate reactant and the amine reactant are the melanoidin reactants for a Maillard reaction. The condensation of these two constituents produces an N-substituted glycosylamine. For a more detailed description of the Maillard reaction see, Hodge, J. E. Chemistry of Browning Reactions in Model Systems J. Agric. Food Chem. 1953, 1, 928-943, the disclosure of which is hereby incorporated herein by reference. The compound possessing a free amino group in a Maillard reaction may be present in the form of an amino acid. The free amino group can also come from a protein where the free amino groups are available in the form of, for example, the α-amino group of lysine residues, and/or the s-amino group of the terminal amino acid.

Another aspect of conducting a Maillard reaction as described herein is that, initially, the aqueous Maillard reactant solution (which also is a binder), as described above, has an alkaline pH. However, once the solution is disposed on a collection of non or loosely assembled matter, and curing is initiated, the pH decreases (i.e., the binder becomes acidic). It should be understood that when fabricating a material, the amount of contact between the binder and components of machinery used in the fabrication is greater prior to curing, (i.e., when the binder solution is alkaline) as compared to after the binder is cured (i.e., when the binder is acidic). An alkaline composition is less corrosive than an acidic composition. Accordingly, corrosivity of the fabrication process is decreased.

It should be appreciated that by using the aqueous Maillard reactant solation described herein, the machinery used to fabricate fiberglass is not exposed as much to an acidic solution because, as described above, the pH of the Maillard reactant solution is alkaline. Furthermore, during the fabrication the only time an acidic condition develops is after the binder has been applied to fibers. Once the binder is applied to the fibers, the binder and the material that incorporates the binder, has relatively infrequent contacts with the components of the machinery as compared to the time prior to applying the binder to the fibers. Accordingly, corrosivity of fiberglass fabrication (and the fabrication of other materials) is decreased.

Without being bound to theory, covalent reaction of the polycarboxylic acid ammonium salt and reducing sugar reactants of a Maillard reaction, which as described herein occurs substantially during thermal curing to produce brown-colored nitrogenous polymeric and co-polymeric melanoidins of varying structure, is thought to involve initial Willard reaction of ammonia with the aldehyde moiety of a reducing-sugar carbohydrate reactant to afford N-substituted glycosylamine, as shown in FIG. 8. Consumption of ammonia in such a way, with ammonia and a reducing sugar carbohydrate reactant combination functioning as a latent acid catalyst, would be expected to result in a decrease in pH, which decrease is believed to promote esterification processes and/or dehydration of the polycarboxylic acid to afford its corresponding anhydride derivative. At pH <7, the Amadori rearrangement product of N-substituted glycosylamine, i.e., 1-amino-1-deoxy-2-ketose, would be expected to undergo mainly 1,2-enolization with the formation of furfural when, for example, pentoses are involved, or hydroxymethylfurfural when, for example, hexoses are involved, as a prelude to melanoidin production. Concurrently, contemporaneously, or sequentially with the production of melanoidins, esterification processes may occur involving melanoidins, polycarboxylic acid and/or its corresponding anhydride derivative, and residual carbohydrate, which processes lead to extensive cross-linking. Accompanied by sugar dehydration reactions, whereupon conjugated double bonds are produced that may undergo polymerization, a water-resistant thermoset binder is produced consisting of polyester adducts interconnected by a network of carbon carbon single bonds. Consistent with the above reaction scenario is a strong absorbance near 1734 cm−1 in the FT-IR spectrum of a cured binder described herein, which absorbance is within the 1750-1730 cm range expected for ester carbonyl C—O vibrations.

The following discussion is directed to (i) examples of carbohydrate and amine reactants, which can be used in a Maillard reaction and (ii) how these reactants can be combined. First, it should be understood that any carbohydrate and/or compound possessing a primary or secondary amino group, that will act as a reactant in a Maillard reaction, can be utilized in the binders of the present invention. Such compounds can be identified and utilized by one of ordinary skill in the art with the guidelines disclosed herein.

With respect to exemplary reactants, it should also be appreciated that using an ammonium salt of a polycarboxylic acid as an amine reactant is an effective reactant in a Maillard reaction. Ammonium salts of polycarboxylic acids can be generated by neutralizing the acid groups with an amine base, thereby producing polycarboxylic acid ammonium salt groups. Complete neutralization, i.e., about 100% calculated on an equivalents basis, may eliminate any need to titrate or partially neutralize acid groups in the polycarboxylic acid(s) prior to binder formation. However, it is expected that less-than-complete neutralization would not inhibit formation of the binder. Note that neutralization of the acid groups of the polycarboxylic acid(s) may be carried out either before or after the polycarboxylic acid(s) is mixed with the carbohydrate(s).

With respect to the carbohydrate reactant, it may include one or more reactants having one or more reducing sugars. In one aspect, any carbohydrate reactant should be sufficiently nonvolatile to maximize its ability to remain available for reaction with the polycarboxylic acid ammonium salt reactant. The carbohydrate reactant may be a monosaccharide in its aldose or ketose form, including a triose, a tetrose, a pentose, a hexose, or a heptose; or a polysaccharide; or combinations thereof. A carbohydrate reactant may be a reducing sugar, or one that yields one or more reducing sugars in situ under thermal curing conditions. For example, when a triose serves as the carbohydrate reactant, or is used in combination with other reducing sugars and/or a polysaccharide, an aldotriose sugar or a ketotriose sugar may be utilized, such as glyceraldehyde and dihydroxyacetone, respectively. When a tetrose serves as the carbohydrate reactant, or is used in combination with other reducing sugars and/or a polysaccharide, aldotetrose sugars, such as erythrose and threose; and ketotetrose sugars, such as erythrulose, may be utilized. When a pentose serves as the carbohydrate reactant, or is used in combination with other reducing sugars and/or a polysaccharide, aldopentose sugars, such as ribose, arabinose, xylose, and lyxose; and ketopentose sugars, such as ribulose, arabulose, xylulose, and lyxulose, may be utilized. When a hexose serves as the carbohydrate reactant, or is used in combination with other reducing sugars and/or a polysaccharide, aldohexose sugars, such as glucose (i.e., dextrose), mannose, galactose, allose, altrose, talose, gulose, and idose; and ketohexose sugars, such as fructose, psicose, sorbose and tagatose, may be utilized. When a heptose serves as the carbohydrate reactant, or is used in combination with other reducing sugars and/or a polysaccharide, a ketoheptose sugar such as sedoheptulose may be utilized. Other stereoisomers of such carbohydrate reactants not known to occur naturally are also contemplated to be useful in preparing the binder compositions as described herein. When a polysaccharide serves as the carbohydrate, or is used in combination with monosaccharides, sucrose, lactose, maltose, starch, and cellulose may be utilized.

Furthermore, the carbohydrate reactant in the Maillard reaction may be used in combination with a non-carbohydrate polyhydroxy reactant. Examples of non-carbohydrate polyhydroxy reactants which can be used in combination with the carbohydrate reactant include, but are not limited to, trimethylolpropane, glycerol, pentaerythritol, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, fully hydrolyzed polyvinyl acetate, and mixtures thereof. In one aspect, the non-carbohydrate polyhydroxy reactant is sufficiently nonvolatile to maximize its ability to remain available for reaction with a monomeric or polymeric polycarboxylic acid reactant. It is appreciated that the hydrophobicity of the non-carbohydrate polyhydroxy reactant may be a factor in determining the physical properties of a binder prepared as described herein.

When a partially hydrolyzed polyvinyl acetate serves as a non-carbohydrate polyhydroxy reactant, a commercially available compound such as an 87-89% hydrolyzed polyvinyl acetate may be utilized, such as, DuPont ELVANOL 51-05. DuPont ELVANOL 51-05 has a molecular weight of about 22,000-26,000 Da and a viscosity of about 5.0-6.0 centipoises. Other partially hydrolyzed polyvinyl acetates contemplated to be useful in preparing binder compositions as described herein include, but are not limited to, 87-89% hydrolyzed polyvinyl acetates differing in molecular weight and viscosity from ELVANOL 51-05, such as, for example, DuPont ELVANOL 51-04, ELVANOL 51-08, ELVANOL 50-14, ELVANOL 52-22, ELVANOL 50-26, ELVANOL 50-42; and partially hydrolyzed polyvinyl acetates differing in molecular weight, viscosity, and/or degree of hydrolysis from ELVANOL 51-05, such as, DuPont ELVANOL 51-03 (86-89% hydrolyzed), ELVANOL 70-14 (95.0-97.0% hydrolyzed), ELVANOL 70-27 (95.5-96.5% hydrolyzed), ELVANOL 60-30 (90-93% hydrolyzed). Other partially hydrolyzed polyvinyl acetates contemplated to be useful in preparing binder compositions as described herein include, but are not limited to, Clariant MOWIOL 15-79, MOWIOL 3-83, MOWIOL 4-88, MOWIOL 5-88, MOWIOL 8-88, MOWIOL 18-88, MOWIOL 23-88, MOWIOL 26-88, MOWIOL, 40-88, MOWIOL 47-88, and MOWIOL 30-92, as well as Celanese CELVOL 203, CELVOL 205, CELVOL 502, 5 CELVOL 504, CELVOL 513, CELVOL 523, CELVOL 523TV, CELVOL 530, CELVOL 540, CELVOL 540TV, CELVOL 418, CELVOL 425, and CELVOL 443. Also contemplated to be useful are similar or analogous partially hydrolyzed polyvinyl acetates available from other commercial suppliers.

When a fully hydrolyzed polyvinyl acetate serves as a non-carbohydrate polyhydroxy reactant, Clariant MOWIOL 4-98, having a molecular weight of about 27,000 Da, may be utilized. Other fully hydrolyzed polyvinyl acetates contemplated to be useful include, but are not limited to, DuPont ELVANOL 70-03 (98.0-98.8% hydrolyzed), ELVANOL 70-04 (98.0-98.8% hydrolyzed), ELVANOL 70-06 (98.5-99.2% hydrolyzed), ELVANOL 90-50 (99.0-99.8% hydrolyzed), ELVANOL 70-20 (98.5-99.2% hydrolyzed), ELVANOL 70-30 (98.5-99.2% hydrolyzed), ELVANOL 71-30 (99.0-99.8% hydrolyzed), ELVANOL 70-62 (98.4-99.8% hydrolyzed), ELVANOL 70-63 (98.5-99.2% hydrolyzed), ELVANOL 70-75 (98.5-99.2% hydrolyzed), Clariant MOWIOL 3-98, MOWIOL 6-98, MOWIOL 10-98, MOWIOL 20-98, MOWIOL 56-98, MOWIOL 28-99, and Celanese CELVOL 103, CELVOL107, CELVOL 305, CELVOL 310, CELVOL 325, CELVOL 325LA, and CELVOL 350, as well as similar or analogous fully hydrolyzed polyvinyl acetates from other commercial suppliers.

The aforementioned Maillard reactants may be combined to make an aqueous composition that includes a carbohydrate reactant and an amine reactant. These aqueous binders represent examples of uncured binders. As discussed below, these aqueous compositions can be used as binders of the present invention. These binders are formaldehyde-free, curable, alkaline, aqueous binder compositions. Furthermore, as indicated above, the carbohydrate reactant of the Maillard reactants may be used in combination with a non-carbohydrate polyhydroxy reactant. Accordingly, any time the carbohydrate reactant is mentioned it should be understood that it can be used in combination with a non-carbohydrate polyhydroxy reactant.

In one illustrative embodiment, the aqueous solution of Maillard reactants may include (i) an ammonium salt of one or more polycarboxylic acid reactants and (ii) one or more carbohydrate reactants having a reducing sugar. The pH of this solution prior to placing it in contact with the material to be bound can be greater than or equal to about 7. In addition, this solution can have a pH of less than or equal to about 10. The ratio of the number of moles of the polycarboxylic acid reactant(s) to the number of moles of the carbohydrate reactant(s) can be in the range from about 1:4 to about 1:15. In one example, the ratio of the number of moles of the polycarboxylic acid reactant(s) to the number of moles of the carbohydrate reactant(s) in the binder composition is about 1:5. In another example, the ratio of the number of moles of the polycarboxylic acid reactant(s) to the number of moles of the carbohydrate reactant(s) is about 1:6. In yet another example, the ratio of the number of moles of the polycarboxylic acid reactant(s) to the number of moles of the carbohydrate reactant(s) is about 1:7.

As described above, the aqueous binder composition includes (i) an ammonium salt of one or more polycarboxylic acid reactants and (ii) one or more carbohydrate reactants having a reducing sugar. It should be appreciated that when an ammonium salt of a monomeric or a polymeric polycarboxylic acid is used as an amine reactant, the molar equivalents of ammonium ion may or may not be equal to the molar equivalents of acid salt groups present on the polycarboxylic acid. In one illustrative example, an ammonium salt may be monobasic, dibasic, or tribasic when a tricarboxylic acid is used as a polycarboxylic acid reactant. Thus, the molar equivalents of the ammonium ion may be present in an amount less than or about equal to the molar equivalents of acid salt groups present in a polycarboxylic acid. Accordingly, the salt can be monobasic or dibasic when the polycarboxylic acid reactant is a dicarboxylic acid. Further, the molar equivalents of ammonium ion may be present in an amount less than, or about equal to, the molar equivalents of acid salt groups present in a polymeric polycarboxylic acid, and so on and so forth. When a monobasic salt of a dicarboxylic acid is used, or when a dibasic salt of a tricarboxylic acid is used, or when the molar equivalents of ammonium ions are present in an amount less than the molar equivalents of acid salt groups present in a polymeric polycarboxylic acid, the pH of the binder composition may require adjustment to achieve alkalinity.

The uncured, formaldehyde-free, thermally-curable, alkaline, aqueous binder composition can be used to fabricate a number of different materials. In particular, these binders can be used to produce or promote cohesion in non or loosely assembled matter by placing the binder in contact with the matter to be bound. Any number of well known techniques can be employed to place the aqueous binder in contact with the material to be bound. For example, the aqueous binder can be sprayed on (for example during the binding glass fibers) or applied via a roll-coat apparatus. These aqueous binders can be applied to a mat of glass fibers (e.g., sprayed onto the mat), during production of fiberglass insulation products. Once the aqueous binder is in contact with the glass fibers the residual heat from the glass fibers (note that the glass fibers are made from molten glass and thus contain residual heat) and the flow of air through the fibrous mat will evaporate (i.e., remove) water from the binder. Removing the water leaves the remaining components of the binder on the fibers as a coating of viscous or semi-viscous high-solids liquid. This coating of viscous or semi-viscous high-solids liquid functions as a binder. At this point, the mat has not been cured. In other words, the uncured binder functions to bind the glass fibers in the mat.

Furthermore, it should be understood that the above described aqueous binders can be cured. For example, any of the above described aqueous binders can be disposed (e.g., sprayed) on the material to be bound, and then heated. For example, in the case of making fiberglass insulation products, after the aqueous binder has been applied to the mat, the binder coated mat is transferred to a curing oven. In the curing oven the mat is heated (e.g., from about 300° F. to about 600° F.) and the binder cured. The cured binder is a formaldehyde-free, water-resistant thermoset binder that attaches the glass fibers of the mat together. Note that the drying and thermal curing may occur either sequentially, contemporaneously, or concurrently.

With respect to making binders that are water-insoluble when cured, it should be appreciated that the ratio of the number of molar equivalents of acid salt groups present on the polycarboxylic acid reactant(s) to the number of molar equivalents of hydroxyl groups present on the carbohydrate reactant(s) may be in the range from about 0.04:1 to about 0.15:1. After curing, these formulations result in a water-resistant thermoset binder. In one variation, the number of molar equivalents of hydroxyl groups present on the carbohydrate reactant(s) is about twenty five-fold greater than the number of molar equivalents of acid salt groups present on the polycarboxylic acid reactant(s). In another variation, the number of molar equivalents of hydroxyl groups present on the carbohydrate reactant(s) is about ten-fold greater than the number of molar equivalents of acid salt groups present on the polycarboxylic acid reactant(s). In yet another variation, the number of molar equivalents of hydroxyl groups present on the carbohydrate reactant(s) is about six fold greater than the number of molar equivalents of acid salt groups present on the polycarboxylic acid reactant(s).

In other embodiments of the invention, a binder that is already cured can disposed on a material to be bound. As indicated above, most cured binders will typically contain water-insoluble melanoidins. Accordingly, these binders will also be water-resistant thermoset binders.

As discussed below, various additives can be incorporated into the binder composition. These additives give the binders of the present invention additional desirable characteristics. For example, the binder may include a silicon-containing coupling agent. Many silicon-containing coupling agents are commercially available from the Dow-Corning Corporation, Petrarch Systems, and by the General Electric Company. Illustratively, the silicon-containing coupling agent includes compounds such as silylethers and alkylsilyl ethers, each of which may be optionally substituted, such as with halogen, alkoxy, amino, and the like. In one variation, the silicon-containing compound is an amino-substituted silane, such as, gamma-aminopropyltriethoxy silane (General Electric Silicones, SILQUEST A-1101; Wilton, Conn.; USA). In another variation, the silicon-containing compound is an amino-substituted silane, for example, aminoethylaminopropyltrimethoxy silane (Dow Z-6020; Dow Chemical, Midland, Mich.; USA). In another variation, the silicon-containing compound is gamma-glycidoxypropyltrimethoxysilane (General Electric Silicones, SILQUEST A-187). In yet another variation, the silicon-containing compound is an n-propylamine silane (Creanova (formerly HuIs America) HYDROSIL 2627; Creanova; Somerset, N.J.; U.S.A.).

The silicon-containing coupling agents are typically present in the binder in the range from about 0.1 percent to about 1 percent by weight based upon the dissolved binder solids (i.e., about 0.1 percent to about 1 percent based upon the weight of the solids added to the aqueous solution). In one application, one or more of these silicon-containing compounds can be added to the aqueous uncured binder. The binder is then applied to the material to be bound. Thereafter, the binder may be cured if desired. These silicone containing compounds enhance the ability of the binder to adhere to the matter the binder is disposed on, such as glass fibers. Enhancing the binders ability to adhere to the matter improves, for example, its ability to produce or promote cohesion in non or loosely assembled substance(s).

A binder that includes a silicone containing coupling agent can be prepared by admixing about 10 to about 50 weight percent aqueous solution of one or more polycarboxylic acid reactants, already neutralized with an amine base or neutralized in situ, with about 10-50 weight percent aqueous solution of one or more carbohydrate reactants having reducing sugar, and an effective amount of a silicon containing coupling agent. In one variation, one or more polycarboxylic acid reactants and one or more carbohydrate reactants, the latter having reducing sugar, may be combined as solids, mixed with water, and the mixture then treated with aqueous amine base (to neutralize the one or more polycarboxylic acid reactants) and a silicon-containing coupling agent to generate an aqueous solution 10-50 weight percent in each polycarboxylic acid reactant and each carbohydrate reactant.

In another illustrative embodiment, a binder of the present invention may include one or more corrosion inhibitors. These corrosion inhibitors prevent or inhibit the eating or wearing away of a substance, such as, metal caused by chemical decomposition brought about by an acid. When a corrosion inhibitor is included in a binder of the present invention, the binder's corrosivity is decreased as compared to the corrosivity of the binder without the inhibitor present. In one embodiment, these corrosion inhibitors can be utilized to decrease the corrosivity of the glass fiber containing compositions described herein. Illustratively, corrosion inhibitors include one or more of the following, a dedusting oil, or a monoammonium phosphate, sodium metasilicate pentahydrate, melamine, tin(II)oxalate, and/or methyl hydrogen silicone fluid emulsion. When included in a binder of the present invention, corrosion inhibitors are typically present in the binder in the range from about 0.5 percent to about 2 percent by weight based upon the dissolved binder solids.

By following the disclosed guidelines, one of ordinary skill in the art will be able to vary the concentrations of the reactants of the aqueous binder to produce a wide range of binder compositions. In particular, aqueous binder compositions can be formulated to have an alkaline pH. For example, a pH in the range from greater than or equal to about 7 to less than or equal to about 10. Examples of the binder reactants that can be manipulated include (i) the polycarboxylic acid reactant(s), (ii) the amine base, (iii) the carbohydrate reactant(s), (iv) the silicon-containing coupling agent, and (v) the corrosion inhibitor compounds. Having the pH of the aqueous binders (e.g. uncured binders) of the present invention in the alkaline range inhibits the corrosion of materials the binder comes in contact with, such as machines used in the manufacturing process (e.g., in manufacturing fiberglass). Note this is especially true when the corrosivity of acidic binders is compared to binders of the present invention. Accordingly, the life span of the machinery increases while the cost of maintaining these machines decreases.

Furthermore, standard equipment can be used with the binders of the present invention, rather than having to utilize relatively corrosive resistant machine components that come into contact with acidic binders, such as stainless steel components. Therefore, the binders disclosed herein decrease the cost of manufacturing bound materials.

Full text: Click here
Patent 2022
The research part was divided into three stages: The initial stage included qualitative research of mineral materials used. Then, the tests of the mixtures in their unhardened state were conducted such as consistency, plasticity, air content, and the beginning and the end of setting time. In the last stage, strength and carbonation tests were carried out on the hardened specimens.
The determination of the granulometric composition and the specific surface area of the mineral additives was performed using the Horiba LA-300 laser particle size analyzer (HORIBA Scientific, Kyoto, Japan. This test is based on the laser measurements of the dispersion of the laser light in the dispersion solution, in which the simultaneous determination of the average particle size in the mixture [40 ]. As a dispersant, a 0.1% aqueous solution of sodium polymetaphosphate PMPNa was used. The materials were analyzed at the following parameters: refraction index 1.16-0.00i, pump circulation speed 7.0 L/min, and time of application of dispersing ultrasound about 1 min. The activity index of fly ashes was determined in accordance with PN-EN 450-1 [41 ] standard. The consistency of the mixtures, due to their high liquidity, was carried out in Novik cone; the plasticity of the prepared composites was determined by the flow table method; and testing of air content in the unhardened mortar was carried out with the use of a pressure equalizer. All these tests were performed in accordance with PN-85/B-04500 [42 ]. The beginning and the end of mortar setting time was measured according to the PN-EN 196-3 [43 ] standard using Vicat equipment (diLUIGI GIAZZI, Bergamo, Italy). Strength tests of the specimens were measured at the age of 3, 7, 14, and 28 days in accordance with PN-85/B-04500 [42 ]. Carbonation resistance was measured in a carbonation chamber—in which CO2 concentration was kept at 1%, with a temperature of 21 ± 1 °C and a relative humidity of 60% ± 10%. Carbonation resistance was determined in accordance with the European Standard PN-EN 13295: 2005 [44 ]. The test was carried out on rectangular specimens with the dimensions of 40 mm × 40 mm × 160 mm after 14 and 28 days of carbonation.
Full text: Click here
Publication 2021
Carbonates Europeans Fly Ash Humidity Light Minerals Pressure Retinal Cone sodium polymetaphosphate TEST mixture Ultrasonography

Example 27

Microcapsules containing phase change materials according to the present invention are prepared using a process with a two-part water phase and a single core phase.

As a first step in the preparation of the Example 27 microcapsules, a 5% PVA 523 stock solution is prepared by dissolving polyvinyl alcohol in deionized water at 85° C. for 30 minutes. Thereafter the first water phase component (WP1) is prepared by combining 186 g deionized water with 124 g stock PVA solution in a main reactor, mixing the same and elevating and holding the temperature at 55° C. Next, the second water phase component (WP2) is prepared by combining and mixing 33.3 g stock PVA solution with 50 g deionized water in a 250 ml beaker at ambient temperature. Thereafter, 7 g SR247 is added and mixed vigorously to form a suspension thereof in the stock PVA/water solution, following which the water phase initiators V-50 and VA-086 are added.

TABLE 5
Water Phase 2 (WP2)
5% PVAWater dispersibleSodium
Water540(meth)acrylate/amountbisulfate
WP2A5017.8Hydroxyethyl9.00.1
methacrylate
(HEMA)
WP2B7526.5HEMA/SR212B1.9/8.00.1
WP2C5018.7SR 212B8.00.1
WP2D5018.7SR 6019.00.1
WP2E5018.7SR 506A9.00.1
WP2F5018.7CN 5519:00.1
WP2G5018.7SR2069.00.1
WP2H5018.7CN9759.00.1
WP2I5018.7SR212B9.00.1
WP2J5018.7CN1329.00.1
WP2K5018.7MMA9.00.1
WP2L5018.7SR3559.00.1
WP2M5018.7HPMA9.00.1
WP2N5018.7SR5089.00.1
WP2O5018.7SR5409.00.1
WP2P5018.7SR3489.00.1
WP2Q5018.7SR3499.00.1
WP2R5018.7SR2479.00.1
WP2S5018.7SR2309.00.1
WP2T5018.7SR9035/SR6012.7/6.30.1
WP2U5018.7SR90359.00.1
WP2V5018.7SR1019.00.1
WP2W501.3SR903510.0 
WP2X507.4CN1329.0

The core phase composition is prepared in a reactor by first dissolving 1.66 g Polywax™ M90 Wax in 166 g octadecane at 70° C. for 10 minutes with mixing following which 29.3 g SR206 monomer is added. The mixture is cooled to 55° C. and the oil soluble initiators, 0.5 g V-50 and 0.2 g VA-086, are added. Temperature of the reactor is maintained at 55° C. for another 30 minutes.

TABLE 6
leakageLeakageleakageLeakage% StaticFracture%
ExampleOil Phase 1Oil Phase 2Water Phase 1Water Phase 224 hs1 week2 weeks4 weeks% Free OilSmudgeStrengthDeformation
CE1OP1AOP2AWP1A0.485.459.2613.610.0353.303.7444.74
E1OPIBOP2BWP1BWP2A0.332.905.639.450.0564.301.6437.77
E2OPIBOP2BWP1BWP2B0.283.205.698.660.0437.404.7451.24
E3OPIBOP2BWP1BWP2C0.252.755.258.960.0728.505.4448.36
E4OPIBOP2BWP1BWP2D0.182.114.598.170.0333.003.9045.65
E5OPIBOP2BWP1BWP2E0.533.826.5410.830.1533.802.9044.12
E6OPIBOP2BWP1BWP2F0.533.826.5410.830.1331.209.2864.11
E7OPIBOP2BWP1BWP2G0.485.919.3614.580.0438.805.4664.15
E8OPIBOP2BWP1BWP2H0.747.1310.3115.330.0448.503.6059.75
E9OPIBOP2BWP1BWP2I0.252.755.258.960.0728.505.4448.36
E10OPIBOP2BWP1BWP2J0.533.668.4917.860.1151.903.4342.51
E11OPIBOP2BWP1BWP2K2.226.399.7315.370.4029.707.6658.65
E12OPIBOP2BWP1BWP2L0.934.557.7212.710.0435.004.7248.10
E13OPIBOP2BWP1BWP2M0.443.866.8612.080.0682.50
E14OPIBOP2BWP1BWP2N0.865.489.0514.850.0965.30
E15OPIBOP2BWP1BWP2O0.737.1611.0416.240.3073.00
E16OPIBOP2BWP1BWP2P2.258.6312.5918.390.0474.50
E17OPIBOP2BWP1BWP2Q0.706.259.5814.490.0369.80
E18OPIBOP2BWP1BWP2R2.027.9111.9318.030.0768.30
E19OPIBOP2BWP1BWP2S0.494.987.8312.060.0542.50
E20OPIBOP2BWP1BWP2T1.627.4611.4117.010.4240.30
E21OPIBOP2BWP1BWP2U1.9310.7015.6122.680.1241.90
E22OPIBOP2BWP1BWP2V2.0810.5715.5722.770.0863.50
CE2OPICOP2CWP1C0.564.977.0610.170.0367.602.6839.47
E23OPICOP2CWP1CWP2W6.936.9311.0818.590.0532.8012.0468.11
E24OPIDOP2CWP1CWP2X3.016.2610.3418.220.1847.406.6947.81
E25OP1EOP2BWP1BWP2D0.585.568.5112.790.0561.20
E26OP1FOP2BWP1BWP2D1.8810.0914.9321.120.0662.30

In preparation for the encapsulation process, the main reactor is purged with pure nitrogen following which the core phase composition is added and the combined mixture milled until the desired droplet size is attained. Thereafter, the second water phase component (WP2) is added to the main reactor and the temperature of the mixture elevated to 75° C. over a 30 minute period and held at that temperature for an additional 4 hours. Thereafter, the temperature is further elevated to 85° C. over a 30 minute period and held at that temperature for an additional 6 hours. Following this processing, the reactor mix is allowed to cool to ambient temperature resulting in slurry of the desired microcapsules.

The resulting microcapsules were isolated and subjected to a number of physical tests to assess their physical properties and attributes. The results thereof are presented in Table 7.

TABLE 7
Microcapsule Size, micron4.83
Free Wax, %0.45
TGA at 10% weight loss, ° C.215
TGA at 20% weight loss, ° C.240
Latent Heat, J/g188
Supercooling, %25
Melting Point, ° C.36.5
ΔT, ° C.1.6

Commercial Applications

The microcapsules formed according to the present teachings have a number of commercial applications. For convenience, before addressing specific application, the following definitions are presented as they pertain to the discussion on commercial applications.

As used herein “consumer product” means baby care, beauty care, fabric & home care, family care, feminine care, health care, snack and/or beverage products or devices intended to be used or consumed in the form in which it is sold, and not intended for subsequent commercial manufacture or modification. Such products include but are not limited to fine fragrances (e.g. perfumes, colognes eau de toilettes, after-shave lotions, pre-shave, face waters, tonics, and other fragrance-containing compositions for application directly to the skin), diapers, bibs, wipes; products for and/or methods relating to treating hair (human, dog, and/or cat), including, bleaching, coloring, dyeing, conditioning, shampooing, styling; deodorants and antiperspirants; personal cleansing; cosmetics; skin care including application of creams, lotions, and other topically applied products for consumer use; and shaving products, products for and/or methods relating to treating fabrics, hard surfaces and any other surfaces in the area of fabric and home care, including: air care, car care, dishwashing, fabric conditioning (including softening), laundry detergency, laundry and rinse additive and/or care, hard surface cleaning and/or treatment, and other cleaning for consumer or institutional use; products and/or methods relating to bath tissue, facial tissue, paper handkerchiefs, and/or paper towels; tampons, feminine napkins; products and/or methods relating to oral care including toothpastes, tooth gels, tooth rinses, denture adhesives, tooth whitening; over-the-counter health care including cough and cold remedies, pain relievers, RX pharmaceuticals, pet health and nutrition, and water purification; processed food products intended primarily for consumption between customary meals or as a meal accompaniment (non-limiting examples include potato chips, tortilla chips, popcorn, pretzels, corn chips, cereal bars, vegetable chips or crisps, snack mixes, party mixes, multigrain chips, snack crackers, cheese snacks, pork rinds, corn snacks, pellet snacks, extruded snacks and bagel chips); and coffee.

As used herein “cleaning and/or treatment compositions” means products comprising fluid laundry detergents, fabric enhancers, laundry and/or rinse additives, fluid dishwashing detergents, fluid hard surface cleaning and/or treatment compositions, fluid toilet bowl cleaners that may or may not be contained in a unit dose delivery product all for consumer, agricultural, industrial or institutional use.

The term “absorbent article” is used herein in a very broad sense including any article able to receive and/or absorb and/or contain and/or retain fluids and/or exudates, especially bodily fluids/bodily exudates. Exemplary absorbent articles in the context of the present invention are disposable absorbent articles. The term “disposable” is used herein to describe articles, which are not intended to be laundered or otherwise restored or reused as an article (i.e. they are intended to be discarded after a single use and preferably to be recycled, composted or otherwise disposed of in an environmentally compatible manner). Typical disposable absorbent articles according to the present invention are diapers, surgical and wound dressings, breast and perspiration pads, incontinence pads and pants, bed pads as well as absorbent articles for feminine hygiene like sanitary napkins, panty liners, tampons, interlabial devices or the like. Absorbent articles suitable for use in the present invention include any type of structures, from a single absorbent layer to more complex multi-layer structures. Certain absorbent articles include a fluid pervious topsheet, a backsheet, which may be fluid impervious and/or may be water vapor and/or gas pervious, and an absorbent element comprised there between, often also referred to as “absorbent core” or simply “core”.

The term “Sanitary tissue product” or “tissue product” as used herein means a wiping implement for post-urinary and/or post-bowel movement cleaning (toilet tissue products), for otorhinolaryngological discharges (facial tissue products) and/or multi-functional absorbent and cleaning uses (absorbent towels such as paper towel products and/or wipe products). The sanitary tissue products of the present invention may comprise one or more fibrous structures and/or finished fibrous structures, traditionally, but not necessarily, comprising cellulose fibers.

The term “tissue-towel paper product” refers to products comprising paper tissue or paper towel technology in general, including, but not limited to, conventional felt-pressed or conventional wet-pressed tissue paper, pattern densified tissue paper, starch substrates, and high bulk, uncompacted tissue paper. Non-limiting examples of tissue-towel paper products include towels, facial tissue, bath tissue, table napkins, and the like.

“Personal care composition” refers to compositions intended for topical application to skin or hair and can be, for example, in the form of a liquid, semi-liquid cream, lotion, gel, or solid. Examples of personal care compositions can include, but are not limited to, bar soaps, shampoos, conditioning shampoos, body washes, moisturizing body washes, shower gels, skin cleansers, cleansing milks, in-shower body moisturizers, pet shampoos, shaving preparations, etc.

“Bar soap” refers to compositions intended for topical application to a surface such as skin or hair to remove, for example, dirt, oil, and the like. The bar soaps can be rinse-off formulations, in which the product is applied topically to the skin or hair and then subsequently rinsed within minutes from the skin or hair with water. The product could also be wiped off using a substrate. Bar soaps can be in the form of a sold (e.g., non-flowing) bar soap intended for topical application to skin. The bar soap can also be in the form of a soft solid which is compliant to the body. The bar soap additionally can be wrapped in a substrate which remains on the bar during use.

“Rinse-off” means the intended product usage includes application to skin and/or hair followed by rinsing and/or wiping the product from the skin and/or hair within a few seconds to minutes of the application step.

“Ambient” refers to surrounding conditions at about one atmosphere of pressure, 50% relative humidity and about 25° C.

“Anhydrous” refers to compositions and/or components which are substantially free of added or free water.

“Antiperspirant composition” refers to antiperspirant compositions, deodorant compositions, and the like. For example, antiperspirant creams, gels, soft solid sticks, body sprays, and aerosols.

“Soft solid” refers to a composition with a static yield stress of about 200 Pa to about 1,300 Pa. The term “solid” includes granular, powder, bar and tablet product forms.

The term “fluid” includes liquid, gel, paste and gas product forms.

The term “situs” includes paper products, fabrics, garments, hard surfaces, hair and skin.

The term “substantially free of” refers to about 2% or less, about 1% or less, or about 0.1% or less of a stated ingredient “Free of” refers to no detectable amount of the stated ingredient or thing.

As used herein, the terms “a” and “an” mean “at least one”.

As used herein, the terms “include”, “includes” and “Including” are meant to be non-limiting.

Unless specifically stated otherwise, the test methods disclosed in the Test Methods Section of the present application should be used to determine the respective values of the parameters of Applicants' inventions. Similarly, unless otherwise noted, in discussing the commercial applications below, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.

Similarly, all percentages and ratios are calculated by weight unless otherwise indicated and are calculated based on the total composition unless otherwise indicated.

It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.

Consumer Products

A consumer product made by a process comprising combining a consumer product ingredient and a microcapsule made by a process comprising:

(i) forming a first oil phase composition comprising (a) at least one oil soluble or dispersible amine (meth)acrylate, (b) at least one oil soluble or dispersible acidic (meth)acrylate or at least one oil soluble or dispersible simple acid or both, (c) at least one oil soluble or dispersible multifunctional (meth)acrylate monomer or oligomer, and, (d) optionally, one or more ingredients or components intended to be encapsulated;

(ii) combining and mixing the first oil phase composition with a second oil phase composition comprising a first initiator for effecting polymerization of the (meth)acrylate monomers/oligomers of the first oil phase composition, alone or in combination with the Ingredient(s) to be encapsulated, provided that at least one of the first oil phase composition and the second oil phase composition includes at least one of the ingredients to be encapsulated;

(iii) subjecting the combined oil phase composition to such conditions and for such period of time as is effective for causing the oligomerization/pre-polymerization of the (meth)acrylate monomers/oligomers;

(iv) combining the product of step (iii) with an excess of a first aqueous composition comprising an emulsifier suitable for emulsifying the oil phase composition in water, water, and, optionally, though preferably, either (a) a second initiator, (b) an alkali or alkali salt, or (c) both, and intimately mixing/milling the same to form droplets of the combined oil phase composition dispersed in the first aqueous composition, preferably droplets of a desired or predetermined size;

(v) applying or subjecting the so formed dispersion to heat or such other conditions as will effect polymerization of the oligomer/prepolymer product of step (iii) at the interface of the oil phase and water phase materials, with or without applying or inducing conditions to cause the reaction product of step (iii) to migrate to said interface, to initiate capsule wall formation at the interface;

(vi) adding to and mixing with said reaction mix a second aqueous composition comprising water soluble or dispersible (meth)acrylate monomers and/or oligomers, water and, optionally, (a) an emulsifier, preferably a non-ionic emulsifier, (b) a chain transfer agent, (c) a third initiator or (d) a combination of (a) and (b), (a) and (c), (b) and (c) or (a), (b) and (c);

(vii) subjecting the so formed reaction mix to conditions sufficient to effect deposition and polymerization of the water soluble or dispersible (meth)acrylate at the interface of the droplet and the aqueous continuous phase concurrent with the continued building of the capsule wall through the polymerization of the oligomer/prepolymer of step (iii), and

(viii) continuing said polymerization process for a sufficient period of time and under such conditions as are necessary to attain the desired microcapsule size and/or capsule wall thickness;

wherein said first initiator comprises at least one initiator capable of effecting oligomerization/pre-polymerization of the (meth)acrylate monomers/oligomers of the first oil phase composition, said second initiator, which may be the same or a different initiator or which may comprise multiple initiators, comprises at least one initiator capable of effecting polymerization of the water soluble or water dispersible acrylate monomers and/or oligomers is disclosed.

A first consumer product comprising a consumer product ingredient and a microcapsule made by a process comprising:

i) forming a first oil phase composition comprising (a) at least one oil soluble or dispersible amine (meth)acrylate, (b) at least one oil soluble or dispersible acidic (meth)acrylate or at least one oil soluble or dispersible simple acid or both, (c) at least one oil soluble or dispersible multifunctional (meth)acrylate monomer or oligomer, and, (d) optionally, one or more ingredients or components intended to be encapsulated;

(ii) combining and mixing the first oil phase composition with a second oil phase composition comprising a first initiator for effecting polymerization of the (meth)acrylate monomers/oligomers of the first oil phase composition, alone or in combination with the ingredient(s) to be encapsulated, provided that at least one of the first oil phase composition and the second oil phase composition includes at least one of the ingredients to be encapsulated;

(iii) subjecting the combined oil phase composition to such conditions and for such period of time as is effective for causing the oligomerization/prepolymerization of the (meth)acrylate monomers/oligomers;

(iv) combining the product of step (iii) with an excess of a first aqueous composition comprising an emulsifier suitable for emulsifying the oil phase composition in water, water, and, optionally, though preferably, either (a) a second initiator, (b) an alkali or alkali salt, or (c) both, and intimately mixing/milling the same to form droplets of the combined oil phase composition dispersed in the first aqueous composition, preferably droplets of a desired or predetermined size;

(v) applying or subjecting the so formed dispersion to heat or such other conditions as will effect polymerization of the oligomer/pre-polymer product of step (iii) at the interface of the oil phase and water phase materials, with or without applying or inducing conditions to cause the reaction product of step (iii) to migrate to said interface, to initiate capsule wall formation at the interface;

(vi) adding to and mixing with said reaction mix a second aqueous composition comprising water soluble or dispersible (meth)acrylate monomers and/or oligomers, water and, optionally, (a) an emulsifier, preferably a non-ionic emulsifier, (b) a chain transfer agent, or (c) both;

(vii) subjecting the so formed reaction mix to conditions sufficient to effect deposition and polymerization of the water soluble or dispersible (meth)acrylate at the interface of the droplet and the aqueous continuous phase concurrent with the continued building of the capsule wall through the polymerization of the oligomer/prepolymer of step (iii), and

(viii) continuing said polymerization process for a sufficient period of time and under such conditions as are necessary to attain the desired microcapsule size and/or capsule wall thickness;

wherein said first initiator comprises at least one initiator capable of effecting oligomerization/prepolymerization of the (meth)acrylate monomers/oligomers of the first oil phase composition, said second initiator comprises at least one water soluble or dispersible initiator, which may be the same as or include, in whole or in part, the first initiator, alone or together with another initiator capable of effecting oligomerization or polymerization of the water soluble or water dispersible acrylate monomers and/or oligomers of the aqueous phase wall forming materials, and said third initiator, if present, comprises at least one at least one water soluble or dispersible initiator capable of effecting polymerization of the water soluble or water dispersible acrylate monomers and/or oligomer is disclosed.

Preferably, said consumer product comprises based on total consumer product weight, from 0.001% about to about 25%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 5%, most preferably from about 0.1% to about 0.5% of said microcapsules.

A second consumer product made by a process comprising combining a consumer product ingredient and a microcapsule made by a process comprising:

    • (i) forming a first oil phase composition comprising (a) at least one oil soluble or dispersible acidic (meth)acrylate, (b) at least one oil soluble or dispersible simple base, (c) at least one oil soluble or dispersible multifunctional (meth)acrylate monomer or oligomer, and, (d) optionally, one or more ingredients or components intended to be encapsulated;
    • (ii) combining and mixing the first oil phase composition with a second oil phase composition comprising the desired one or more ingredients to be encapsulated and, optionally, though preferably, an initiator for effecting polymerization of the (meth)acrylate monomers/oligomers of the first oil phase composition;
    • (iii) subjecting the combined oil phase composition to such conditions and for such period of time as is effective for causing the oligomerization/prepolymerization of the (meth)acrylate monomers/oligomers;
    • (iv) combining the oil phase mixture of step (iii) with an excess of a first aqueous composition comprising an emulsifier suitable for emulsifying said oil phase composition in water, water and, optionally, though preferably, (a) a first water soluble initiator, (b) an alkali or alkali salt, or (c) both, and intimately mixing the same to form droplets of the combined oil phase composition dispersed in the first aqueous composition (iii), preferably droplets of a desired or predetermined size;
    • (v) applying or subjecting the so formed dispersion to heat or such other conditions as will effect polymerization of the oligomer/pre-polymer of step (i) at the interface of the oil phase and water phase materials, with or without applying or inducing conditions to cause the oligomer/prepolymer material to migrate to said interface, to initiate capsule wall formation at the interface;
    • (vi) adding to and mixing with said reaction mix a second aqueous composition comprising water soluble or dispersible (meth)acrylate monomers and/or oligomers, water and, optionally, (a) an emulsifier, preferably a non-Ionic emulsifier, (b) a chain transfer agent, (c) a second water soluble initiator or (d) a combination of (a) and (b), (a0 and (c), (b) and (c) or (a), (b) and (c);
    • (vii) subjecting the so formed reaction mix to conditions sufficient to effect deposition and polymerization of the water soluble or dispersible (meth)acrylate at the interface of the droplet and the aqueous matrix concurrent with the continued building of the capsule wall through the polymerization of the oligomer/prepolymer of step (iii), and
    • (viii) continuing said polymerization process for a sufficient period of time and under such conditions as are necessary to attain the desired microcapsule size and/or capsule wall thickness;

wherein the first water soluble initiator is capable of effecting polymerization of the oil phase oligomer/prepolymer and the water soluble or water dispersible (meth)acrylate and/or the first water soluble initiator is a combination of initiators at least one of which is capable of initiating polymerization of oil phase oligomer/prepolymer and at least one of which is capable of initiating polymerization of the water soluble or water dispersible (meth)acrylate and the second water soluble initiator, which may be the same as, in whole or in part, the first water soluble initiator, comprises at least one initiator capable of effecting polymerization of the water soluble or water dispersible (meth)acrylate is disclosed.

Preferably, said consumer product comprises based on total consumer product weight, with from 0.001% about to about 25%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 5%, most preferably from about 0.1% to about 0.5% of said microcapsules.

A third consumer product comprising a consumer product ingredient and a microcapsule made by a process comprising:

    • (i) forming a first oil phase composition comprising (a) at least one oil soluble or dispersible acidic (meth)acrylate, (b) at least one oil soluble or dispersible simple base, (c) at least one oil soluble or dispersible multifunctional (meth)acrylate monomer or oligomer, and, (d) optionally, one or more ingredients or components intended to be encapsulated;
    • (ii) combining and mixing the first oil phase composition with a second oil phase composition comprising the desired one or more ingredients to be encapsulated and, optionally, though preferably, an initiator for effecting polymerization of the (meth)acrylate monomers/oligomers of the first oil phase composition;
    • (iii) subjecting the combined oil phase composition to such conditions and for such period of time as is effective for causing the oligomerization/pre-polymerization of the (meth)acrylate monomers/oligomers;
    • (iv) combining the oil phase mixture of step (iii) with an excess of a first aqueous composition comprising an emulsifier suitable for emulsifying said oil phase composition in water, water and, optionally, though preferably, (a) a first water soluble initiator, (b) an alkali or alkali salt, or (c) both, and intimately mixing the same to form droplets of the combined oil phase composition dispersed in the first aqueous composition (iii), preferably droplets of a desired or predetermined size;
    • (v) applying or subjecting the so formed dispersion to heat or such other conditions as will effect polymerization of the oligomer/prepolymer of step (i) at the interface of the oil phase and water phase materials, with or without applying or inducing conditions to cause the oligomer/pre-polymer material to migrate to said interface, to initiate capsule wall formation at the interface;
    • (vi) adding to and mixing with said reaction mix a second aqueous composition comprising water soluble or dispersible (meth)acrylate monomers and/or oligomers, water and, optionally, (a) an emulsifier, preferably a non-ionic emulsifier, (b) a chain transfer agent, (c) a second water soluble initiator or (d) a combination of (a) and (b), (a) and (c), (b) and (c), or (a), (b) and (c);
    • (vii) subjecting the so formed reaction mix to conditions sufficient to effect deposition and polymerization of the water soluble or dispersible (meth)acrylate at the interface of the droplet and the aqueous matrix concurrent with the continued building of the capsule wall through the polymerization of the oligomer/prepolymer of step (iii), and
    • (viii) continuing said polymerization process for a sufficient period of time and under such conditions as are necessary to attain the desired microcapsule size and/or capsule wall thickness;

wherein the first water soluble initiator is capable of effecting polymerization of the oil phase oligomer/prepolymer and the water soluble or water dispersible (meth)acrylate and/or the first water soluble initiator is a combination of initiators at least one of which is capable of initiating polymerization of oil phase oligomer/prepolymer and at least one of which is capable of initiating polymerization of the water soluble or water dispersible (meth)acrylate and the second water soluble initiator, which may be the same as, in whole or in part, the first water soluble initiator, comprises at least one initiator capable of effecting polymerization of the water soluble or water dispersible (meth)acrylate is disclosed.

Preferably, said consumer product comprises based on total consumer product weight, from 0.001% about to about 25%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 5%, most preferably from about 0.1% to about 0.5% of a combination of said microcapsules.

Benefit Agents that can Serve as Core Material for Microcapsules

Useful core materials include perfume raw materials, sensates, silicone oils, waxes, hydrocarbons, higher fatty acids, essential oils, lipids, skin coolants, vitamins, sunscreens, antioxidants, glycerine, catalysts, bleach particles, silicon dioxide particles, malodor reducing agents, odor-controlling materials, chelating agents, antistatic agents, softening agents, insect and moth repelling agents, colorants, antioxidants, chelants, bodying agents, drape and form control agents, smoothness agents, wrinkle control agents, sanitization agents, disinfecting agents, germ control agents, mold control agents, mildew control agents, antiviral agents, drying agents, stain resistance agents, soil release agents, fabric refreshing agents and freshness extending agents, chlorine bleach odor control agents, dye fixatives, dye transfer inhibitors, color maintenance agents, optical brighteners, color restoration/rejuvenation agents, anti-fading agents, whiteness enhancers, anti-abrasion agents, wear resistance agents, fabric integrity agents, anti-wear agents, anti-pilling agents, defoamers and anti-foaming agents, UV protection agents for fabrics and skin, sun fade inhibitors, anti-allergenic agents, enzymes, water proofing agents, fabric comfort agents, shrinkage resistance agents, stretch resistance agents, stretch recovery agents, skin care agents, glycerin, and natural actives such as aloe vera, vitamin E, shea butter, cocoa butter, and the like, brighteners, antibacterial actives, antiperspirant actives, cationic polymers, dyes and mixtures thereof. In one aspect, said perfume raw material is selected from the group consisting of alcohols, ketones, aldehydes, esters, ethers, nitriles alkenes. In one aspect the core material comprises a perfume. In one aspect, said perfume comprises perfume raw materials selected from the group consisting of alcohols, ketones, aldehydes, esters, ethers, nitriles alkenes and mixtures thereof. In one aspect, said perfume may comprise a perfume raw material selected from the group consisting of perfume raw materials having a boiling point (B.P.) lower than about 250° C. and a ClogP lower than about 3, perfume raw materials having a B.P. of greater than about 250° C. and a ClogP of greater than about 3, perfume raw materials having a B.P. of greater than about 250° C. and a ClogP lower than about 3, perfume raw materials having a B.P. lower than about 250° C. and a ClogP greater than about 3 and mixtures thereof. Perfume raw materials having a boiling point B.P. lower than about 250° C. and a ClogP lower than about 3 are known as Quadrant I perfume raw materials, perfume raw materials having a B.P. of greater than about 250° C. and a ClogP of greater than about 3 are known as Quadrant IV perfume raw materials, perfume raw materials having a B.P. of greater than about 250° C. and a ClogP lower than about 3 are known as Quadrant II perfume raw materials, perfume raw materials having a B.P. lower than about 250° C. and a ClogP greater than about 3 are known as a Quadrant III perfume raw materials. In one aspect, said perfume comprises a perfume raw material having B.P. of lower than about 250° C. In one aspect, said perfume comprises a perfume raw material selected from the group consisting of Quadrant I, II, III perfume raw materials and mixtures thereof. In one aspect, said perfume comprises a Quadrant III perfume raw material. Suitable Quadrant I, II, III and IV perfume raw materials are disclosed in U.S. Pat. No. 6,869,923 B1.

In one aspect, said perfume comprises a Quadrant IV perfume raw material. While not being bound by theory, it is believed that such Quadrant IV perfume raw materials can improve perfume odor “balance”. Said perfume may comprise, based on total perfume weight, less than about 30%, less than about 20%, or even less than about 15% of said Quadrant IV perfume raw material.

Additional Consumer Product Specifics

Additional consumer product specifics are found below. Such disclosure is also intended to cover the process of making the disclosed consumer products wherein said process comprises combing the materials as disclosed to form the described consumer product.

Cleaning and/or Treatment Compositions and Methods of Use

Preferably, said consumer product is a cleaning and/or treatment composition having a viscosity of from about 10 mPa·s to about 50,000 mPa·s, preferably from about 50 mPa·s to about 2000 mPa·s, most preferably from about 75 mPa·s to about 400 mPa·s, a pH from about 3 to about 10, preferably from about 4 to about 8, most preferably from about 5 to about 8, said composition comprising, based on total cleaning and/or treatment composition weight with from 0.001% about to about 25%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 5%, most preferably from about 0.1% to about 0.5% of the microcapsules disclosed here in.

As the viscosity range of the cleaning and/or treatment composition is tightened, it is easier to suspend certain materials such as polymers and waxes.

Preferably said cleaning and/or treatment composition comprises:

    • (a) a surfactant selected from the group consisting of nonionic surfactants, anionic surfactants, cationic surfactants, ampholytic surfactants, zwitterionic surfactants, semi-polar nonionic surfactants and mixtures thereof;
    • (b) a solvent wherein the solvent is preferably selected from the group consisting of hydrogenated castor oil, glycols, alcohols, and mixtures thereof;
    • (c) a fabric softener active wherein the fabric softener active is preferably selected from the group consisting of a quaternary ammonium compound, an amine and mixtures thereof, preferably said quaternary ammonium compound is selected from the group consisting of bis-(2-hydroxypropyl)-dimethylammonium methylsulphate fatty acid ester, 1,2-di(acyloxy)-3-trimethylammoniopropane chloride, N, N-bis(stearoyl-oxy-ethyl) N,N-dimethyl ammonium chloride, N,N-bis(tallowoyl-oxy-ethyl) N,N-dimethyl ammonium chloride, N,N-bis(stearoyl-oxy-ethyl) N-(2 hydroxyethyl) N-methyl ammonium methylsulfate, 1, 2 di-(stearoyl-oxy) 3 trimethyl ammoniumpropane chloride, dicanoladimethylammonium chloride, di(hard)tallowdimethylammonium chloride, dicanoladimethylammonium methylsulfate, 1-methyl-1-stearoylamidoethyl-2-stearoylimidazolinium methylsulfate, 1-tallowylamidoethyl-2-tallowylimidazoline, dipalmethyl hydroxyethylammoinum methosulfate and mixtures thereof, and
    • (d) mixtures of (a) through (c).

Preferably said cleaning and/or treatment composition, comprises an adjunct ingredient selected from the group consisting of builders, chelating agents, dye transfer Inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, hueing dyes, perfumes, perfume delivery systems, structure elasticizing agents, carriers, structurants, hydrotropes, processing aids, solvents in addition to said solubilizing agent, a fabric softener active selected from the group consisting of a silicone polymer, a polysaccharide, a clay, a fatty ester, a dispersible polyolefin, a polymer latex and mixtures thereof, pigments, and mixtures thereof, preferably said composition comprises an organic acid, preferably citric add and/or lactic acid, hydrogenated castor oil, ethoxylated polyethleneimines, preferably PEI 600 EO 20 and/or PEI 600, an enzyme, preferably a cold water amylase, cold water protease and/or xylogluconase.

In one aspect of Applicants' cleaning and/or treatment composition, said cleaning and/or treatment composition comprises a fabric softener active selected from the group consisting of a quaternary ammonium compound, a silicone polymer, a polysaccharide, a clay, an amine, a fatty ester, a dispersible polyolefin, a polymer latex and mixtures thereof, preferably

    • (a) said quaternary ammonium compound comprises an alkyl quaternary ammonium compound, preferably said alkyl quaternary ammonium compound is selected from the group consisting of a monoalkyl quaternary ammonium compound, a dialkyl quaternary ammonium compound, a trialkyl quaternary ammonium compound and mixtures thereof;
    • (b) said silicone polymer is selected from the group consisting of cyclic silicones, polydimethylsiloxanes, aminosilicones, cationic silicones, silicone polyethers, silicone resins, silicone urethanes, and mixtures thereof;
    • (c) said polysaccharide comprises a cationic starch;
    • (d) said clay comprises a smectite clay;
    • (e) said dispersible polyolefin is selected from the group consisting of polyethylene, polypropylene and mixtures thereof; and
    • (f) said fatty ester is selected from the group consisting of a polyglycerol ester, a sucrose ester, a glycerol ester and mixtures thereof.

In one aspect of Applicants' cleaning and/or treatment composition, said cleaning and/or treatment composition comprises a fabric softener active comprising a material selected from the group consisting of monoesterquats, diesterquats, triesterquats, and mixtures thereof, preferably, said monoesterquats and diesterquats are selected from the group consisting of bis-(2-hydroxypropyl)-dimethylammonium methylsulfate fatty acid ester and isomers of bis-(2-hydroxypropyl)-dimethylammonium methylsulfate fatty acid ester and/or mixtures thereof, 1,2-di(acyloxy)-3-trimethylammoniopropaene chloride, N,N-bis(stearoyl-oxyethyl)-N,N-dimethyl ammonium chloride, N,N-bis(tallowoyl-oxy-ethyl)-N,N-dimethyl ammonium chloride, N,N-bis(stearoyl-oxy-thyl)-N-(2-hydroxyethyl)-N-methyl ammonium methylsulfate, N,N-bis-(stearoyl -2-hydroxypropyl)-N,N-dimethylammonium methylsulfate, N,N-bi-(tallowoyl-2-hydroxypropyl)-N,N-dimethylammonium methylsulfate, N,N-bis-(palmitoyl-2-hydroxypropyl)-N,N-dimethyl-ammonium methylsulfate, N,N-bis-(stearoyl-2-hydroxypropyl)-N,N-dimethylammonium chloride, 1,2-di-(stearoyl-oxy)3-trimethyl ammoniumpropane chloride, dicanoladimethyl-ammonium chloride, di(hard)tallowdimethylammonium chloride, dicanoladimethylammonium methylsulfate, 1-methyl-1-stearoylamidoethyl-2-stearoylimidazolinium methylsulfate, 1-tallowylamidoethyl-2-tallowylimidazoline, dipalmylmethyl hydroxyethylammoinum methylsulfate and mixtures thereof.

In one aspect of Applicants' cleaning and/or treatment composition, said composition comprises a quaternary ammonium compound and a silicone polymer, preferably said composition comprises from 0.001% to 10%, from 0.1% to 8%, more preferably from 0.5% to 5%, of said silicone polymer.

In one aspect of Applicants' cleaning and/or treatment composition, said fabric softening active has an Iodine Value of between 0-140, preferably 5-100, more preferably 10-80, even more preferably, 15-70, most preferably 18-25 or when said fabric softening active comprises a partially hydrogenated fatty acid quaternary ammonium compound said fabric softening active most preferably has a Iodine Value of 25-60.

In one aspect of Applicants' cleaning and/or treatment composition, said cleaning and/or treatment composition is a soluble unit-dose product said soluble unit dose product comprising one or more cleaning and/or treatment compositions contained within one or more chambers said chambers being formed from one or more films, preferably said one or more films comprise PVA film.

The compositions of the present invention may be used in any conventional manner. In short, they may be used in the same manner as products that are designed and produced by conventional methods and processes. For example, compositions of the present invention can be used to treat a situs inter alia a surface or fabric. Typically at least a portion of the situs is contacted with an aspect of Applicants' composition, in neat form or diluted in a wash liquor, and then the situs is optionally washed and/or rinsed. For purposes of the present invention, washing includes but is not limited to, scrubbing, and mechanical agitation. The fabric may comprise any fabric capable of being laundered in normal consumer use conditions. When the wash solvent is water, the water temperature typically ranges from about 5° C. to about 90° C. and, when the situs comprises a fabric, the water to fabric mass ratio is typically from about 1:1 to about 100:1.

The cleaning and/or treatment compositions of the present invention may be used as liquid fabric enhancers wherein they are applied to a fabric and the fabric is then dried via line drying and/or drying the an automatic dryer.

In one aspect, a method of controlling malodors comprising: contacting a situs comprising a malodor and/or a situs that will become malodorous with a cleaning and/or treatment composition selected from the group consisting of Applicants' cleaning and/or treatment compositions and mixtures thereof, is disclosed.

In one aspect of Applicants' method, said situs comprises a fabric and said contacting step comprises contacting said fabric with a sufficient amount of Applicants' cleaning and/or treatment compositions to provide said fabric with at least 0.0025 mg of benefit agent, such as perfume, per kg of fabric, preferably from about 0.0025 mg of benefit agent/kg of fabric to about 50 mg of malodor reduction material/kg of fabric, more preferably from about 0.25 mg of benefit agent/kg of fabric to about 25 mg of benefit agent/kg of fabric, most preferably from about 0.5 of benefit agent/kg of fabric to about 10 mg of benefit agent/kg of fabric of said sum of malodor reduction materials.

Solid Consumer Products and Methods of Use

Preferably said consumer product is a powder, granule, flake, bar or bead, said consumer product comprising, based on total product weight

    • (a) with from 0.001% about to about 25%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 5%, most preferably from about 0.1% to about 0.5% of the microcapsules disclosed here in;
    • (b) a carrier that is a solid at 25° C., preferably said solid carrier is selected from the group consisting of clays, sugars, salts, silicates, zeolites, citric acid, maleic acid, succinic acid, benzoic acid, urea and polyethylene oxide and mixtures thereof; preferably said carriers is present at a level of.
      • (i) from about 20% to about 95%, more preferably about 30% to about 90%, even more preferably about 45% to about 90%, and most preferably about 60% to about 88%; or
      • (ii) from about 1% to about 60%, more preferably about 2% to about 50%, even more preferably about 3% to about 45% and most preferably, about 4% to about 40%; and
    • (c) optionally, 0.5% to about 50% of an enzyme stable polymer, preferably said enzyme stable polymer is selected from the group consisting of polyacrylate polymers, polyamine polymer, acrylate/maleate copolymer, a polysaccharide, and mixtures thereof, preferably said polysaccharide is selected from the group consisting of carboxy methyl cellulose, cationic hydroxy ethyl cellulose and mixtures thereof.

In one aspect of said product, said product comprises a perfume.

In one aspect of said product, said product comprising an additional material that is an adjunct ingredient selected from the group consisting of surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, a fabric softener active, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, hueing dyes, perfumes, perfume delivery systems, structure elasticizing agents, carriers, structurants, hydrotropes, processing aids, solvents, pigments and mixtures thereof.

The compositions of the present invention may be used in any conventional manner. In short, they may be used in the same manner as products that are designed and produced by conventional methods and processes. For example, compositions of the present invention can be used to treat a situs inter alia a surface or fabric. Typically at least a portion of the situs is contacted with an aspect of Applicants' composition, in neat form or diluted in a wash liquor, and then the situs is optionally washed and/or rinsed.

For purposes of the present invention, washing includes but is not limited to, scrubbing, and mechanical agitation. The fabric may comprise any fabric capable of being laundered in normal consumer use conditions. When the wash solvent is water, the water temperature typically ranges from about 5° C. to about 90° C. and, when the situs comprises a fabric, the water to fabric mass ratio is typically from about 1:1 to about 100:1.

The compositions of the present invention may be used as fabric enhancers wherein they are applied to a fabric and the fabric is then dried via line drying and/or drying the an automatic dryer.

A method of freshening comprising: contacting a situs comprising with a product selected from the group consisting of the products described herein and mixtures thereof, is disclosed.

Freshening Compositions, Methods of Use and Delivery Systems

Preferably, said consumer product is a freshening composition having a viscosity of from about 1 mPa·s to about 50,000 mPa·s, preferably from about 1 mPa·s to about 2000 mPa·s, most preferably from about 1 mPa·s to about 400 mPa·s, a pH from about 3 to about 10, preferably from about 4 to about 8, most preferably from about 5 to about 8, said freshening composition comprising, based on total freshening composition weight

    • (a) with from 0.001% about to about 25%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 5%, most preferably from about 0.1% to about 0.5% of the microcapsules disclosed here in; and
    • (b) from about 0.01% to about 3%, preferably from about 0.4% to about 1%, more preferably from about 0.1% to about 0.5%, most preferably from about 0.1% to about 0.3% of solubilizing agent, preferably said solubilizing agent is selected from the group consisting of a surfactant, a solvent and mixtures thereof,
      • (i) preferably said surfactant comprises a non-ionic surfactant;
      • (ii) preferably said solvent comprises an alcohol, a polyol and mixtures thereof;
    • (c) optionally, an adjunct ingredient.

As the viscosity is lowered you obtain improved spray-ability and improved penetration into fabric.

In one aspect of said freshening composition, said composition comprises an adjunct ingredient selected from the group consisting of isoalkanes comprising at least 12 carbon atoms, a compound comprising a quaternary amine moiety, lubricants, additional solvents, glycols, alcohols, silicones, preservatives, anti-microbial agents, pH modifiers, a carrier, insect repellants, metallic salts, cyclodextrins, functional polymers, anti-foaming agents, antioxidants, oxidizing agents, chelants and mixtures thereof, preferably lubricants wherein the lubricants preferably comprise hydrocarbons, more preferably hydrocarbons that comprise two or more branches or compounds comprising a quaternary amine moiety comprising at least 10 carbon atoms.

A device comprising Applicants' freshening compositions, said device being preferably selected from the group consisting of trigger sprayers, manual aerosol sprayers, automatic aerosol sprayers, wick containing devices, fan devices, and thermal drop-on-demand devices, is disclosed.

A method of freshening comprising: contacting a situs with a composition selected from the group consisting of the freshening compositions disclosed herein and mixtures thereof is disclosed.

In one aspect of said method, said contacting step comprises contacting said situs with a sufficient amount of the compositions disclosed herein to provide said situs with, from about 0.1 milligrams (mg) to about 10,000 mg, preferably from about 1 mg to about 5,000 mg most preferably from about 5 mg to about 1000 mg of a benefit agent, preferably a perfume, per square meter of projected surface area of said situs.

The composition of the present invention may be used with a hard surface cleaner, as is commonly used to dean countertops, tables and floors. A suitable floor cleaning liquid is sold by the instant assignee in a replaceable reservoir under the name WetJet. The cleaning solution may particularly be made according to the teachings of commonly assigned U.S. Pat. No. 6,814,088. The reservoir may be used with and dispensed from a floor cleaning implement, in conjunction with a disposable floor sheet. A suitable spray implement is also sold under the name WetJet A suitable reservoir and fitment therefore may be made according to the teachings of commonly assigned U.S. Pat. Nos. 6,386,392 and/or 7,172,099. If desired the floor cleaning implement may dispense steam, according to the teachings of jointly assigned US 2013/0319463. Alternatively a refillable reservoir may be utilized.

If desired the composition of the present invention may be used with a pre-moistened sheet. If the cleaning sheet is pre-moistened, it is preferably pre-moistened with a liquid which provides for cleaning of the target surface, such as a floor, but yet does not require a post-cleaning rinsing operation. The cleaning sheet may be loaded with at least 1, 1.5 or 2 grams of cleaning solution per gram of dry substrate, but typically not more than 5 grams per gram. The cleaning solution may comprise a surfactant, such as APG surfactant which minimizes streaking since there is typically not a rinsing operation, according to the teachings of U.S. Pat. No. 6,716,805.

The composition of the present invention may be used for raised hard surfaces, as is sold under the names Mr. Clean and Mr. Proper. The composition may be dispensed from a trigger sprayer or aerosol sprayer, as are well known in the art. An aerosol sprayer dispenses the composition using propellant pressure, while a trigger sprayer dispenses the composition by pumping the composition under manual actuation. A suitable aerosol dispenser may have a dip tube or bag on valve, according to US 2015/0108163 and/or US 2011/0303766. A suitable trigger sprayer is found in U.S. Pat. No. 8,322,631.

The present freshening composition may be used in a device for the delivery of a volatile material to the atmosphere or on inanimate surfaces (e.g. fabric surfaces as a fabric refresher). Such device may be configured in a variety of ways. For example, the device may be configured for use as an energized air freshener (i.e. powered by electricity; or chemical reactions, such as catalyst fuel systems; or solar powered; or the like). Exemplary energized air freshening devices include a powered delivery assistance means which may include a heating element, fan assembly, or the like. More particularly, the device may be an electrical wall-plug air freshener as described in U.S. Pat. No. 7,223,361; a battery (including rechargeable battery) powered air freshener having a heating and/or fan element. In energized devices, the volatile material delivery engine may be placed next to the powered delivery assistance means to diffuse the volatile perfume material. The volatile perfume material may be formulated to optimally diffuse with the delivery assistance means.

Alternatively, the device may be configured for use as a non-energized air freshener. An exemplary non-energized air freshener includes a reservoir and, optionally, capillary or wicking means or an emanating surface, to help volatile materials passively diffuse into the air (i.e. without an energized means). A more specific example includes a delivery engine having a liquid reservoir for containing a volatile material and a microporous membrane enclosing the liquid reservoir as disclosed in U.S. Pat. Nos. 8,709,337 and 8,931,711.

The device may also be configured for use as an aerosol sprayer or a non-aerosol air sprayer including traditional trigger sprayers as well as rigger sprayer having a pre-compression and/or buffer system for fluid therein. In this embodiment, the delivery engine can deliver volatile materials upon user demand or programmed to automatically deliver volatile materials to the atmosphere.

The apparatus may also be configured for use with an air purifying system to deliver both purified air and volatile materials to the atmosphere. Non-limiting examples include air purifying systems using ionization and/or filtration technology for use in small spaces (e.g. bedrooms, bathrooms, automobiles, etc.), and whole house central air conditioning/heating systems (e.g. HVAC).

Article and Method of Use

Preferably Said Consumer Product is an Article Comprising

    • (a) a substrate, preferably a flexible substrate, more preferably a flexible substrate that is a sheet; preferably said substrate comprises a fabric softening active, preferably said fabric softening active coats al or a portion of said substrate; and
    • (b) based on total article weight with from 0.001% about to about 25%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 5%, most preferably from about 0.1% to about 0.5% of the microcapsules disclosed here in.

Preferably said article has a weight ratio of fabric softener active to dry substrate ranging from about 10:1 to about 0.5:1, preferably from about 5:1 to about 1:1, preferably said fabric softener active is selected from the group consisting of a quaternary ammonium compound, a silicone polymer, a polysaccharide, a clay, an amine, a fatty ester, a dispersible polyolefin, a polymer latex and mixtures thereof.

In one aspect, said article has a weight ratio of fabric softener active to dry substrate ranging from about 10:1 to about 0.5:1, preferably from about 5:1 to about 1:1, preferably said fabric softener active is selected from the group consisting of

    • (a) a cationic fabric softener active, preferably a quaternary-ammonium fabric softener active, more preferably a di(long alkyl chain)dimethylammonium (C1-C4 alkyl) sulfate or chloride, preferably the methyl sulfate; an ester quaternary ammonium compound, an ester amine precursor of an ester quaternary ammonium compound, and mixtures thereof, preferably a diester quaternary ammonium salt;
    • (b) a carboxylic acid salt of a tertiary amine and/or ester amine;
    • (c) a nonionic fabric softener material, preferably fatty acid partial esters of polyhydric alcohols, or anhydrides thereof, wherein the alcohol or anhydride contains from about 2 to about 18 and preferably from about 2 to about 8 carbon atoms, and each fatty acid moiety contains from about 8 to about 30 and preferably from about 12 to about 20 carbon atoms;
    • (d) alkanolamides;
    • (e) fatty acids; and
    • (f) mixtures of the foregoing.

Preferably, said article comprises, based on total article weight, from 1% to 99% by weight, preferably from about 1% to about 80%, more preferably from about 20% to about 70%, most preferably from about 25% to about 60% of a fabric softening active.

Preferably said article comprises a quaternary ammonium compound selected from the group consisting of bis-(2-hydroxypropyl)-dimethylammonium methylsulphate fatty add ester, 1,2-di(acyloxy)-3-trimethylammoniopropane chloride, N, N-bis(stearoyl-oxy-ethyl) N,N-dimethyl ammonium chloride, N,N-bis(tallowoyl-oxy-ethyl) N,N-dimethyl ammonium chloride, N,N-bis(stearoyl-oxy-ethyl) N-(2 hydroxyethyl) N-methyl ammonium methylsulfate, 1, 2 di (stearoyl-oxy) 3 trimethyl ammoniumpropane chloride, dicanoladimethylammonium chloride, di(hard)tallowdimethylammonium chloride, dicanoladimethylammonium methylsulfate, 1-methyl -1-stearoylamidoethyl-2-stearoylimidazolinium methylsulfate, 1-tallowylamidoethyl-2-tallowylimidazoline, dipalmethyl hydroxyethylammoinum methosulfate and mixtures thereof.

In one aspect of said article, said article comprises a fabric softening active having an Iodine Value of between 0-140, preferably 5-100, more preferably 10-80, even more preferably, 15-70, most preferably 18-25.

In one aspect of said article, said article comprises an adjunct ingredient selected from the group consisting of surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, hueing dyes, perfumes, perfume delivery systems, structure elasticizing agents, carriers, structurants, hydrotropes, processing aids, solvents, pigments anti-oxidants, colorants, preservatives, optical brighteners, opacifiers, stabilizers such as guar gum and polyethylene glycol, anti-shrinkage agents, anti-wrinkle agents, soil release agents, fabric crisping agents, reductive agents, spotting agents, germicides, fungicides, anti-corrosion agents, antifoam agents, Color Care Agents including Chlorine Scavangers, Dye Transfer Inhibitors, Dye Fixatives Chelants and Anti-Abrasion Agents Perfume, PMC's, Cyclodextrin Perfume Complexes, Free Cyclodextrin, Pro-Perfumes; Antioxidants and mixtures thereof.

A method of controlling softening and/or freshening comprising: contacting a situs comprising one or more of the articles Applicants' disclose herein, is disclosed.

In one aspect of said method, said situs comprises a fabric and said contacting step comprises contacting said fabric with a sufficient amount of Applicants' article containing to provide said fabric with a level of perfume of at least 0.0025 mg of perfume/kg of fabric, preferably from about 0.00025 mg of perfume/kg of fabric to about 25 mg of perfume/kg of fabric, more preferably from about 0.025 mg of perfume/kg of fabric to about 20 mg of perfume/kg of fabric, most preferably from about 0.25 of perfume/kg of fabric to about 10 mg of malodor reduction material/kg of fabric of said sum of malodor reduction materials.

One aspect of the present invention relates to fabric conditioning compositions which are delivered to fabric via dryer-added substrate that effectively releases the composition in an automatic laundry (clothes) dryer. Such dispensing means can be designed for single usage or for multiple uses. The dispensing means can also be a “carrier material” that releases the fabric conditioning composition and then is dispersed and/or exhausted from the dryer. When the dispensing means is a flexible substrate, e.g., in sheet configuration, the fabric conditioning composition is releasably affixed on the substrate to provide a weight ratio of conditioning composition to dry substrate ranging from about 10:1 to about 0.5:1, preferably from about 5:1 to about 1:1. To insure release, preferred flexible sheets withstand the dryer environment without decomposing or changing shape, e.g. combusting, creating off odors, or shrinking with heat or moisture. Substrates especially useful herein are rayon and/or polyester non-woven fabrics.

Non-limiting examples of the substrates useful herein are cellulosic rayon and/or polyester non-woven fabrics having basis weights of from about 0.4 oz./yd2 to about 1 oz./yd2, preferably from about 0.5 oz./yd2 to about 0.8 oz./yd2, more preferably from about 0.5 oz./yd2 to about 0.6 oz./yd2. These substrates are typically prepared using, e.g., rayon and/or polyester fibers having deniers of from about 1 to about 8, preferably from about 3 to about 6, and more preferably about 4 to 6 or mixtures of different deniers. Typically, the fiber is a continuous filament or a 3/16 inch to 2 inch fiber segment that is laid down, in a pattern that results in a multiplicity of layers and intersections between overlayed portions of the filament or fiber, on a belt, preferably foraminous, and then the fiber intersections are glued and/or fused into fiber-to-fiber bonds by a combination of an adhesive binder, and/or heat and/or pressure. As non-limiting examples, the substrate may be spun-bonded, melt-bonded, or point bonded or combinations of bonding processes may be chosen. The substrate breaking strength and elasticity in the machine and cross direction is sufficient to enable the substrate to be conveyed through a coating process. The porosity of the substrate article is sufficient to enable air flow through the substrate to promote conditioning active release and prevent dryer vent blinding. The substrate may also have a plurality of rectilinear slits extended along one dimension of the substrate.

The dispensing means will normally carry an effective amount of fabric conditioning composition. Such effective amount typically provides sufficient softness, antistatic effect and/or perfume deposition for at least one treatment of a minimum load in an automatic laundry dryer. Amounts of the fabric conditioning composition irrespective of load size for a single article can vary from about 0.1 g to about 100 g, preferably from about 0.1 g to about 20 g, most preferably from about 0.1 g to about 10 g. Amounts of fabric treatment composition for multiple uses, e.g., up to about 30, can be used.

Absorbent Article, Polybag or Paper Carton and Methods of Use

Preferably said consumer product is an article selected from an absorbent article, polybag or paper carton, said article comprising, based on total article weight, with from 0.001% about to about 25%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 5%, most preferably from about 0.1% to about 0.5% of the microcapsules of the present invention.

Preferably said article is an absorbent article, preferably said absorbent article is a sanitary paper product, said sanitary paper product comprising one or more layers of conventional felt-pressed tissue paper, conventional wet-pressed tissue paper, pattern densified tissue paper, starch substrates, high bulk, un-compacted tissue paper and mixtures thereof.

Preferably said absorbent article comprises an absorbent core, and optionally a backsheet, topsheet, acquisition layer or outer wrapper, wherein said microcapsules are disposed on the absorbent core or between one or more of the optional layers.

In one aspect of said article, said absorbent article is contained in a polybag or paper carton.

In one aspect of said article, said microcapsules are disposed on said polybag or paper carton, and/or on said absorbent article.

Preferably Said Article is an Absorbent Article Comprises a Lotion.

Preferably, said absorbent article comprises one or more adjunct ingredients selected from the group consisting of surfactants, Inks, dyes, mineral oils, petrolatum, polysiloxanes, cyclodextrins, clays, silicates, aluminates, vitamins, isoflavones, flavones, metal oxides, short chain organic acids (C1-C8), triglycerides (C8-C22), and antioxidants.

In one aspect, a method of providing a benefit agent, preferably perfume, comprising: incorporating said microcapsules in or on an article, preferably an absorbent article, polybag and/or paper carton, is disclosed.

A non-limiting list of suppliers of suitable absorbent articles, polybags, and cartons that can be used in the manufacture of Applicants' articles is as follows: Procter & Gamble of Cincinnati, Ohio, USA; International Paper Products of Memphis, Tenn. USA; and Kimberly Clark, of Irving, Tex., USA. Suitable equipment and processes for making absorbent articles can be obtained from Fameccanica Group of Pescara, Italy. Suitable equipment and processes for adding the malodor reduction materials to said articles can be obtained from Nordson of Duluth Ga., USA.

Personal Care Compositions and Methods of Use

Preferably said consumer product is a personal care composition comprising, based on total composition weight,

    • (a) with from 0.001% about to about 10%, preferably from about 0.1% to about 5%, more preferably from about 0.5% to about 4%, most preferably from about 1% to about 3% of the microcapsules disclosed here in;
    • (b) from about 0.1% to about 99%, preferably from about 1% to about 80%, more preferably from about 5% to about 70%; most preferably from about 10% to about 50% of a solvent, preferably said solvent is selected from, water, glycerin, and mixtures thereof, and
    • (c) from about 0% to about 50%, preferably from about 0% to about 40%, more preferably from about 0.1% to about 30%, most preferably from about 0.1% to about 15% of a material selected from the group consisting of a structurant, a humectant, a surfactant, an antimicrobial, and mixtures thereof.

Preferably, said personal care composition comprises one or more neat perfume raw materials—the total of said neat perfume raw materials being the sum of such neat perfume raw materials based on weight of each neat perfume raw materials.

Preferably, said sum total of neat perfume raw materials has an average LogP, based on weight percent of each perfume raw material in said sum total of neat perfume raw materials, of from about 2.5 to about 8, preferably from about 3 to about 8, more preferably from about 3.5 to about 7, most preferably, each of said neat perfume raw materials in said sum total of neat perfume raw materials. This range of LogP will allow the perfume to deposit on the skin and not wash away in the water phase during use

Preferably said personal care composition, comprises less than 10%, preferably less than 5%, more preferably less than 1% of said one or more perfume raw materials, based on total combined weight of said one or more perfume raw materials comprise an ionone moiety.

Preferably said personal care composition comprises a total of, based on total personal care composition weight, of from about 3% to 30% of a surfactant, and, optionally, a miscellar phase and/or lamellar phase.

Preferably said personal care composition, said composition comprises a total, based on total personal care composition weight, of from about 0.1% to about 50% of a material selected from structurants, humectants, fatty acids, inorganic salts, antimicrobial agents, antimicrobial agents actives and mixtures thereof.

Preferably said personal care composition comprises an adjunct ingredient selected from the group consisting of clay mineral powders, pearl pigments, organic powders, emulsifiers, distributing agents, pharmaceutical active, topical active, preservatives, surfactants and mixtures thereof.

A method of freshening comprising: contacting a situs with a personal care composition selected from the group consisting of the personal care compositions disclosed herein is disclosed.

In one aspect of said method, said situs comprises the body or head of hair and said contacting step comprises contacting said body or hair containing a malodor with a sufficient amount of Applicants' personal care composition to provide said body or hair with a level of encapsulated benefit agent, preferably perfume, of at least 0.0001 mg of encapsulated benefit agent per body or head of hair, preferably from about 0.0001 mg of encapsulated benefit agent per body or head of hair to about 1 mg of encapsulated benefit agent per body or head of hair, more preferably from about 0.001 mg of encapsulated benefit agent per body or head of hair about 0.5 mg of encapsulated benefit agent per body or head of hair, most preferably from about 0.01 of encapsulated benefit agent per body or head of hair to about 0.2 mg of encapsulated benefit agent per body or head of hair.

Antiperspirant and/or Deodorant Compositions and Methods of Use

Preferably said consumer product is an antiperspirant and/or deodorant composition comprising, based on total composition weight,

    • (a) with from 0.001% about to about 10%, preferably from about 0.1% to about 5%, more preferably from about 0.5% to about 4%, most preferably from about 1% to about 3% of the microcapsules disclosed here in;
    • (b) from about 0.1% to about 99%, preferably from about 1% to about 80%, more preferably from about 5% to about 55%, most preferably from about 10% to about 50% of a solvent, preferably said solvent is selected from cyclopentasiloxane, ethanol, water, propylene glycol, dipropylene glycol, and mixtures thereof;
    • (c) from about 0% to about 30%, preferably from about 0% to about 20%, more preferably from about 0.1% to about 4%, most preferably from about 0.1% to about 4% of a material selected from the group consisting of a structurant, a residue masker, an antimicrobial, and mixtures thereof

is disclosed. The aforementioned solvent levels help disperse perfume into the APDO base to give even coverage when used

Preferably said antiperspirant and/or deodorant composition, comprises one or more perfume raw materials.

Preferably each of said one or more perfume raw materials has a boiling point of from about 160° C. to about 400° C., preferably from about 180° C. to about 400° C.

Preferably less than 10%, preferably less than 5%, more preferably less than 1% of said one or more perfume raw materials, based on total combined weight of said one or more perfume raw materials comprise an ionone moiety.

Preferably, said antiperspirant and/or deodorant composition is an antiperspirant composition that comprises a total of, based on total antiperspirant composition weight, from about 1% to about 25% of an aluminum salt antiperspirant active.

Preferably said antiperspirant and/or deodorant composition, is an anhydrous antiperspirant composition, said anhydrous antiperspirant composition comprising a total of, based on total anhydrous antiperspirant composition weight, from about 1% to about 25% of an antiperspirant actives selected from the group consisting of astringent metallic salts, preferably inorganic and organic salts of aluminum, zirconium and zinc, as well as mixtures thereof, more preferably aluminum halides, aluminum chlorohydrate, aluminum hydroxyhalides, zirconyl oxyhalides, zirconyl hydroxyhalides, and mixtures thereof.

Preferably said antiperspirant and/or deodorant composition comprises an adjunct ingredient selected from the group consisting of day mineral powders, pearl pigments, organic powders, emulsifiers, distributing agents, pharmaceutical active, topical active, preservatives, surfactants and mixtures thereof.

A method of controlling malodors comprising: contacting a situs comprising a malodor and/or a situs that may become malodorous with an antiperspirant or deodorant composition selected from the group consisting of the antiperspirant and/or deodorant composition disclosed herein, is disclosed.

In one aspect of said method, said situs is an underarm and said contacting step comprises contacting said underarm with a sufficient amount of Applicants' antiperspirant and/or deodorant composition containing said sum of malodor reduction materials to provide said underarm with a level of malodor reduction materials of at least 0.0001 mg of malodor reduction material per underarm, preferably from about 0.0001 mg of malodor reduction material per underarm to about 10 mg of malodor reduction material per underarm, more preferably from about 0.001 mg of malodor reduction material per underarm about 5 mg of malodor reduction material per underarm, most preferably from about 0.01 of malodor reduction material per underarm to about 0.2 mg of malodor reduction material per underarm.

Antiperspirant Compositions

Antiperspirant compositions can be formulated in many forms. For example an antiperspirant composition can be, without limitation, a roll on product, a body spray, a stick including soft solid sticks and invisible solids, or an aerosol. Each of the antiperspirant compositions described below can include perfume materials as described herein.

A. Roll-on and Clear Gel

A roll-on antiperspirant composition can comprise, for example, water, emollient, solubilizer, deodorant actives, antioxidants, preservatives, or combinations thereof. A clear gel antiperspirant composition can comprise, for example, water, emollient, solubilizer, deodorant actives, antioxidants, preservatives, ethanol, or combinations thereof.

Water—

The roll-on composition can include water. Water can be present in an amount of about 1% to about 99.5%, about 25% to about 99.5%, about 50% to about 99.5%, about 75% to about 99.5% about 80% to about 99.5%, from about 15% to about 45%, or any combination of the end points and points encompassed within the ranges, by weight of the deodorant composition.

Emollients—

Roll-on compositions can comprise an emollient system including at least one emollient, but it could also be a combination of emollients. Suitable emollients are often liquid under ambient conditions. Depending on the type of product form desired, concentrations of the emollient(s) in the deodorant compositions can range from about 1% to about 95%, from about 5% to about 95%, from about 15% to about 75%, from about 1% to about 10%, from about 15% to about 45%, or from about 1% to about 30%, by weight of the deodorant composition.

Emollients suitable for use in the roll-on compositions include, but are not limited to, propylene glycol, polypropylene glycol (like dipropylene glycol, tripropylene glycol, etc.), diethylene glycol, triethylene glycol, PEG-4, PEG-8, 1,2 pentanediol, 1,2 hexanediol, hexylene glycol, glycerin, C2 to C20 monohydric alcohols, C2 to 040 dihydric or polyhydric alcohols, alkyl ethers of polyhydric and monohydric alcohols, volatile silicone emollients such as cyclopentasiloxane, nonvolatile silicone emollients such as dimethicone, mineral oils, polydecenes, petrolatum, and combinations thereof. One example of a suitable emollient comprises PPG-15 stearyl ether. Other examples of suitable emollients include dipropylene glycol and propylene glycol.

Deodorant Actives—

Suitable deodorant actives can include any topical material that is known or otherwise effective in preventing or eliminating malodor associated with perspiration. Suitable deodorant active as may be selected from the group consisting of antimicrobial agents (e.g., bacteriocides, fungicides), malodor-absorbing material, and combinations thereof. For example, antimicrobial agents may comprise cetyl-trimethylammonium bromide, cetyl pyridinium chloride, benzethonium chloride, diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride, sodium N-lauryl sarcosine, sodium N-palmethyl sarcosine, lauroyl sarcosine, N-myristoyl glycine, potassium N-lauryl sarcosine, trimethyl ammonium chloride, sodium aluminum chlorohydroxy lactate, triethyl citrate, tricetylmethyl ammonium chloride, 2,4,4′-trichloro-2′-hydroxy diphenyl ether (triciosan), 3,4,4′-trichlorocarbanilide (triciocarban), diaminoalkyl amides such as L-lysine hexadecyl amide, heavy metal salts of citrate, salicylate, and piroctose, especially zinc salts, and acids thereof, heavy metal salts of pyrithione, especially zinc pyrithione, zinc phenolsulfate, famesol, and combinations thereof. The concentration of the optional deodorant active may range from about 0.001%, from about 0.01%, of from about 0.1%, by weight of the composition to about 20%, to about 10%, to about 5%, or to about 1%, by weight of the composition.

Odor Entrappers—

The composition can include an odor entrapper. Suitable odor entrappers for use herein include, for example, solubilized, water-soluble, uncomplexed cyclodextrin. As used herein, the term “cyclodextrin” includes any of the known cyclodextrins such as unsubstituted cyclodextrins containing from six to twelve glucose units, especially, alpha-cyclodextrin, beta-cyclodextrin, gamma-cyclodextrin and/or their derivatives and/or mixtures thereof. The alpha-cyclodextrin consists of six glucose units, the beta-cyclodextrin consists of seven glucose units, and the gamma-cyclodextrin consists of eight glucose units arranged in a donut-shaped ring. The specific coupling and conformation of the glucose units give the cyclodextrins a rigid, conical molecular structure with a hollow interior of a specific volume. The “lining” of the internal cavity is formed by hydrogen atoms and glycosidic bridging oxygen atoms, therefore this surface is fairly hydrophobic. The unique shape and physical-chemical property of the cavity enable the cyclodextrin molecules to absorb (form inclusion complexes with) organic molecules or parts of organic molecules which can fit into the cavity. Many perfume molecules can fit into the cavity.

Cyclodextrin molecules are described in U.S. Pat. Nos. 5,714,137, and 5,942,217. Suitable levels of cyclodextrin are from about 0.1% to about 5%, alternatively from about 0.2% to about 4%, alternatively from about 0.3% to about 3%, alternatively from about 0.4% to about 2%, by weight of the composition.

Buffering Agent—

The composition can include a buffering agent which may be alkaline, acidic or neutral. The buffer can be used in the composition for maintaining the desired pH. The composition may have a pH from about 3 to about 10, from about 4 to about 9, from about 5 to about 8, from about 6 to about 7, or it may have a pH of about 6.5. One unique feature of the polyvinyl amine malodor control polymers is its ability to maintain active nitrogen sites at high pH levels which can help enhance the antibacterial effect which comes, at least in part, from the nitrogen sites. Suitable buffering agents include, for example, hydrochloric acid, sodium hydroxide, potassium hydroxide, and combinations thereof.

The compositions can contain at least about 0%, alternatively at least about 0.001%, alternatively at least about 0.01%, by weight of the composition, of a buffering agent. The composition may also contain no more than about 1%, alternatively no more than about 0.75%, alternatively no more than about 0.5%, by weight of the composition, of a buffering agent.

Solubilizer—

The composition can contain a solubilizer. A suitable solubilizer can be, for example, a surfactant, such as a no-foaming or low-foaming surfactant. Suitable surfactants are nonionic surfactants, cationic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof.

Suitable solubilizes include, for example, hydrogenated castor oil, polyoxyethylene 2 stearyl ether, polyoxyethylene 20 stearyl ether, and combinations thereof. One suitable hydrogenated castor oil that may be used in the present composition is polyoxyethylene hydrogenated castor oil.

When the solubilizing agent is present, it is typically present at a level of from about 0.01% to about 5%, alternatively from about 0.01% to about 3%, alternatively from about 0.05% to about 1%, alternatively from about 0.01% to about 0.05%, by weight of the composition.

Preservatives—

The composition can include a preservative. The preservative is included in an amount sufficient to prevent spoilage or prevent growth of inadvertently added microorganisms for a specific period of time, but not sufficient enough to contribute to the odor neutralizing performance of the composition. In other words, the preservative is not being used as the antimicrobial compound to kill microorganisms on the surface onto which the composition is deposited in order to eliminate odors produced by microorganisms. Instead, it is being used to prevent spoilage of the composition in order to increase shelf-life.

The preservative can be any organic preservative material which will not cause damage to fabric appearance, e.g., discoloration, coloration, bleaching. Suitable water-soluble preservatives include organic sulfur compounds, halogenated compounds, cyclic organic nitrogen compounds, low molecular weight aldehydes, parabens, propane diol materials, isothiazolinones, quaternary compounds, benzoates, low molecular weight alcohols, dehydroacetic acid, phenyl and phenoxy compounds, or mixtures thereof.

Non-limiting examples of commercially available water-soluble preservatives include a mixture of about 77% 5-chloro-2-methyl-4-isothiazolin-3-one and about 23% 2-methyl-4-isothiazolin-3-one, a broad spectrum preservative available as a 1.5% aqueous solution under the trade name Kathon® CG by Rohm and Haas Co.; 5-bromo-5-nitro -1,3-dioxane, available under the tradename Bronidox L® from Henkel; 2-bromo-2-nitropropane-1,3-diol, available under the trade name Bronopol® from Inolex; 1,1′-hexamethylene bis(5-(p-chlorophenyl)biguanide), commonly known as chlorhexidine, and its salts, e.g., with acetic and digluconic adds; a 95:5 mixture of 1,3-bis(hydroxymethyl)-5,5-dimethyl-2,4-imidazolidinedone and 3-butyl-2-iodopropynyl carbamate, available under the trade name Glydant Plus® from Lonza; N-[1,3-bis(hydroxymethyl)2,5-dioxo-4-imidazolidinyl]-N,N′-bis(hydroxy-methyl) urea, commonly known as diazolidinyl urea, available under the trade name Germall® II from Sutton Laboratories, Inc.; N,N″-methylenebis{N′-[1-(hydroxymethyl)-2,5-dioxo-4-imidazolidinyl]-urea}, commonly known as imidazolidinyl urea, available, e.g., under the trade name Abiol® from 3V-Sigma, Unicide U-13® from Induchem, Germall 1150 from Sutton Laboratories, Inc.; polymethoxy bicyclic oxazolidine, available under the trade name Nuosept® C from Hills America; formaldehyde; glutaraldehyde; polyaminopropyl biguanide, available under the trade name Cosmocil CQ® from ICI Americas, Inc., or under the trade name Mikrokill® from Brooks, Inc; dehydroacetic acid; and benzsiothiazolinone available under the trade name Koralone™ B-119 from Rohm and Hass Corporation.

Suitable levels of preservative can range from about 0.0001% to about 0.5%, alternatively from about 0.0002% to about 0.2%, alternatively from about 0.0003% to about 0.1%, by weight of the composition.

B. Body Spray

A body spray can contain, for example, a carrier, perfume, a deodorant active, odor entrappers, propellant, or combinations thereof. The body spray compositions can be applied as a liquid.

Carrier—

A carrier suitable for use in a body spray can include, water, alcohol, or combinations thereof. The carrier may be present in an amount of about 1% to about 99.5%, about 25% to about 99.5%, about 50% to about 99.5%, about 75% to about 99.5% about 80% to about 99.5%, from about 15% to about 45%, or any combination of the end points and points encompassed within the ranges, by weight of the composition. A suitable example of an alcohol can include ethanol.

Propellant—

The compositions described herein can include a propellant. Some examples of propellants include compressed air, nitrogen, inert gases, carbon dioxide, and mixtures thereof. Propellants may also include gaseous hydrocarbons like propane, n-butane, isobutene, cyclopropane, and mixtures thereof. Halogenated hydrocarbons like 1,1-difluoroethane may also be used as propellants. Some non-limiting examples of propellants include 1,1,1,2,2-pentafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, trans-1,3,3,3-tetrafluoroprop-1-ene, dimethyl ether, dichlorodifluoromethane (propellant 12), 1,1-dichloro-1,1,2,2-tetrafluoroethane (propellant 114), 1-chloro-1,1-difluoro-2,2-trifluoroethane (propellant 115), 1-chloro-1,1-difluoroethylene (propellant 142B), 1,1-difluoroethane (propellant 152A), monochlorodifluoromethane, and mixtures thereof. Some other propellants suitable for use include, but are not limited to, A-46 (a mixture of isobutane, butane and propane), A-31 (Isobutane), A-17 (n-butane), A-108 (propane), AP70 (a mixture of propane, isobutane and n-butane), AP40 (a mixture of propane, isobutene and n-butane), AP30 (a mixture of propane, isobutane and n-butane), and 152A (1,1 diflouroethane). The propellant may have a concentration from about 15%, 25%, 30%, 32%, 34%, 35%, 36%, 38%, 40%, or 42% to about 70%, 65%, 60%, 54%, 52%, 50%, 48%, 46%, 44%, or 42%, or any combination thereof, by weight of the total fill of materials stored within the container.

C. Invisible Solid

Invisible solid antiperspirant compositions as described herein can contain a primary structurant, an antiperspirant active, a perfume, and additional chassis ingredient(s). The antiperspirant composition can further comprise other optional ingredient(s). The compositions can be in the form of a solid stick. The compositions can have a product hardness of about 600 gram force or more. The compositions may be free of dipropylene glycol, added water, castor wax, or any combination thereof. The antiperspirant composition may be anhydrous. The antiperspirant composition may be free of added water.

Hardness—

The invisible solid can have a product hardness of least about 600 gram-force, more specifically from about 600 gram-force to about 5,000 gram-force, still more specifically from about 750 gram-force to about 2,000 gram·force, and yet more specifically from about 800 gram·force to about 1,400 gram-force.

The term “product hardness” or “hardness” as used herein is a reflection of how much force is required to move a penetration cone a specified distance and at a controlled rate into an antiperspirant composition under the test conditions described herein below. Higher values represent harder product, and lower values represent softer product. These values are measured at 27° C., 15% relative humidity, using a TA-XT2 Texture Analyzer, available from Texture Technology Corp., Scarsdale, N.Y., U.S.A. The product hardness value as used herein represents the peak force required to move a standard 45-degree angle penetration cone through the composition for a distance of 10 mm at a speed of 2 mm/second. The standard cone is available from Texture Technology Corp., as part number TA-15, and has a total cone length of about 24.7 mm, angled cone length of about 18.3 mm, and a maximum diameter of the angled surface of the cone of about 15.5 mm. The cone is a smooth, stainless steel construction and Weighs about 17.8 Grams.

Primary Structurants—

The invisible solid can comprise a suitable concentration of a primary structurant to help provide the antiperspirant with the desired viscosity, rheology, texture and/or product hardness, or to otherwise help suspend any dispersed solids or liquids within the composition.

The term “solid structurant” as used herein means any material known or otherwise effective in providing suspending, gelling, viscosifying, solidifying, and/or thickening properties to the composition or which otherwise provide structure to the final product form. These solid structurants include gelling agents, and polymeric or non-polymeric or inorganic thickening or viscosifying agents. Such materials will typically be solids under ambient conditions and include organic solids, crystalline or other gallants, inorganic particulates such as days or silicas, or combinations thereof.

The concentration and type of solid structurant selected for use in the antiperspirant compositions will vary depending upon the desired product hardness, rheology, and/or other related product characteristics. For most structurants suitable for use herein, the total structurant concentration ranges from about 5% to about 35%, more typically from about 10% to about 30%, or from about 7% to about 20%, by weight of the composition.

Non-limiting examples of suitable primary structurants include stearyl alcohol and other fatty alcohols; hydrogenated castor wax (e.g., Castorwax MP80, Castor Wax, etc.); hydrocarbon waxes include paraffin wax, beeswax, camauba, candelilla, spermaceti wax, ozokerite, ceresin, baysberry, synthetic waxes such as Fischer-Tropsch waxes, and microcrystalline wax; polyethylenes with molecular weight of 200 to 1000 daltons; solid triglycerides; behenyl alcohol, or combinations thereof.

Other non-limiting examples of primary structurants suitable for use herein are described in U.S. Pat. Nos. 5,916,514 and 5,891,424, the descriptions of which are incorporated herein by reference.

Antiperspirant Active—

The antiperspirant stick compositions can comprise a particulate antiperspirant active suitable for application to human skin. The concentration of antiperspirant active in the composition should be sufficient to provide the desired perspiration wetness and odor control from the antiperspirant stick formulation selected.

The antiperspirant stick compositions can comprise an antiperspirant active at concentrations of from about 0.5% to about 60%, and more specifically from about 5% to about 35%, by weight of the composition. These weight percentages are calculated on an anhydrous metal salt basis exclusive of water and any complexing agents such as, for example, glycine, and glycine salts. The antiperspirant active as formulated in the composition can be in the form of dispersed particulate solids having an average particle size or equivalent diameter of less than about 100 microns, more specifically less than about 20 microns, and even more specifically less than about 10 microns.

The antiperspirant active for use in the anhydrous antiperspirant compositions of the present invention can include any compound, composition or other material having antiperspirant activity. More specifically, the antiperspirant actives may include astringent metallic salts, especially inorganic and organic salts of aluminum, zirconium and zinc, as well as mixtures thereof. Even more specifically, the antiperspirant actives may include aluminum-containing and/or zirconium-containing salts or materials, such as, for example, aluminum halides, aluminum chlorohydrate, aluminum hydroxyhalides, zirconyl oxyhalides, zirconyl hydroxyhalides, and mixtures thereof.

Aluminum salts for use in the anhydrous antiperspirant stick compositions include those that conform to the formula:
Al2(OH)aClb·xH2O,wherein a is from about 2 to about 5; the sum of a and b is about 6; x is from about 1 to about 6; and a, b, and x may have non-integer values. More specifically, aluminum chlorohydroxides referred to as “5/6 basic chlorohydroxide” can be used, wherein a=5, and “2/3 basic chlorohydroxide”, wherein a-4. Processes for preparing aluminum salts are disclosed in U.S. Pat. Nos. 3,887,692; 3,904,741; 4,359,456; and British Patent Specification 2,048,229, the disclosures of which are incorporated herein by reference for the purpose of describing processes for preparing aluminum salts. Mixtures of aluminum salts are described in British Patent Specification 1,347,950, which description is also incorporated herein by reference.

Zirconium salts for use in the anhydrous antiperspirant stick compositions include those which conform to the formula:
ZrO(OH)2-aCla·xH2O,wherein a is from about 1.5 to about 1.87; x is from about 1 to about 7; and a and x may both have non-integer values. These zirconium salts are described in Belgian Patent 825,146, Schmitz, issued Aug. 4, 1975, which description is incorporated herein by reference. Zirconium salts that additionally contain aluminum and glycine, commonly known as “ZAG complexes,” are believed to be especially beneficial. These ZAG complexes contain aluminum chlorohydroxide and zirconyl hydroxy chloride conforming to the above-described formulas. Such ZAG complexes are described in U.S. Pat. No. 3,792,068; Great Britain Patent Application 2,144,992; and U.S. Pat. No. 4,120,948, disclosures of which are incorporated herein by reference for the limited purpose of describing ZAG complexes.

Also suitable for use herein are enhanced efficacy aluminum-zirconium chlorohydrex-amino acid which typically has the empirical formula:
AlnZr(OH)[3n+4−m(n+1)](Cl)[m(n+1)]-AAq where n is 2.0 to 10.0, preferably 3.0 to 8.0; m is about 0.48 to about 1.11 (which corresponds to M:Cl approximately equal to 2.1-0.9), preferably about 0.56 to about 0.83 (which corresponds to M:Cl approximately equal to 1.8-1.2); q is about 0.8 to about 4.0, preferably about 1.0 to 2.0; and AA is an amino acid such as glycine, alanine, valine, serine, leucine, isoleucine, β-alanine, cysteine, β-amino-n-butyric acid, or γ-amino-n-butyric acid, preferably glycine. These salts also generally have some water of hydration associated with them, typically on the order of 1 to 5 moles per mole of salt (typically, about 1% to about 16%, more typically about 4% to about 13% by weight). These salts are generally referred to as aluminum-zirconium trichlorohydrex or tetrachlorohydrex when the Al:Zr ratio is between 2 and 6 and as aluminum-zirconium pentachlorohydrex or octachlorohydrex when the Al:Zr ratio is between 6 and 10. The term “aluminum-zirconium chlorohydrex” is intended to embrace all of these forms. The preferred aluminum-zirconium salt is aluminum-zirconium chlorohydrex-glycine. Additional examples of suitable high efficacy antiperspirant actives can include Aluminum Zirconium Pentachlorohydrex Glycine, Aluminum Zirconium Octachlorohydrex Glycine, or a combination thereof. These high efficacy actives are more fully described in U.S. App. Pub. No. 2007/0003499 by Shen et al. filed Jun. 30, 2005.

Additional Chassis Ingredients

Additional Structurant—

The antiperspirant composition can further comprise an additional structurant. The additional structurant may be present in an amount from 1% to about 10%, by weight of the composition. The additional structurant(s) will likely be present at an amount less than the primary structurant. Non-limiting examples of suitable additional structurants include stearyl alcohol and other fatty alcohols; hydrogenated castor wax (e.g., Castorwax MP80, Castor Wax, etc.); hydrocarbon waxes include paraffin wax, beeswax, carnauba, candelilla, spermaceti wax, ozokerite, ceresin, baysberry, synthetic waxes such as Fisher-Tropsch waxes, and microcrystalline wax; polyethylenes with molecular weight of 200 to 1000 daltons; and solid triglycerides; behenyl alcohol, or combinations thereof. Other non-limiting examples of additional structurants suitable for use herein are described in U.S. Pat. Nos. 5,976,514 and 5,891,424.

Solvent—

The antiperspirant composition can comprise a solvent at concentrations ranging from about 20% to about 80%, and more specifically from about 30% to about 70%, by weight of the composition. The solvent can be a volatile silicone which may be cyclic or linear.

“Volatile silicone” as used herein refers to those silicone materials that have measurable vapor pressure under ambient conditions. Non-limiting examples of suitable volatile silicones are described in Todd at al., “Volatile Silicone Fluids for Cosmetics”, Cosmetics and Toiletries, 91:27-32 (1976), which descriptions are incorporated herein by reference. The volatile silicone can be a cyclic silicone having from 3 to 7, and more specifically from 5 to 6, silicon atoms, and still more specifically 5, like cyclopentasiloxane. These cyclic silicone materials will generally have viscosities of less than about 10 centistokes at 25° C. The volatile silicone can also be linear, suitable volatile linear silicone materials for use in the antiperspirant compositions include those represented by the formula:

[Figure (not displayed)]
wherein n is from 1 to 7, and more specifically from 2 to 3. These linear silicone materials will generally have viscosities of less than about 5 centistokes at 25° C. Specific examples of volatile silicone solvents suitable for use in the antiperspirant compositions include, but are not limited to, Cyclomethicone D-5; GE 7207 and GE 7158 (commercially available from General Electric Co.); Dow Corning 344; Dow Corning 345; Dow Corning 200; and DC1184 (commercially available from Dow Corning Corp.); and SWS-03314 (commercially available from SWS Silicones).

Non-Volatile Organic Fluids—

Non-volatile organic fluids may be present, for example, in an amount of about 15% or less, by weight of the composition. Non-limiting examples of nonvolatile organic fluids include mineral oil, PPG-14 butyl ether, Isopropyl myristate, petrolatum, butyl stearate, cetyl octanoate, butyl myristate, myristyl myristate, C12-15 alkylbenzoate (e.g., Finsolv™), octyldodecanol, isostearyl isostearate, octododecyl benzoate, isostearyl lactate, isostearyl palmitate, and isobutyl stearate.

Adjunct Ingredients—

The anhydrous antiperspirant compositions can further comprise any optional material that is known for use in antiperspirant and deodorant compositions or other personal care products, or which is otherwise suitable for topical application to human skin. One example of optional materials are day mineral powders such as talc, mica, serlcite, silica, magnesium silicate, synthetic fluorphlogopite, calcium silicate, aluminum silicate, bentonite and montomorillonite; pearl pigments such as alumina, barium sulfate, calcium secondary phosphate, calcium carbonate, titanium oxide, finely divided titanium oxide, zirconium oxide, zinc oxide, hydroxy apatite, iron oxide, iron titrate, ultramarine blue, Prussian blue, chromium oxide, chromium hydroxide, cobalt oxide, cobalt titanate, titanium oxide coated mica; organic powders such as polyester, polyethylene, polystyrene, methyl methacrylate resin, cellulose, 12-nylon, 6-nylon, styrene-acrylic acid copolymers, poly propylene, vinyl chloride polymer, tetrafluoroethylene polymer, boron nitride, fish scale guanine, laked tar color dyes, laked natural color dyes; and combinations thereof. Talc, if used at higher levels can produce a significant amount of white residue which has been found to be a consumer negative for product acceptance. Therefore it is best to limit the composition to less than 10%, less than about 8%, less than about 6%, or less than about 3%, by weight of the composition. Nonlimiting examples of other optional materials include emulsifiers, distributing agents, antimicrobials, pharmaceutical or other topical active, preservatives, surfactants, and so forth. Examples of such optional materials are described in U.S. Pat. Nos. 4,049,792 5,019,375; and 5,429,816; which descriptions are incorporated herein by reference.

D. Soft Solid

Soft solid composition can comprise volatile silicone, antiperspirant active, gellant, residue masking material, or combinations thereof. In addition, soft solids generally have a hardness value after dispensing of about 500 gram force or less.

Volatile Silicone Solvent—

The soft solid can comprises a volatile silicone solvent at concentrations ranging from about 20% to about 80%, preferably from about 30% to about 70%, more preferably from about 45% to about 70%, by weight of the composition. The volatile silicone of the solvent may be cyclic or linear.

“Volatile silicone” as used herein refers to those silicone materials which have measurable vapor pressure under ambient conditions. Nonlimiting examples of suitable volatile silicones are described in Todd at al., “Volatile Silicone Fluids for Cosmetics”, Cosmetics and Toiletries, 91:27-32 (1976), which descriptions are incorporated herein by reference. Preferred volatile silicone materials are those having from about 3 to about 7, preferably from about 4 to about 5, silicon atoms. Cyclic volatile silicones are preferred for use in the antiperspirant compositions herein, and include those represented by the formula:

[Figure (not displayed)]
wherein n is from about 3 to about 7, preferably from about 4 to about 5, most preferably 5. These cyclic silicone materials will generally have viscosities of less than about 10 centistokes at 25° C. Linear volatile silicone materials suitable for use in the antiperspirant compositions include those represented by the formula:

[Figure (not displayed)]
wherein n is from about 1 to about 7, preferably from about 2 to about 3. These linear silicone materials will generally have viscosities of less than about 5 centistokes at 25° C. Specific examples of volatile silicone solvents suitable for use in the antiperspirant compositions include, but are not limited to, Cyclomethicone D-5 (commercially available from G. E. Silicones), Dow Corning 344, Dow Corning 345 and Dow Corning 200 (commercially available from Dow Corning Corp.), GE 7207 and 7158 (commercially available from General Electric Co.) and SWS-03314 (commercially available from SWS Silicones Corp.).

Gellant Material—

The soft solid can include a gellant material comprising fatty alcohols having from about 20 to about 60 carbon atoms, or combinations thereof, at concentrations ranging from about 0.1% to about 8% by weight of the composition. The gellant material, when combined with the volatile silicone solvent described hereinbefore, provides the composition with a physically stable structure within which the particulate antiperspirant materials are dispersed, and maintained as such over an extended period of time. Specifically, the gallant material can comprise saturated or unsaturated, substituted or unsubstituted, fatty alcohols or mixtures of fatty alcohols having from about 20 to about 60 carbons atoms, preferably from about 20 to about 40 carbon atoms. Preferred are combinations of the fatty alcohols. The fatty alcohol gallants are preferably saturated, unsubstituted monohydric alcohols or combinations thereof, which have a melting point of at less than about 110° C., more preferably from about 60° to about 110° C., even more preferably between about 100° C. and 110° C.

It has been found that this fatty alcohol-based gellant material, when combined with volatile silicone solvents provides a stable structure for maintaining a dispersion of particulate antiperspirant material in a topical formulation without the necessity of using conventional particulate thickening agents. This gallant material is especially useful in maintaining the physical stability of particulate dispersions containing higher concentrations of volatile silicone solvents.

It was also found that penetration force values for the antiperspirant compositions can be controlled by adjusting total fatty alcohol concentrations. In controlling penetration force values in this manner, there is no longer a need to use organic solvents or thickening agents to control penetration force values, which solvents or thickening agents often add cost to the formulation, Introduce additional compatibility issues, and often contribute undesirable cosmetics such as prolonged stickiness, difficulty in ease of spreading, Increased dry-down times and reduced dry feel after application.

Specific concentrations of the gallant materials can be selected according to the desired penetration force value. For roll-on formulations having a penetration force value of from about 20 gram-force to about 100 gram·force, gellant material concentrations preferably range from about 0.1% to about 3%, preferably from about 1.5% to about 3%, by weight of the antiperspirant composition. For other cream formulations, including those formulations suitable for use in cream applicator devices, which have a penetration force value of from about 100 gram·force to about 500 gram·force, gellant material concentrations preferably range from about 3% to about 8%, preferably from about 3% to about 6%, by weight of the antiperspirant composition.

Specific examples of fatty alcohol gallants for use in the antiperspirant compositions that are commercially available include, but are not limited to, Unilin® 425, Unilin® 350, Unilin®550 and Unilin 700 (supplied by Petrolite)

Residue Masking Material—

The soft solid compositions can further comprise a nonvolatile emollient as a residue masking material. Such materials and their use in antiperspirant products are well known in the antiperspirant art, and any such material may be incorporated into the composition of the present invention, provided that such optional material is compatible with the essential elements of the composition, or does not unduly impair product performance or cosmetics. Concentrations of the optional residue masking material can range from about 0.1% to about 40%, preferably from about 1% to about 10%, by weight of the antiperspirant composition. These optional materials can be liquid at ambient temperatures, and can be nonvolatile. The term “nonvolatile” as used in this context refers to materials which have a boiling point under atmospheric pressure of at least about 200° C. Nonlimiting examples of suitable residue masking materials for use in the antiperspirant products include butyl stearate, diisopropyl adipate, petrolatum, nonvolatile silicones, octyldodecanol, phenyl trimethicone, Isopropyl myristate, C12-15 ethanol benzoates and PPG-14 Butyl Ether. Residue masking materials are described, for example, in U.S. Pat. No. 4,985,238, which description is incorporated herein by reference.

Other Materials—

The soft solid compositions can further comprise one, or more, other materials which modify the physical characteristics of the compositions or serve as additional “active” components when deposited on the skin. Many such materials are known in the antiperspirant art and can be used in the antiperspirant compositions herein, provided that such optional materials are compatible with the essential materials described herein, or do not otherwise unduly impair product performance. Non limiting examples of materials can include active components such as bacteriostats and fungiostats, and “non-active” components such as colorants, perfumes, cosmetic powders, emulsifiers, chelants, distributing agents, preservatives, and wash-off aids. Examples of such optional materials are described in U.S. Pat. No. 4,049,792; Canadian Patent 1,164,347; U.S. Pat. Nos. 5,019,375; and 5,429,816; which descriptions are incorporated herein by reference.

E. Aerosol

An aerosol composition can comprise a concentrate, a propellant, or a combination thereof. Alcohol is a predominant component of the concentrates provided herein. Useful alcohols include C1-C3 alcohols, with the preferred alcohol being ethanol. In certain examples, the alcohol is employed at a concentration level of from at least about 40%, 50% or 55% to about 80%, by weight of the concentrate.

An antiperspirant active is dissolved in the alcohol, at a level of from about 1% to about 15%, by weight of the concentrate. Various antiperspirant actives can be employed, including, for example, aluminum chloride, aluminum chlorohydrate, aluminum chlorohydrex, aluminum chlorohydrex PG, aluminum chlorohydrex PEG, aluminum dichlorohydrate, aluminum dichlorohydrex PG, aluminum dichlorohydrex PEG, aluminum sesquichlorohydrate, aluminum sesquichlorohydrex PG, aluminum sesquichlorohydrex PEG, aluminum sulfate, aluminum zirconium octachlorohydrate, aluminum zirconium octachlorohydrex GLY, aluminum zirconium pentachlorohydrate, aluminum zirconium pentachlorohydrex GLY, aluminum zirconium tetrachlorohydrate, aluminum zirconium trichlorohydrate, aluminum zirconium tetrachlorohydrate GLY, and aluminum zirconium trichlorohydrate GLY. In one example, aluminum chlorohydrex PG is the chosen antiperspirant active.

The antiperspirant concentrates can also include an oil or a mixture of two or more oils. Useful oils include, for example, volatile silicone oils and non-volatile organic oils. “Volatile silicone”, as used herein, refers to those silicone materials that have measurable vapor pressure under ambient conditions. Non-limiting examples of suitable volatile silicones are described in Todd at al., “Volatile Silicone Fluids for Cosmetics”, Cosmetics and Toiletries, 91:27-32 (1970). The volatile silicone can be a cyclic silicone having from at least about 3 silicone atoms or from at least about 5 silicone atoms but no more than about 7 silicone atoms or no more than about 6 silicone atoms. For example, volatile silicones can be used which conform to the formula:

[Figure (not displayed)]
wherein n is from about 3 or from about 5 but no more than about 7 or no more than about 6. These volatile cyclic silicones generally have a viscosity of less than about 10 centistokes at 25° C. Suitable volatile silicones for use herein include, but are not limited to, Cyclomethicone D5 (commercially available from G. E. Silicones); Dow Corning 344, and Dow Corning 345 (commercially available from Dow Corning Corp.); and GE 7207, GE 7158 and Silicone Fluids SF-1202 and SF-1173 (available from General Electric Co.). SWS-03314, SWS-03400, F-222, F-223, F-250, F-251 (available from SWS Silicones Corp.); Volatile Silicones 7158, 7207, 7349 (available from Union Carbide); MASIL SF-V (available from Mazer) and combinations thereof. Suitable volatile silicone oils can also include linear silicone oils such as, for example, DC200 (1 cSt), DC200 (0.65 cSt), and DC2-1184, all of which are available from Dow Corning Corp. In certain examples, the volatile silicone oil can have a viscosity of less than 10 centistokes at 25° C.

Non-volatile organic, emollient oils can also be employed. A representative, non-limiting list of emollient oils includes CETIOL CC (dicaprylyl carbonate), CETIOL OE (dicaprylyl ether), CETIOL S (diethylhexylcyclohexane), and CETIOL B (dibutyl adipate), all of which are available from Cognis, and LEXFEEL 7 (neopentyl glycol diheptanoate) from Inolex. In certain examples, the organic emollient oils have a viscosity of less than 50 centistokes at 25° C. The term “organic emollient oil” as used herein means silicon-free emollient oils that are liquid at 25° C., and that are safe and light to skin and can be miscible with volatile silicone oils (as described above) and the antiperspirant active-alcohol solution in the concentration ranges described below.

The oil or mixture of oils is generally included in the concentrate formulas at a level of from about 5% to about 45%, by weight of the concentrate. This viscosity ranges noted above in connection with the different classes of oil can facilitate desired spray rates and patterns, and can help minimize nozzle clogging. To provide desired skin feel, minimal nozzle clogging, and good concentrate stability, the ratio of alcohol to volatile silicone oil is preferably greater than 1.0, 1.35, or 1.5. And in examples having both a volatile silicone oil and an organic emollient oil, the ratio of alcohol to total oil is preferably greater than or equal to about 0.90. The oils in certain examples are miscible with the alcohol and antiperspirant active solution. Although various levels of miscibility are acceptable, the oils are preferably miscible enough with the alcohol and antiperspirant active solution to yield a concentrate having a clear appearance.

The antiperspirant compositions can also include residue-masking agents and propellants as discussed above.

Additional Consumer Product Ingredients/Adjunct Materials

While not essential for the purposes of the present invention, the non-limiting list of consumer product ingredients/adjuncts illustrated hereinafter are suitable for use in the instant compositions and may be desirably incorporated in certain aspects of the invention, for example to assist or enhance cleaning performance, for treatment of the substrate to be cleaned, or to modify the aesthetics of the composition as is the case with perfumes, colorants, dyes or the like. The precise nature of these additional components, and levels of incorporation thereof, will depend on the physical form of the composition and the nature of the fabric treatment operation for which it is to be used. Suitable adjunct materials include, but are not limited to, surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, day soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, hueing dyes, perfumes, perfume delivery systems, structure elasticizing agents, carriers, structurants, hydrotropes, processing aids, solvents, pigments and/or fabric softener actives and clothes softening agents compatible with detergents, anti-bacterials, anti-microbials, and anti-fungals.

As stated, the adjunct ingredients are not essential to Applicants' compositions. Thus, certain aspects of Applicants' compositions do not contain one or more of the following adjuncts materials: surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, hueing dyes, perfumes, perfume delivery systems structure elasticizing agents, carriers, hydrotropes, processing aids, solvents, pigments and/or fabric softener actives, anti-bacterial/microbial. However, when one or more adjuncts are present, such one or more adjuncts may be present as detailed below.

Rheology Modifier—

The liquid compositions of the present invention may comprise a rheology modifier. The rheology modifier may be selected from the group consisting of non-polymeric crystalline, hydroxy-functional materials, polymeric rheology modifiers which impart shear thinning characteristics to the aqueous liquid matrix of the composition. In one aspect, such rheology modifiers impart to the aqueous liquid composition a high shear viscosity, at 20 sec−1 shear rate and at 21° C., of from 1 to 7000 cps and a viscosity at low shear (0.5 sec−1 shear rate at 21° C.) of greater than 1000 cps, or even 1000 cps to 200,000 cps. In one aspect, for cleaning and treatment compositions, such rheology modifiers impart to the aqueous liquid composition a high shear viscosity, at 20 sec−1 and at 21° C., of from 50 to 3000 cps and a viscosity at low shear (0.5 sec−1 shear rate at 21° C.) of greater than 1000 cps, or even 1000 cps to 200,000 cps. Viscosity according to the present invention is measured using an AR 2000 rheometer from TA instruments using a plate steel spindle having a plate diameter of 40 mm and a gap size of 500 μm. The high shear viscosity at 20 sec−1 and low shear viscosity at 0.5 sec−1 can be obtained from a logarithmic shear rate sweep from 0.1 sec−1 to 25 sec−1 in 3 minutes time at 21° C. Crystalline hydroxyl functional materials are rheology modifiers which form thread-like structuring systems throughout the matrix of the composition upon in situ crystallization in the matrix. Polymeric rheology modifiers are preferably selected from polyacrylates, polymeric gums, other non-gum polysaccharides, and combinations of these polymeric materials. Generally the rheology modifier will comprise from 0.01% to 1% by weight, preferably from 0.05% to 0.75% by weight, more preferably from 0.1% to 0.5% by weight, of the compositions herein.

Structuring agents which are especially useful in the compositions of the present invention may comprise non-polymeric (except for conventional alkoxylation), crystalline hydroxy-functional materials which can form thread-like structuring systems throughout the liquid matrix when they are crystallized within the matrix in situ. Such materials can be generally characterized as crystalline, hydroxyl-containing fatty adds, fatty esters or fatty waxes. In one aspect, rheology modifiers include crystalline, hydroxyl-containing rheology modifiers include castor oil and its derivatives. In one aspect, rheology modifiers include hydrogenated castor oil derivatives such as hydrogenated castor oil and hydrogenated castor wax. Commercially available, castor oil-based, crystalline, hydroxyl-containing rheology modifiers include THIXCIN™ from Rheox, Inc. (now Elementis).

Other types of rheology modifiers, besides the non-polymeric, crystalline, hydroxyl-containing rheology modifiers described heretofore, may be utilized in the liquid detergent compositions herein. Polymeric materials which provide shear-thinning characteristics to the aqueous liquid matrix may also be employed. Suitable polymeric rheology modifiers include those of the polyacrylate, polysaccharide or polysaccharide derivative type. Polysaccharide derivatives typically used as rheology modifiers comprise polymeric gum materials. Such gums include pectine, alginate, arabinogalactan (gum Arabic), carrageenan, gellan gum, xanthan gum and guar gum. If polymeric rheology modifiers are employed herein, a preferred material of this type is gellan gum. Gellan gum is a heteropolysaccharide prepared by fermentation of Pseudomonaselodea ATCC 31461. Gellan gum is commercially marketed by CP Kelco U.S., Inc. under the KELCOGEL tradename.

A further alternative and suitable rheology modifier include a combination of a solvent and a polycarboxylate polymer. More specifically the solvent may be an alkylene glycol. In one aspect, the solvent may comprise dipropylene glycol. In one aspect, the polycarboxylate polymer may comprise a polyacrylate, polymethacrylate or mixtures thereof. In one aspect, solvent may be present, based on total composition weight, at a level of from 0.5% to 15%, or from 2% to 9% of the composition. In one aspect, polycarboxylate polymer may be present, based on total composition weight, at a level of from 0.1% to 10%, or from 2% to 5%. In one aspect, the solvent component may comprise mixture of dipropylene glycol and 1,2-propanediol. In one aspect, the ratio of dipropylene glycol to 1,2-propanediol may be 3:1 to 1:3, or even 1:1. In one aspect, the polyacrylate may comprise a copolymer of unsaturated mono- or di-carbonic acid and C1-C30 alkyl ester of the (meth) acrylic acid. In another aspect, the rheology modifier may comprise a polyacrylate of unsaturated mono- or di-carbonic acid and C1-C30 alkyl ester of the (meth) acrylic acid. Such copolymers are available from Noveon Inc under the tradename Carbopol Aqua 30®.

In the absence of rheology modifier and in order to impart the desired shear thinning characteristics to the liquid composition, the liquid composition can be internally structured through surfactant phase chemistry or gel phases.

Hueing Dye—

The liquid laundry detergent composition may comprise a hueing dye. The hueing dyes employed in the present laundry care compositions may comprise polymeric or non-polymeric dyes, organic or inorganic pigments, or mixtures thereof. Preferably the hueing dye comprises a polymeric dye, Comprising a chromophore constituent and a polymeric constituent. The chromophore constituent is characterized in that it absorbs light in the wavelength range of blue, red, violet, purple, or combinations thereof upon exposure to light. In one aspect, the chromophore constituent exhibits an absorbance spectrum maximum from about 520 nanometers to about 640 nanometers in water and/or methanol, and in another aspect, from about 560 nanometers to about 610 nanometers in water and/or methanol.

Although any suitable chromophore may be used, the dye chromophore is preferably selected from benzodifuranes, methine, triphenylmethanes, napthalimides, pyrazole, naptho-quinone, anthraquinone, azo, oxazine, azine, xanthene, biphenodioxazine and phthalocyanine dye chromophores. Mono and di-azo dye chromophores are may be preferred.

The hueing dye may comprise a dye polymer comprising a chromophore covalently bound to one or more of at least three consecutive repeat units. It should be understood that the repeat units themselves do not need to comprise a chromophore. The dye polymer may comprise at least 5, or at least 10, or even at least 20 consecutive repeat units. The repeat unit can be derived from an organic ester such as phenyl dicarboxylate in combination with an oxyalkyleneoxy and a polyoxyalkyleneoxy. Repeat units can be derived from alkenes, epoxides, aziridine, carbohydrate including the units that comprise modified celluloses such as hydroxyalkylcellulose; hydroxypropyl cellulose; hydroxypropyl methylcellulose; hydroxybutyl cellulose; and, hydroxybutyl methylcellulose or mixtures thereof. The repeat units may be derived from alkenes, or epoxides or mixtures thereof. The repeat units may be C2-C4 alkyleneoxy groups, sometimes called alkoxy groups, preferably derived from C2-C4 alkylene oxide. The repeat units may be C2-C4 alkoxy groups, preferably ethoxy groups. For the purposes of the present invention, the at least three consecutive repeat units form a polymeric constituent. The polymeric constituent may be covalently bound to the chromophore group, directly or indirectly via a linking group. Examples of suitable polymeric constituents include polyoxyalkylene chains having multiple repeating units. In one aspect, the polymeric constituents include polyoxyalkylene chains having from 2 to about 30 repeating units, from 2 to about 20 repeating units, from 2 to about 10 repeating units or even from about 3 or 4 to about 6 repeating units. Non-limiting examples of polyoxyalkylene chains include ethylene oxide, propylene oxide, glycidol oxide, butylene oxide and mixtures thereof.

Surfactants—

The compositions according to the present invention may comprise a surfactant or surfactant system wherein the surfactant can be selected from nonionic surfactants, anionic surfactants, cationic surfactants, ampholytic surfactants, zwitterionic surfactants, semi-polar nonionic surfactants and mixtures thereof. The surfactant is typically present at a level of from about 0.1% to about 60%, from about 1% to about 50% or even from about 5% to about 40% by weight of the subject composition.

Chelating Agents—

The compositions herein may contain a chelating agent. Suitable chelating agents include copper, iron and/or manganese chelating agents and mixtures thereof. When a chelating agent is used, the composition may comprise from about 0.1% to about 15% or even from about 3.0% to about 10% chelating agent by weight of the subject composition.

Dye Transfer Inhibiting Agents—

The compositions of the present invention may also include one or more dye transfer inhibiting agents. Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof. When present in a subject composition, the dye transfer inhibiting agents may be present at levels from about 0.0001% to about 10%, from about 0.01% to about 5% or even from about 0.1% to about 3% by weight of the composition.

Dispersants—

The compositions of the present invention can also contain dispersants. Suitable water-soluble organic materials include the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms,

Perfumes—

The consumer product may comprise, either in neat form or via a delivery system, a perfume raw materials selected from the group consisting of perfumes such as 3-(4-t-butylphenyl) -2-methyl propanal, 3-(4-t-butylphenyl)-propanal, 3-(4-isopropylphenyl)-2-methylpropanal, 3-(3,4-methylenedioxyphenyl)2-methylpropanal, and 2,6-dimethyl-5-heptenal, α-damascone, ß-damascone, Δ-damascone, γ-damascenone, 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone, methyl-7,3-dihydro-2H-1,5-benzodioxepine-3-one, 2-[2-(4-methyl-3-cyclohexenyl-1-yl)propyl]cyclopentan-2-one, 2-sec-butylcyclohexanone, and □-dihydro ionone, linalool, ethyllinalool, tetrahydrolinalool, and dihydromyrcenol.

Additional Perfume Delivery Technologies—

The compositions of the present invention may comprise one or more perfume delivery technologies that stabilize and enhance the deposition and release of perfume ingredients from treated substrate. Such perfume delivery technologies can also be used to increase the longevity of perfume release from the treated substrate. Perfume delivery technologies, methods of making certain perfume delivery technologies and the uses of such perfume delivery technologies are disclosed in US 2007/0275866 A1.

In one aspect, the compositions of the present invention may comprise from about 0.001% to about 20%, preferably from about 0.01% to about 10%, more preferably from about 0.05% to about 5%, most preferably from about 0.1% to about 0.5% by weight of the perfume delivery technology. In one aspect, said perfume delivery technologies may be selected from the group consisting of: pro-perfumes, polymer particles, functionalized silicones, polymer assisted delivery, molecule assisted delivery, fiber assisted delivery, amine assisted delivery, cyclodextrins, starch encapsulated accord, zeolite and inorganic carrier, additional perfume microcapsules, and mixtures thereof:

In one aspect, said perfume delivery technology may comprise an additional encapsulated perfume such as additional perfume microcapsules formed by at least partially surrounding a benefit agent with a wall material. Said benefit agent may include materials selected from the group consisting of perfumes such as 3-(4-t-butylphenyl)-2-methyl propanal, 3-(4-t-butylphenyl)-propanal, 3-(4-isopropylphenyl)-2-methylpropanal, 3-(3,4-methylenedioxy-phenyl) -2-methylpropanal, and 2,6-dimethyl-5-heptenal, α-damascone, ß-damascone, Δ-damascone, γ-damascenone, 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone, methyl-7,3-dihydro-2H-1,5-benzodioxepine-3-one, 2-[2-(4-methyl-3-cyclohexenyl-1-yl)propy]cyclopetan-2-one, 2-sec-butylcyclohexanone, and ß-dihydro ionone, linalool, ethyllinalool, tetrahydrolinalool, and dihydromyrcenol. Suitable perfume materials can be obtained from Givaudan Corp. of Mount Olive, N.J., USA, International Flavors & Fragrances Corp. of South Brunswick, N.J., USA, or Quest Corp. of Naarden, Netherlands. In one aspect, the microcapsule wall material may comprise: melamine, polyacrylamide, silicones, silica, polystyrene, polyurea, polyurethanes, polyacrylate based materials, gelatin, styrene malic anhydride, polyamides, and mixtures thereof. In one aspect, said melamine wall material may comprise melamine crosslinked with formaldehyde, melamine-dimethoxyethanol crosslinked with formaldehyde, and mixtures thereof. In one aspect, said polystyrene wall material may comprise polyestyrene cross-linked with divinylbenzene. In one aspect, said polyurea wall material may comprise urea crosslinked with formaldehyde, urea crosslinked with gluteraldehyde, and mixtures thereof. In one aspect, said polyacrylate based materials may comprise polyacrylate formed from methylmethacrylate/dimethylaminomethyl methacrylate, polyacrylate formed from amine acrylate and/or methacrylate and strong acid, polyacrylate formed from carboxylic acid acrylate and/or methacrylate monomer and strong base, polyacrylate formed from an amine acrylate and/or methacrylate monomer and a carboxylic add acrylate and/or carboxylic add methacrylate monomer, and mixtures thereof. In one aspect, the perfume microcapsule may be coated with a deposition aid, a cationic polymer, a non-ionic polymer, an anionic polymer, or mixtures thereof. Suitable polymers may be selected from the group consisting of: polyvinylformaldehyde, partially hydroxylated polyvinylformaldehyde, polyvinylamine, polyethylenelmine, ethoxylated polyethyleneimine, polyvinylalcohol, polyacrylates, and combinations thereof. In one aspect, the microcapsule may be a perfume microcapsule. In one aspect, one or more types of microcapsules, for example two microcapsules types having different benefit agents may be used.

In one aspect, said perfume delivery technology may comprise an amine reaction product (ARP) or a thio reaction product. One may also use “reactive” polymeric amines and or polymeric thiols in which the amine and/or thiol functionality is pre-reacted with one or more PRMs to form a reaction product Typically the reactive amines are primary and/or secondary amines, and may be part of a polymer or a monomer (non-polymer). Such ARPs may also be mixed with additional PRMs to provide benefits of polymer-assisted delivery and/or amine-assisted delivery. Non-limiting examples of polymeric amines include polymers based on polyalkylimines, such as polyethyleneimine (PEI), or polyvinylamine (PVAm). Non-limiting examples of monomeric (non-polymeric) amines include hydroxyl amines, such as 2-aminoethanol and its alkyl substituted derivatives, and aromatic amines such as anthranilates. The ARPs may be premixed with perfume or added separately in leave-on or rinse-off applications. In another aspect, a material that contains a heteroatom other than nitrogen and/or sulfur, for example oxygen, phosphorus or selenium, may be used as an alternative to amine compounds. In yet another aspect, the aforementioned alternative compounds can be used in combination with amine compounds. In yet another aspect, a single molecule may comprise an amine moiety and one or more of the alternative heteroatom molecules, for example, thiols, phosphines and selenols. The benefit may include improved delivery of perfume as well as controlled perfume release. Suitable ARPs as well as methods of making same can be found in USPA 2005/0003980 A1 and U.S. Pat. No. 6,413,920 B1.

Suitable Fabric Softening Actives

The fluid fabric enhancer compositions disclosed herein comprise a fabric softening active (“FSA”). Suitable fabric softening actives, include, but are not limited to, materials selected from the group consisting of quaternary ammonium compounds, amines, fatty esters, sucrose esters, silicones, dispersible polyolefins, days, polysaccharides, fatty acids, softening oils, polymer latexes and mixtures thereof.

Non-limiting examples of water insoluble fabric care benefit agents include dispersible polyethylene and polymer latexes. These agents can be in the form of emulsions, latexes, dispersions, suspensions, and the like. In one aspect, they are in the form of an emulsion or a latex. Dispersible polyethylenes and polymer latexes can have a wide range of particle size diameters (χ50) including but not limited to from about 1 nm to about 100 μm; alternatively from about 10 nm to about 10 μm. As such, the particle sizes of dispersible polyethylenes and polymer latexes are generally, but without limitation, smaller than silicones or other fatty oils.

Generally, any surfactant suitable for making polymer emulsions or emulsion polymerizations of polymer latexes can be used to make the water insoluble fabric care benefit agents of the present invention. Suitable surfactants consist of emulsifiers for polymer emulsions and latexes, dispersing agents for polymer dispersions and suspension agents for polymer suspensions. Suitable surfactants include anionic, cationic, and nonionic surfactants, or combinations thereof. In one aspect, such surfactants are nonionic and/or anionic surfactants. In one aspect, the ratio of surfactant to polymer in the water insoluble fabric care benefit agent is about 1:100 to about 1:2; alternatively from about 1:50 to about 1:5, respectively. Suitable water insoluble fabric care benefit agents include but are not limited to the examples described below.

Quats—Suitable quats include but are not limited to, materials selected from the group consisting of ester quats, amide quats, imidazoline quats, alkyl quats, amidoester quats and mixtures thereof. Suitable ester quats include but are not limited to, materials selected from the group consisting of monoester quats, diester quats, triester quats and mixtures thereof. In one aspect, a suitable ester quat is bis-(2-hydroxypropyl)-dimethylammonium methylsulfate fatty acid ester having a molar ratio of fatty acid moieties to amine moieties of from 1.85 to 1.99, an average chain length of the fatty acid moieties of from 16 to 18 carbon atoms and an Iodine value of the fatty acid moieties, calculated for the free fatty acid, which has an Iodine Value of between 0-140, preferably 5-100, more preferably 10-80, even more preferably 15-70, even more preferably 18-55, most preferably 18-25. When a soft tallow quaternary ammonium compound softener is used, most preferably range is 25-60. In one aspect, the cis-trans-ratio of double bonds of unsaturated fatty acid moieties of the bis (2 hydroxypropyl)-dimethylammonium methylsulfate fatty acid ester is from 55:45 to 75:25, respectively. Suitable amide quats include but are not limited to, materials selected from the group consisting of monoamide quats, diamide quats and mixtures thereof. Suitable alkyl quats include but are not limited to, materials selected from the group consisting of mono alkyl quats, dialkyl quats quats, trialkyl quats, tetraalkyl quats and mixtures thereof.

Amines—Suitable amines include but are not limited to, materials selected from the group consisting of amidoesteramines, amidoamines, imidazoline amines, alkyl amines, amidoester amines and mixtures thereof. Suitable ester amines include but are not limited to, materials selected from the group consisting of monoester amines, diester amines, triester amines and mixtures thereof. Suitable amido quats include but are not limited to, materials selected from the group consisting of monoamido amines, diamido amines and mixtures thereof. Suitable alkyl amines include but are not limited to, materials selected from the group consisting of mono alkylamines, dialkyl amines quats, trialkyl amines, and mixtures thereof.

Silicone—

In one embodiment, the fabric softening composition comprises a silicone. Suitable levels of silicone may comprise from about 0.1% to about 70%, alternatively from about 0.3% to about 40%, alternatively from about 0.5% to about 30%, alternatively from about 1% to about 20% by weight of the composition. Useful silicones can be any silicone comprising compound. In one embodiment, the silicone polymer is selected from the group consisting of cyclic silicones, polydimethylsiloxanes, aminosilicones, cationic silicones, silicone polyethers, silicone resins, silicone urethanes, and mixtures thereof. In one embodiment, the silicone is a polydialkylsilicone, alternatively a polydimethyl silicone (polydimethyl siloxane or “PDMS”), or a derivative thereof. In another embodiment, the silicone is chosen from an aminofunctional silicone, amino-polyether silicone, alkyloxylated silicone, cationic silicone, ethoxylated silicone, propoxylated silicone, ethoxylated/propoxylated silicone, quaternary silicone, or combinations thereof.

In another embodiment, the silicone may be chosen from a random or blocky organosilicone polymer having the following formula:
[R1R2R3SiO1/2](j+2)[(R4Si(X—Z)O2/2]k[R4R4SiO2/2]m[R4SiO3/2]j wherein:

j is an integer from 0 to about 98; in one aspect j is an integer from 0 to about 48; in one aspect, j is 0;

k is an integer from 0 to about 200, in one aspect k is an integer from 0 to about 50; when k=0, at least one of R1, R2 or R3 is —X—Z;

m is an integer from 4 to about 5,000; in one aspect m is an integer from about 10 to about 4,000; in another aspect m is an integer from about 50 to about 2,000;

R1, R2 and R3 are each independently selected from the group consisting of H, OH, C1-C32 alkyl, C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C5-C32 substituted aryl, C6-C32 alkylaryl, C6-C32 substituted alkylaryl, C1-C32 alkoxy, C1-C32 substituted alkoxy and X—Z;

each R4 is independently selected from the group consisting of H, OH, C1-C32 alkyl, C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl, C6-C32 alkylaryl, C6-C32 substituted alkylaryl, C1-C32 alkoxy and C1-C32 substituted alkoxy;

each X in said alkyl siloxane polymer comprises a substituted or unsubstituted divalent alkylene radical comprising 2-12 carbon atoms, in one aspect each divalent alkylene radical is independently selected from the group consisting of —(CH2)s— wherein s is an integer from about 2 to about 8, from about 2 to about 4; in one aspect, each X in said alkyl siloxane polymer comprises a substituted divalent alkylene radical selected from the group consisting of:

[Figure (not displayed)]

each Z is selected independently from the group consisting of

[Figure (not displayed)]
with the proviso that when Z is a quat, Q cannot be an amide, imine, or urea moiety and if Q is an amide, imine, or urea moiety, then any additional Q bonded to the same nitrogen as said amide, imine, or urea moiety must be H or a C1-C6 alkyl.

In one aspect, said additional Q is H. For Z, An− is a suitable charge balancing anion. In one aspect An− is selected from the group consisting of Cl, Br, I, methylsulfate, toluene sulfonate, carboxylate and phosphate; and at least one Q in said organosilicone is independently selected from

[Figure (not displayed)]
and each additional Q in said organosilicone is independently selected from the group comprising of H, C1-C32 alkyl, C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl, C6-C32 alkylaryl, C6-C32 substituted alkylaryl, —CH2—CH(OH)—CH2—R5;

[Figure (not displayed)]

wherein each R5 is independently selected from the group consisting of H, C1-C32 alkyl, C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl, C6-C32 alkylaryl, C6-C32 substituted alkylaryl, —(CHR6—CHR6—O—)w-L and a siloxyl residue;

each R6 is independently selected from H, C1-C18 alkyl

each L is independently selected from —C(O)—R7 or R7;

w is an integer from 0 to about 500, in one aspect w is an integer from about 1 to about 200; In one aspect w is an integer from about 1 to about 50;

each R7 is selected independently from the group consisting of H; C1-C32 alkyl; C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl, C6-C32 alkylaryl; C6-C32 substituted alkylaryl and a siloxyl residue;

each T is independently selected from H, and

[Figure (not displayed)]

wherein each v in said organosilicone is an integer from 1 to about 10, in one aspect, v is an integer from 1 to about 5 and the sum of all v indices in each Q in the said organosilicone is an integer from 1 to about 30 or from 1 to about 20 or even from 1 to about 10.

In another embodiment, the silicone may be chosen from a random or blocky organosilicone polymer having the following formula:
[R1R2R3SiO1/2](j+2)[(R4Si(X—Z)O2/2]k[R4R4SiO2/2]m[R4SiO3/2]j

wherein

j is an integer from 0 to about 98; in one aspect j is an integer from 0 to about 48; in one aspect, j is 0;

k is an integer from 0 to about 200; when k=0, at least one of R1, R2 or R3═—X—Z, in one aspect, k is an integer from 0 to about 50

m is an integer from 4 to about 5,000; in one aspect m is an integer from about 10 to about 4,000; in another aspect m is an integer from about 50 to about 2,000;

R1, R2 and R3 are each independently selected from the group consisting of H, OH, C1-C32 alkyl, C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl, C6-C32 alkylaryl, C6-C32 substituted alkylaryl, C1-C32 alkoxy, C1-C23 substituted alkoxy and X—Z;

each R4 is independently selected from the group consisting of H, OH, C1-C32 alkyl, C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl, C6-C32 alkylaryl, C6-C32 substituted alkylaryl, C1-C32 alkoxy and C1-C32 substituted alkoxy;

each X comprises of a substituted or unsubstituted divalent alkylene radical comprising 2-12 carbon atoms; in one aspect each X is independently selected from the group consisting of

[Figure (not displayed)]
wherein each s independently is an integer from about 2 to about 8, in one aspect s is an Integer from about 2 to about 4;

At least one Z in the said organosiloxane is selected from the group consisting of R5;

[Figure (not displayed)]
provided that when X is

[Figure (not displayed)]
then Z═—OR5 or

[Figure (not displayed)]

wherein A is a suitable charge balancing anion. In one aspect A is selected from the group consisting of Cl, Br, I, methylsulfate, toluene sulfonate, carboxylate and phosphate and each additional Z in said organosilicone is independently selected from the group comprising of H, C1-C32 alkyl, C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl, C6-C32 alkylaryl, C6-C32 substituted alkylaryl, R5,

[Figure (not displayed)]
and provided that when X is or

[Figure (not displayed)]
then Z═—OR5 or

[Figure (not displayed)]

each R5 is independently selected from the group consisting of H; C1-C32 alkyl; C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl or C6-C32 alkylaryl, or C6-C32 substituted alkylaryl, —(CHR6—CHR6—O—)w—CHR6—CHR6-L and siloxyl residue wherein each L is independently selected from —O—C(O)—R7 or —O—R7;

[Figure (not displayed)]

w is an integer from 0 to about 500, in one aspect w is an integer from 0 to about 200, one aspect w is an integer from 0 to about 50;

each R6 is independently selected from H or C1-C18 alkyl;

each R7 is independently selected from the group consisting of H; C1-C32 alkyl; C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl, C6-C32 alkylaryl, and C6-C32 substituted aryl, and a siloxyl residue;

each T is independently selected from H;

[Figure (not displayed)]

wherein each v in said organosilicone is an integer from 1 to about 10, in one aspect, v is an integer from 1 to about 5 and the sum of all v indices in each Z in the said organosilicone is an integer from 1 to about 30 or from 1 to about 20 or even from 1 to about 10.

In one embodiment, the silicone is one comprising a relatively high molecular weight. A suitable way to describe the molecular weight of a silicone includes describing its viscosity. A high molecular weight silicone is one having a viscosity of from about 10 cSt to about 3,000,000 cSt, or from about 100 cSt to about 1,000,000 cSt, or from about 1,000 cSt to about 600,000 cSt, or even from about 6,000 cSt to about 300,000 cSt.

In one embodiment, the silicone comprises a blocky cationic organopolysiloxane having the formula:
MwDxTyQz wherein:

M=[SiR1R2R3O1/2], [SiR1R2G1O1/2], [SiR1G1G2O1/2], [SiG1G2G3O1/2], or combinations thereof;

D=[SiR1R2O1/2], [SiR1G1O2/2], [SiG1G2O2/2] or combinations thereof;

T=[SiR1OR3/2], [SiG1O3/2] or combinations thereof;

Q=[SiO4/2];

w=is an integer from 1 to (2+y+2z);

x=is an integer from 5 to 15,000;

y=is an integer from 0 to 98;

z=is an integer from 0 to 98;

R1, R2 and R3 are each independently selected from the group consisting of H, OH, C1-C32 alkyl, C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl, C6-C32 alkylaryl, C6-C32 substituted alkylaryl, C1-C32 alkoxy, C1-C32 substituted alkoxy, C1-C32 alkylamino, and C1-C32 substituted alkylamino;

at least one of M, D, or T incorporates at least one moiety G1, G2 or G3; and G1, G2, and G3 are each independently selected from the formula:

[Figure (not displayed)]
wherein:

X comprises a divalent radical selected from the group consisting of C1-C32 alkylene, C1-C32 substituted alkylene, C5-C32 or C6-C32 arylene, C5-C32 or C6-C32 substituted arylene, C6-C32 arylalkylene, C6-C32 substituted arylalkylene, C1-C32 alkoxy, C1-C32 substituted alkoxy, C1-C32alkyleneamino, C1-C32 substituted alkyleneamino, ring-opened epoxide, and ring-opened glycidyl, with the proviso that if X does not comprise a repeating alkylene oxide moiety then X can further comprise a heteroatom selected from the group consisting of P, N and O;

each R4 comprises identical or different monovalent radicals selected from the group consisting of H, C1-C32 alkyl, C1-C32 substituted alkyl, C5-C32 or C6-C32 aryl, C5-C32 or C6-C32 substituted aryl, C6-C32 alkylaryl, and C6-C32 substituted alkylaryl;

E comprises a divalent radical selected from the group consisting of C1-C32 alkylene, C1-C32 substituted alkylene, C5-C32 or C6-C32 arylene, C5-C32 or C6-C32 substituted arylene, C6-C32 arylalkylene, C6-C32 substituted arylalkylene, C1-C32 alkoxy, C1-C32 substituted alkoxy, C1-C32alkyleneamino, C1-C32 substituted alkyleneamino, ring-opened epoxide and ring-opened glycidyl, with the proviso that if E does not comprise a repeating alkylene oxide moiety then E can further comprise a heteroatom selected from the group consisting of P, N, and O;

E′ comprises a divalent radical selected from the group consisting of C1-C32 alkylene, C1-C32 substituted alkylene, C5-C32 or C6-C32 arylene, C5-C32 or C6-C32 substituted arylene, C6-C32 arylalkylene, C1-C32 substituted arylalkylene, C1-C32 alkoxy, C1-C32 substituted alkoxy, C1-C32alkyleneamino, C1-C32 substituted alkyleneamino, ring-opened epoxide and ring-opened glycidyl, with the proviso that if E does not comprise a repeating alkylene oxide moiety then E can further comprise a heteroatom selected from the group consisting of P, N, and O;

p is an integer independently selected from 1 to 50;

n is an integer independently selected from 1 or 2;

when at least one of G1, G2, or G3 is positively charged, A−t is a suitable charge balancing anion or anions such that the total charge, k, of the charge-balancing anion or anions is equal to and opposite from the net charge on the moiety G1, G2 or G3; wherein t is an integer independently selected from 1, 2, or 3; and k≤(p*2/t)+1; such that the total number of cationic charges balances the total number of anionic charges in the organopolysiloxane molecule;

and wherein at least one E does not comprise an ethylene moiety.

Particularly Preferred Adjuncts for Freshening Compositions

Buffering Agent—

The freshening composition of the present invention may include a buffering agent which may be a carboxylic acid, or a dicarboxylic acid like maleic acid, or a polybasic add such as citric acid or polyacrylic acid. The acid may be sterically stable, and used in this composition for maintaining the desired pH. The buffering agent may also comprise a base such as triethanolamine, or the salt of an organic acid such as sodium citrate. The freshening composition may have a pH from about 3 to about 8, alternatively from about 4 to about 7, alternatively from about 5 to about 8, alternatively from about 6 to about 8, alternatively about 6 to about 7, alternatively about 7, alternatively about 6.5. Carboxylic adds such as citric acid may act as metal ion chelants and can form metallic salts with low water solubility. As such, in some embodiments, the freshening composition is essentially free of citric acids. The buffer can be alkaline, acidic or neutral.

Other suitable buffering agents for freshening compositions of the present invention include biological buffering agents. Some examples are nitrogen-containing materials, sulfonic acid buffers like 3-(N-morpholino)propanesulfonic acid (MOPS) or N-(2-Acetamido)-2-aminoethanesulfonic acid (ACES), which have a near neutral 6.2 to 7.5 pKa and provide adequate buffering capacity at a neutral pH. Other examples are amino acids such as lysine or lower alcohol amines like mono-, di-, and tri-ethanolamine. Other nitrogen-containing buffering agents are tri(hydroxymethyl)amino methane (HOCH2)3CNH3 (TRIS), 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-methyl-propanol, 2-amino-2-methyl-1,3-propanol, disodium glutamate, N-methyl diethanolamide, 2-dimethylamino-2-methylpropanol (DMAMP), 1,3-bis(methylamine)-cyclohexane, 1,3-diamino-propanol N,N′-tetra-methyl-1,3-diamino-2-propanol, N,N-bis(2-hydroxyethyl)glycine (bicine) and N-tris (hydroxymethyl)methyl glycine (tricine). Mixtures of any of the above are also acceptable.

The freshening compositions may contain at least about 0%, alternatively at least about 0.001%, alternatively at least about 0.01%, by weight of the composition, of a buffering agent. The composition may also contain no more than about 1%, alternatively no more than about 0.75%, alternatively no more than about 0.5%, by weight of the composition, of a buffering agent.

Solubilizer—

The freshening composition of the present invention may contain a solubilizing aid to solubilize any excess hydrophobic organic materials, particularly some malodor reduction materials of the current invention, perfume materials, and also optional ingredients (e.g., insect repelling agent, antioxidant, etc.) which can be added to the composition, that are not readily soluble in the composition, to form a clear translucent solution. A suitable solubilizing aid is a surfactant, such as a no-foaming or low-foaming surfactant. Suitable surfactants are nonionic surfactants, cationic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof.

In some embodiments, the freshening composition contains nonionic surfactants, cationic surfactants, and mixtures thereof. In one embodiment, the freshening composition contains ethoxylated hydrogenated castor oil. One type of suitable hydrogenated castor oil that may be used in the present composition is sold as Basophor™, available from BASF.

Freshening compositions containing anionic surfactants and/or detergent surfactants may make fabrics susceptible to soiling and/or leave unacceptable visible stains on fabrics as the solution evaporates off of the fabric. In some embodiments, the freshening composition is free of anionic surfactants and/or detergent surfactants.

When the solubilizing agent is present, it is typically present at a level of from about 0.01% to about 3%, alternatively from about 0.05% to about 1%, alternatively from about 0.01% to about 0.05%, by weight of the freshening composition.

Antimicrobial Compounds—

The freshening composition of the present invention may include an effective amount of a compound for reducing microbes in the air or on inanimate surfaces. Antimicrobial compounds are effective on gram negative and gram positive bacteria and fungi typically found on indoor surfaces that have contacted human skin or pets such as couches, pillows, pet bedding, and carpets. Such microbial species include Kiebsiella pneumoniae, Staphylococcus aureus, Aspergillus niger, Klebaiella pneumonlae, Streptococcus pyogenes, Salmonella choleraesuis, Escherichla coil, Trichophyton mentegrophytes, and Pseudomonas aeruginosa. In some embodiments, the antimicrobial compounds are also effective on viruses such H1-N1, Rhinovirus, Respiratory Syncytial, Poliovirus Type 1, Rotavirus, Influenza A, Herpes simplex types 1 & 2, Hepatitis A, and Human Coronavirus.

Antimicrobial compounds suitable in the freshening composition of the present invention can be any organic material which will not cause damage to fabric appearance (e.g., discoloration, coloration such as yellowing, bleaching). Water-soluble antimicrobial compounds include organic sulfur compounds, halogenated compounds, cyclic organic nitrogen compounds, low molecular weight aldehydes, quaternary compounds, dehydroacetic acid, phenyl and phenoxy compounds, or mixtures thereof.

In one embodiment, a quaternary compound is used. Examples of commercially available quaternary compounds suitable for use in the freshening composition are Barquat available from Lonza Corporation; and didecyl dimethyl ammonium chloride quat under the trade name Bardac® 2250 from Lonza Corporation.

The antimicrobial compound may be present in an amount from about 500 ppm to about 7000 ppm, alternatively about 1000 ppm to about 5000 ppm, alternatively about 1000 ppm to about 3000 ppm, alternatively about 1400 ppm to about 2500 ppm, by weight of the freshening composition.

Preservatives—

The freshening composition of the present invention may include a preservative. The preservative is included in the present invention in an amount sufficient to prevent spoilage or prevent growth of inadvertently added microorganisms for a specific period of time, but not sufficient enough to contribute to the odor neutralizing performance of the freshening composition. In other words, the preservative is not being used as the antimicrobial compound to kill microorganisms on the surface onto which the composition is deposited in order to eliminate odors produced by microorganisms. Instead, it is being used to prevent spoilage of the freshening composition in order to increase the shelf-life of the composition.

The preservative can be any organic preservative material which will not cause damage to fabric appearance, e.g., discoloration, coloration, bleaching. Suitable water-soluble preservatives include organic sulfur compounds, halogenated compounds, cyclic organic nitrogen compounds, low molecular weight aldehydes, parabens, propane diol materials, isothiazolinones, quaternary compounds, benzoates, low molecular weight alcohols, dehydroacetic acid, phenyl and phenoxy compounds, or mixtures thereof. Non-limiting examples of commercially available water-soluble preservatives for use in the present invention include a mixture of about 77% 5-chloro-2-methyl-4-isothiazolin-3-one and about 23% 2-methyl-4-isothiazolin-3-one, a broad spectrum preservative available as a 1.5% aqueous solution under the trade name Kathon® CG by Rohm and Haas Co.; 5-bromo-5-nitro-1,3-dioxane, available under the tradename Bronidox L® from Henkel; 2-bromo-2-nitropropane-1,3-diol, available under the trade name Bronopol® from Inolex; 1,1′-hexamethylene bis(5-(p-chlorophenyl)biguanide), commonly known as chlorhexidine, and its salts, e.g., with acetic and digluconic acids; a 95:5 mixture of 1,3-bis(hydroxymethyl)-5,5-dimethyl-2,4-imidazolidinedione and 3-butyl-2-iodopropynyl carbamate, available under the trade name Glydant Plus® from Lonza; N-[1,3-bis(hydroxymethyl)2,5-dioxo-4-imidazolidinyl]-N,N′-bis(hydroxy-methyl) urea, commonly known as diazolidinyl urea, available under the trade name Germall® II from Sutton Laboratories, Inc.; N,N″-methylenebis{N′-[1-(hydroxymethyl)-2,5-dioxo-4-imidazolidinyl]urea}, commonly known as imidazolidinyl urea, available, e.g., under the trade name Abiol® from 3V-Sigma, Unicide U-13® from Induchem, Germall 115® from Sutton Laboratories, Inc.; polymethoxy bicyclic oxazolidine, available under the trade name Nuosept® C from Hüls America; formaldehyde; glutaraldehyde; polyaminopropyl biguanide, available under the trade name Cosmocil CQ® from ICI Americas, Inc., or under the trade name Mikrokill® from Brooks, Inc; dehydroacetic acid; and benzsiothiazolinone available under the trade name Koralone™ B -119 from Rohm and Hass Corporation.

Suitable levels of preservative are from about 0.0001% to about 0.5%, alternatively from about 0.0002% to about 0.2%, alternatively from about 0.0003% to about 0.1%, by weight of the freshening composition.

Wetting Agents—

The freshening composition may include a wetting agent that provides a low surface tension that permits the composition to spread readily and more uniformly on hydrophobic surfaces like polyester and nylon. It has been found that the aqueous solution, without such a wetting agent will not spread satisfactorily. The spreading of the composition also allows it to dry faster, so that the treated material is ready to use sooner. Furthermore, a composition containing a wetting agent may penetrate hydrophobic, oily soil better for improved malodor neutralization. A composition containing a wetting agent may also provide improved “in-wear” electrostatic control. For concentrated compositions, the wetting agent facilitates the dispersion of many actives such as antimicrobial actives and perfumes in the concentrated aqueous compositions.

Non-limiting examples of wetting agents include block copolymers of ethylene oxide and propylene oxide. Suitable block polyoxyethylene-polyoxypropylene polymeric surfactants include those based on ethylene glycol, propylene glycol, glycerol, trimethylolpropane and ethylenediamine as the initial reactive hydrogen compound. Polymeric compounds made from a sequential ethoxylation and propoxylation of initial compounds with a single reactive hydrogen atom, such as C12-18 aliphatic alcohols, are not generally compatible with the cyclodextrin. Certain of the block polymer surfactant compounds designated Pluronic® and Tetronic® by the BASF-Wyandotte Corp., Wyandotte, Mich., are readily available. Nonlimiting examples of wetting agents of this type are described in U.S. Pat. No. 5,714,137 and include the Silwet® surfactants available from Momentive Performance Chemical, Albany, N.Y. Exemplary Silwet surfactants are as presented in Table 8 which may be used alone or in combinations of one another.

TABLE 8
NameL-7608L-7607L-77L-7605L-7604L-7600L-7657L-7602
Average600100060060004000400050003000
MW

In another aspect of the invention freshening fabric is a restoration of the fabric such as its surface appearance (reduction of wrinkling, improved color appearance, Improved or restored fabric shape). Adjunct ingredients that help restore fabric appearance are selected from: water soluble or miscible quaternary ammonium surfactants and water insoluble oil components together with surfactants, emulsifiers, and solvents needed to form a composition that is stable and does not separate. Some non-limiting preferred emulsifiers are sorbitan esters and sorbitan esters modified with alkylene oxides, such as Tween® 20 (polyoxyethylene (20)sorbtan monolaurate, branched surfactants, like Guerbet alcohols or alkylene oxide modified Guerget alcohols such as Lutensol® XL 70 (Oxirane, 2-methyl-, polymer with oxirane, mono(2-propyheptyl) ether, BASF). It is optional but preferred to have a wetting agent in this aspect of the invention. Wetting agents aid in spreading components and in reducing foaming of the composition during spraying. Some preferred wetting agents include the class of wetting agents known in the art as superwetters. Not to be bound by theory, superwetters pack very efficiently at surfaces resulting in an extremely low equilibrium surface tension. Non-limiting examples of such surfactants include Surfynols® like Surfynol® 465 and Surfynol® 104PG 50 (Dow Chemicals).

Water Soluble or Miscible Quaternary Ammonium Surfactant:

Typically, minimum levels of the water soluble quat included in the compositions of the present invention are at least about 0.01%, preferably at least about 0.05%, more preferably at least about 0.1% even more preferably at least about 0.2% by weight, based on the total weight of the composition. Typically maximum levels of water soluble quaternary agent included in the composition are up to about 20%, preferably less than about 10%, and more preferably less than about 3% based on the total weight of the composition. Typically, the agent is present in the composition in an amount of about 0.2% to about 1.0%.

Specifically, the preferred water soluble quaternary compounds are dialkly quaternary surfactant compounds. Suitable quaternary surfactants include, but are not limited to, quaternary ammonium surfactants having the formula:

[Figure (not displayed)]
wherein R1 and R2 are individually selected from the group consisting of C1-C4 alkyl, C1-C4 hydroxy alkyl, benzyl, and —(C2H4O)XH where x has a value from about 2 to about 5; X is an anion; and (1) R3 and R4 are each a C6-C14 alkyl or (2) R3 is a C6-C18 alkyl, and R4 is selected from the group consisting of C1-C10 alkyl, C1-C10 hydroxy alkyl, benzyl, and —(C2H4O)XH where x has a value from 2 to 5. A preferred asymmetric quaternary compounds for this invention are compounds where R3 and R4 are not identical, and preferably one is branched and the other one is linear.

An example of a preferred asymmetric quaternary compound is ARQUAD HTL8-MS where X is a methyl sulfate ion, R1 and R2 are methyl groups, R3 is a hydrogenated tallow group with <5% mono unsaturation, and R4 is a 2-ethylhexyl group. ARQUAD HTL8-MS is available from Akzo Nobel Chemical of Amhem, Netherlands.

An example of a suitable symmetric quaternary compound is UNIQUAT 22c50 where X is a carbonate and bicarbonate, R1 and R2 are methyl groups, R3 and R4 are C10 alkyl groups. UNIQUAT 22c50 is a registered trademark of Lonza and in North America is available thru Lonza Incorporated of Allendale, N.J.

Another example of a suitable water soluble quaternary compound is BARQUAT CME -35 which is N-Cetyl Ethyl Morpholinium Ethosulfate available from Lonza and having the follow ng structure:

[Figure (not displayed)]

Oil Component—

The oil component of the present invention represents a substantially water insoluble material that is incorporated into the composition by way of a microemulsion. The said oil component is a non-perfume raw material and a non-malodor reduction material. Typically the minimum levels of the oil component included in the composition are at least about 0.001%, preferably at least about 0.005%, more preferably at least about 0.01%, and typically maximum levels of oil components are up to about 5%, preferably less than about 3%, more preferably less than 1.5; with typical levels being in the range of about 0.05% to about 1%. The oil component can be a single component or a mixture and usually represents the incorporation of some benefit agent into the composition such as the nonlimiting example benefits softness or wrinkle reduction/release. Typically the oil component comprises substituted or unsubstituted hydrocarbon(s) and the like. For spray products it is preferred that the oil component or mix be a liquid at room temperature for ease of incorporation into the composition and less potential for nozzle clogging on drying.

The oil components of the present invention are substantially water insoluble and form a microemulsion. Substantially water insoluble means the logP of the ingredients are greater than about 1. A logP of about 1 indicates that the component would tend to partition into octanol about 10 times more than water. Some preferred, but non-limiting, components in the oil mixture are branched hydrocarbons and perfumes when perfumes are used.

Aqueous Carrier—

The freshening composition of the present invention may include an aqueous carrier. The aqueous carrier which is used may be distilled, deionized, or tap water. Water may be present in any amount for the composition to be an aqueous solution. In some embodiments, water may be present in an amount of about 85% to 99.5%, alternatively about 90% to about 99.5%, alternatively about 92% to about 99.5%, alternatively about 95%, by weight of said freshening composition. Water containing a small amount of low molecular weight monohydric alcohols, e.g., ethanol, methanol, and isopropanol, or polyols, such as ethylene glycol and propylene glycol, can also be useful. However, the volatile low molecular weight monohydric alcohols such as ethanol and/or isopropanol should be limited since these volatile organic compounds will contribute both to flammability problems and environmental pollution problems. If small amounts of low molecular weight monohydric alcohols are present in the composition of the present invention due to the addition of these alcohols to such things as perfumes and as stabilizers for some preservatives, the level of monohydric alcohol may about 1% to about 5%, alternatively less than about 6%, alternatively less than about 3%, alternatively less than about 1%, by weight of the freshening composition.

Other Ingredients—

The freshening composition may include perfume raw materials that solely provide a hedonic benefit (i.e. that do not neutralize malodors yet provide a pleasant fragrance). Suitable perfumes are disclosed in U.S. Pat. No. 6,248,135, which is incorporated in its entirety by reference. For example, the freshening composition may include a mixture of volatile aldehydes for neutralizing a malodor and hedonic perfume aldehydes. Where perfumes, other than the volatile aldehydes in the malodor control component, are formulated into the freshening composition of the present invention, the total amount of perfumes and volatile aldehydes in the malodor control component may be from about 0.015% to about 1%, alternatively from about 0.01% to about 0.5%, alternatively from about 0.015% to about 0.3%, by weight of the freshening composition.

The freshening composition may also include diluents. Exemplary diluents include dipropylene glycol methyl ether, and 3-methoxy-3-methyl-1-butanol, and mixtures thereof.

Optionally, adjuvants can be added to the freshening composition herein for their known purposes. Such adjuvants include, but are not limited to, water soluble metallic salts, including zinc salts, copper salts, and mixtures thereof; antistatic agents; Insect and moth repelling agents; colorants; antioxidants; aromatherapy agents and mixtures thereof.

The freshening composition may include other malodor reducing technologies in addition to the malodor reduction composition of the current invention. This may include, without limitation, amine functional polymers, metal ions, cyclodextrins, cyclodextrin derivatives, polyols, oxidizing agents, activated carbon, and combinations thereof.

Particularly Preferred Adjuncts for Personal Care Compositions

While not essential for the purposes of the present invention, the non-limiting list of adjuncts illustrated hereinafter are suitable for use in the instant compositions and may be desirably incorporated in certain aspects of the invention, for example to assist or enhance performance.

A variety of optional ingredients can also be added to personal care compositions. Optional ingredients can include, but are not limited to, structurants, humectents, fatty acids, inorganic salts, and other antimicrobial agents or actives.

A personal care composition can also include hydrophilic structurants such as carbohydrate structurants and gums. Some suitable carbohydrate structurants include raw starch (corn, rice, potato, wheat, and the like) and pregelatinized starch. Some suitable gums include carregeenan and xanthan gum. A personal care composition can include from about 0.1% to about 30%, from about 2% to about 25%, or from about 4% to about 20%, by weight of the personal care composition, of a carbohydrate structurant.

A personal care composition can also include one or more humectants. Examples of such humectants can include polyhydric alcohols. Further, humectants such as glycerin can be included the personal care composition as a result of production or as an additional ingredient. For example, glycerin can be a by-product after saponification of the personal care composition. Including additional humectant can result in a number of benefits such as improvement in hardness of the personal care composition, decreased water activity of the personal care composition, and reduction of a weight loss rate of the personal care composition over time due to water evaporation.

A personal care composition can include inorganic salts. Inorganic salts can help to maintain a particular water content or level of the personal care composition and improve hardness of the personal care composition. The inorganic salts can also help to bind the water in the personal care composition to prevent water loss by evaporation or other means. A personal care composition can optionally include from about 0.01% to about 15%, from about 1% to about 12%, or from about 2.5% to about 10.5%, by weight of the personal care composition, of inorganic salt Examples of suitable inorganic salts can include magnesium nitrate, trimagnesium phosphate, calcium chloride, sodium carbonate, sodium aluminum sulfate, disodium phosphate, sodium polymetaphosphate, sodium magnesium succinate, sodium tripolyphosphate, aluminum sulfate, aluminum chloride, aluminum chlorohydrate, aluminum-zirconium trichlorohydrate, aluminum-zirconium trichlorohydrate glycine complex, zinc sulfate, ammonium chloride, ammonium phosphate, calcium acetate, calcium nitrate, calcium phosphate, calcium sulfate, ferric sulfate, magnesium chloride, magnesium sulfate, and tetrasodium pyrophosphate.

A personal care composition can include one or more additional antibacterial agents that can serve to further enhance antimicrobial effectiveness of the personal care composition. A personal care composition can include, for example, from about 0.001% to about 2%, from about 0.01% to about 1.5%, or from about 0.1% to about 1%, by weight of the personal care composition, of additional antibacterial agent(s). Examples of suitable antibacterial agents can include carbanilides, triciocarban (also known as trichlorocarbanilide), tricosan, a halogenated diphenylether available as DP-300 from Ciba-Geigy, hexachlorophene, 3,4,5-tribromosalicylanilde, and salts of 2-pyridinethiol-1-oxide, salicylic acid, and other organic acids. Other suitable antibacterial agents are described in U.S. Pat. No. 6,488,943.

Scalp Active Material—

In an embodiment of the present invention, the personal care composition may comprise a scalp active material, which may be an anti-dandruff active. In an embodiment, the anti-dandruff active is selected from the group consisting of pyridinethione salts; zinc carbonate; azoles, such as ketoconazole, econazole, and elublol; selenium sulfide; particulate sulfur keratolytic agents such as salicylic add; and mixtures thereof. In a further embodiment, the anti-dandruff active may be an anti-dandruff particulate. In an embodiment, the anti-dandruff particulate is a pyridinethione salt. Such anti-dandruff particulate should be physically and chemically compatible with the components of the composition, and should not otherwise unduly impair product stability, aesthetics or performance.

Pyridinethione particulates are suitable particulate anti-dandruff actives for use in composition of the present invention. In an embodiment, the anti-dandruff active is a 1-hydroxy -2-pyridinethione salt and is in particulate form. In an embodiment, the concentration of pyridinethione anti-dandruff particulate ranges from about 0.01% to about 5%, by weight of the composition, or from about 0.1% to about 3%, or from about 0.1% to about 2%. In an embodiment, the pyridinethione salts are those formed from heavy metals such as zinc, tin, cadmium, magnesium, aluminium and zirconium, generally zinc, typically the zinc salt of 1-hydroxy-2-pyridinethione (known as “zinc pyridinethione” or “ZPT”; zinc pyrithione), commonly 1-hydroxy-2-pyridinethione salts in platelet particle form. In an embodiment, the 1-hydroxy-2-pyridinethione salts in platelet particle form have an average particle size of up to about 20 microns, or up to about 5 microns, or up to about 2.5 microns. Salts formed from other cations, such as sodium, may also be suitable.

In an embodiment, in addition to the anti-dandruff active selected from polyvalent metal salts of pyrithione, the composition further comprises one or more anti-fungal and/or anti-microbial actives. In an embodiment, the anti-microbial active is selected from the group consisting of coal tar, sulfur, fcharcoal, whitfield's ointment, castellani's paint, aluminum chloride, gentian violet, octopirox (piroctone olamine), ciclopirox olamine, undecylenic acid and its metal salts, potassium permanganate, selenium sulfide, sodium thiosulfate, propylene glycol, oil of bitter orange, urea preparations, griseofuvin, 8-hydroxyquinoline ciloquinol, thiobendazole, thiocarbamates, haloprogin, polyenes, hydroxypyridone, morpholine, benzylamine, allylamines (such as terbinafine), tea tree oil, clove leaf oil, coriander, palmarosa, berberine, thyme red, cinnamon oil, cinnamic aldehyde, citronellic acid, hinokitol, ichthyol pale, Sensiva SC-50, Elestab HP-100, azelaic add, lyticase, lodopropynyl butylcarbamate (IPBC), isothiazallnones such as octyl isothlazalinone, and azoles, and mixtures thereof. In an embodiment, the anti-microbial is selected from the group consisting of: itraconazole, ketoconazole, selenium sulfide, coal tar, and mixtures thereof.

In an embodiment, the azole anti-microblals is an imidazole selected from the group consisting of: benzimidazole, benzothlazole, bifonazole, butaconazole nitrate, climbazole, clotrimazole, croconazole, eberconazole, econazole, elublol, fenticonazole, fluconazole, flutimazole, isoconazole, ketoconazole, lanoconazole, metronidazole, miconazole, neticonazole, omoconazole, oxiconazole nitrate, sertaconazole, sulconazole nitrate, tioconazole, thiazole, and mixtures thereof, or the azole anti-microbials is a triazole selected from the group consisting of: terconazole, itraconazole, and mixtures thereof. When present in the composition, the azole anti-microbial active is included in an amount of from about 0.01% to about 5%, or from about 0.1% to about 3%, or from about 0.3% to about 2%, by total weight of the composition. In an embodiment, the azole anti-microbial active is ketoconazole. In an embodiment, the sole anti-microbial active is ketoconazole.

The present invention may also comprise a combination of anti-microbial actives. In an embodiment, the combination of anti-microbial active is selected from the group of combinations consisting of: octopirox and zinc pyrithione, pine tar and sulfur, salicylic acid and zinc pyrithione, salicylic acid and elubiol, zinc pyrithione and elubiol, zinc pyrithione and climbasole, octopirox and climbasole, salicylic acid and octopirox, and mixtures thereof.

In an embodiment, the composition comprises an effective amount of a zinc-containing layered material. In an embodiment, the composition comprises from about 0.001% to about 10%, or from about 0.01% to about 7%, or from about 0.1% to about 5% of a zinc-containing layered material, by total weight of the composition. Zinc-containing layered materials may be those with crystal growth primarily occurring in two dimensions. It is conventional to describe layer structures as not only those in which all the atoms are incorporated in well-defined layers, but also those in which there are ions or molecules between the layers, called gallery ions (A.F. Wells “Structural Inorganic Chemistry” Clarendon Press, 1975). Zinc-containing layered materials (ZLMs) may have zinc incorporated in the layers and/or be components of the gallery ions. The following classes of ZLMs represent relatively common examples of the general category and are not intended to be limiting as to the broader scope of materials which fit this definition.

Many ZLMs occur naturally as minerals. In an embodiment, the ZLM is selected from the group consisting of: hydrozincite (zinc carbonate hydroxide), basic zinc carbonate, aurichalcite (zinc copper carbonate hydroxide), rosasite (copper zinc carbonate hydroxide), and mixtures thereof. Related minerals that are zinc-containing may also be included in the composition. Natural ZLMs can also occur wherein anionic layer species such as clay-type minerals (e.g., phyllosilicates) contain ion-exchanged zinc gallery ions. All of these natural materials can also be obtained synthetically or formed in situ in a composition or during a production process.

Another common class of ZLMs, which are often, but not always, synthetic, is layered double hydroxides. In an embodiment, the ZLM is a layered double hydroxide conforming to the formula [M2+1−xM3+x(OH)2]x+ Am−x/m·nH2O wherein some or all of the divalent ions (M2+) are zinc ions. Yet another class of ZLMs can be prepared called hydroxy double salts

In an embodiment, the ZLM is a hydroxy double salt conforming to the formula [M2+1−xM2+1+x(OH)3(1-y)]+ An−(1=3y)/n·nH2O where the two metal ions (M2+) may be the same or different. If they are the same and represented by zinc, the formula simplifies to [Zn1+x(OH)2]2x+ 2x A·nH2O. This latter formula represents (where x=0.4) materials such as zinc hydroxychloride and zinc hydroxynitrate. In an embodiment, the ZLM is zinc hydroxychloride and/or zinc hydroxynitrate. These are related to hydrozincite as well wherein a divalent anion replace the monovalent anion. These materials can also be formed in situ in a composition or in or during a production process.

In an embodiment, the composition comprises basic zinc carbonate. Commercially available sources of basic zinc carbonate include Zinc Carbonate Basic (Cater Chemicals: Bensenville, Ill., USA), Zinc Carbonate (Shepherd Chemicals: Norwood, Ohio, USA), Zinc Carbonate (CPS Union Corp.: New York, N.Y., USA), Zinc Carbonate (Elementis Pigments: Durham, UK), and Zinc Carbonate AC (Bruggemann Chemical: Newtown Square, Pa., USA). Basic zinc carbonate, which also may be referred to commercially as “Zinc Carbonate” or “Zinc Carbonate Basic” or “Zinc Hydroxy Carbonate”, is a synthetic version consisting of materials similar to naturally occurring hydrozincite. The idealized stoichiometry is represented by Zn5(OH)6(CO3)2 but the actual stoichiometric ratios can vary slightly and other impurities may be incorporated in the crystal lattice.

In embodiments having a zinc-containing layered material and a pyrithione or polyvalent metal salt of pyrithione, the ratio of zinc-containing layered material to pyrithione or a polyvalent metal salt of pyrithione is from about 5:100 to about 10:1, or from about 2:10 to about 5:1, or from about 1:2 to about 3:1.

Liquid Personal Care Compositions

Exemplary liquid rinse-off personal care compositions can include an aqueous carrier, which can be present at a level of from about 5% to about 95%, or from about 60% to about 85%. The aqueous carrier may comprise water, or a miscible mixture of water and organic solvent. Non-aqueous carrier materials can also be employed.

Such rinse-off personal care compositions can include one or more detersive surfactants. The detersive surfactant component can be included to provide cleaning performance to the product. The detersive surfactant component in turn comprises anionic detersive surfactant, zwitterionic or amphoteric detersive surfactant, or a combination thereof. A representative, non-limiting, list of anionic surfactants includes anionic detersive surfactants for use in the compositions can include ammonium lauryl sulfate, ammonium laureth sulfate, triethylamine lauryl sulfate, triethylamine laureth sulfate, triethanolamine lauryl sulfate, triethanolamine laureth sulfate, monoethanolamine lauryl sulfate, monoethanolamine laureth sulfate, diethanolamine lauryl sulfate, diethanolamine laureth sulfate, lauric monoglyceride sodium sulfate, sodium lauryl sulfate, sodium laureth sulfate, potassium lauryl sulfate, potassium laureth sulfate, sodium lauryl sarcosinate, sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, ammonium cocoyl sulfate, ammonium lauroyl sulfate, sodium cocoyl sulfate, sodium lauroyl sulfate, potassium cocoyl sulfate, potassium lauryl sulfate, triethanolamine lauryl sulfate, triethanolamine lauryl sulfate, monoethanolamine cocoyl sulfate, monoethanolamine lauryl sulfate, sodium tridecyl benzene sulfonate, sodium dodecyl benzene sulfonate, sodium cocoyl isethionate and combinations thereof. In one example, the anionic surfactant can be sodium lauryl sulfate or sodium laureth sulfate. The concentration of the anionic surfactant component in the product can be sufficient to provide a desired cleaning and/or lather performance, and generally ranges from about 2% to about 50%.

Amphoteric detersive surfactants suitable for use in the rinse-off personal care compositions are well known in the art, and include those surfactants broadly described as derivatives of aliphatic secondary and tertiary amines in which an aliphatic radical can be straight or branched chain and wherein an aliphatic substituent can contain from about 8 to about 18 carbon atoms such that one carbon atom can contain an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Examples of compounds falling within this definition can be sodium 3-dodecyl-aminopropionate, sodium 3-dodecylaminopropane sulfonate, sodium lauryl sarcosinate, N-alkyitaurines such as the one prepared by reacting dodecylamine with sodium isethionate according to the teaching of U.S. Pat. No. 2,658,072, N-higher alkyl aspartic acids such as those produced according to the teaching of U.S. Pat. No. 2,438,091, and products described in U.S. Pat. No. 2,528,378. Other examples of amphoteric surfactants can include sodium lauroamphoacetate, sodium cocoamphoactetate, disodium lauroamphoacetate disodium cocodiamphoacetate, and mixtures thereof. Amphoacetates and diamphoacetates can also be used.

Zwitteronic detersive surfactants suitable for use in the rinse-off personal care compositions are well known in the art, and include those surfactants broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which aliphatic radicals can be straight or branched chains, and wherein an aliphatic substituent can contain from about 8 to about 18 carbon atoms such that one carbon atom can contain an anionic group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Other zwitterionic surfactants can include betaines, including cocoamidopropyl betaine.

The liquid rinse off personal care composition can comprise one or more phases. Such personal care compositions can include a cleansing phase and/or a benefit phase (i.e., a single- or multi-phase composition). Each of a cleansing phase or a benefit phase can include various components. The cleansing phase and the benefit phase can be blended, separate, or a combination thereof. The cleansing phase and the benefit phase can also be patterned (e.g. striped).

The cleansing phase of a personal care composition can include at least one surfactant. The cleansing phase can be an aqueous structured surfactant phase and constitute from about 5% to about 20%, by weight of the personal care composition. Such a structured surfactant phase can include sodium trideceth(n) sulfate, hereinafter STnS, wherein n can define average moles of ethoxylation. n can range, for example, from about 0 to about 3; from about 0.5 to about 2.7, from about 1.1 to about 2.5, from about 1.8 to about 2.2, or n can be about 2. When n can be less than 3, STnS can provide improved stability, improved compatibility of benefit agents within the personal care compositions, and increased mildness of the personal care compositions as disclosed in U.S. Pre-Grant Publication No. 2010/009285 A1.

The cleansing phase can also comprise at least one of an amphoteric surfactant and a zwitterionic surfactant. Suitable amphoteric or zwitterionic surfactants (in addition to those cited herein) can include, for example, those described in U.S. Pat. Nos. 5,104,646 and 5,106,609.

A cleansing phase can comprise a structuring system. A structuring system can comprise, optionally, a non-ionic emulsifier, optionally, from about 0.05% to about 5%, by weight of the personal care composition, of an associative polymer; and an electrolyte.

The personal care composition can optionally be free of sodium lauryl sulfate, hereinafter SLS, and can comprise at least a 70% lamellar structure. However, the cleansing phase could comprise at least one surfactant, wherein the at least one surfactant includes SLS. Suitable examples of SLS are described in U.S. Pre-Grant Publication No. 2010/0322878 A1.

Rinse-off personal care compositions can also include a benefit phase. The benefit phase can be hydrophobic and/or anhydrous. The benefit phase can also be substantially free of surfactant A benefit phase can also include a benefit agent. In particular, a benefit phase can comprise from about 0.1% to about 50% benefit agent by weight of the personal care composition. The benefit phase can alternatively comprise less benefit agent, for example, from about 0.5% to about 20% benefit agent, by weight of the personal care composition. Examples of suitable benefit agents can include petrolatum, glyceryl monooleate, mineral oil, natural oils, and mixtures thereof. Additional examples of benefit agents can include water insoluble or hydrophobic benefit agents. Other suitable benefit agents are described in U.S. Pre-Grant Publication No. 2012/0009285 A1.

Non-limiting examples of glycerides suitable for use as hydrophobic skin benefit agents herein can include castor oil, safflower oil, corn oil, walnut oil, peanut oil, olive oil, cod liver oil, almond oil, avocado oil, palm oil, sesame oil, vegetable oils, sunflower seed oil, soybean oil, vegetable oil derivatives, coconut oil and derivatized coconut oil, cottonseed oil and derivatized cottonseed oil, jojoba oil, cocoa butter, and combinations thereof.

Non-limiting examples of alkyl esters suitable for use as hydrophobic skin benefit agents herein can include isopropyl esters of fatty acids and long chain esters of long chain (i.e. C10-C24) fatty acids, e.g., cetyl ricinoleate, non-limiting examples of which can include isopropyl palmitate, isopropyl myristate, cetyl riconoleate, and stearyl riconoleate. Other example can include hexyl laurate, isohexyl laurate, myristyl myristate, isohexyl palmitate, decyl oleate, isodecyl oleate, hexadecyl stearate, decyl stearate, Isopropyl isostearate, diisopropyl adipate, diisohexyl adipate, dihexyldecyl adipate, diisopropyl sebacate, acyl isononanoate lauryl lactate, myristyl lactate, cetyl lactate, and combinations thereof.

Non-limiting examples of polyglycerin fatty acid esters suitable for use as hydrophobic skin benefit agents herein can include decaglyceryl distearate, decaglyceryl diisostearate, decaglyceryl monomyriate, decaglyceryl monolaurate, hexaglyceryl monooleate, and combinations thereof.

The rinse-off personal care composition can be applied by a variety of means, including by rubbing, wiping or dabbing with hands or fingers, or by means of an implement and/or delivery enhancement device. Non-limiting examples of implements include a sponge or sponge-tipped applicator, a mesh shower puff, a swab, a brush, a wipe (e.g., wash cloth), a loofah, and combinations thereof. Non-limiting examples of delivery enhancement devices include mechanical, electrical, ultrasonic and/or other energy devices. Employment of an implement or device can help delivery of the particulate antimicrobial agent to target regions, such as, for example, hair follicles and undulations that can exist in the underarm. The rinse-off care product can be sold together with such an implement or device. Alternatively, an implement or device can be sold separately but contain indicdum to indicate usage with a rinse-off care product. Implements and delivery devices can employ replaceable portions (e.g., the skin interaction portions), which can be sold separately or sold together with the rinse-off care product in a kit.

Solid Personal Care Compositions

As noted herein, personal care compositions can take on numerous forms. One suitable form is that of a solid personal care composition. Solid compositions can take many forms like powder, pellets, bars, etc. These forms will generally be described herein as bar soap, but it should be understood that the solid composition could be in another form or shape. One example of a bar soap personal care composition can include from about 0.1% to about 35%, by weight of the personal care composition, of water, from about 45% to about 99%, by weight of the personal care composition, of soap, and from about 0.01% to about 5%, by weight of the personal care composition, of a particulate antimicrobial agent. Another suitable antimicrobial bar soap can include, for example, from about 0.1% to about 30%, by weight of the personal care composition, of water, from about 40% to about 99%, by weight of the personal care composition, of soap, and from about 0.25% to about 3%, by weight of the personal care composition, of a particulate antimicrobial agent.

Bar soap compositions can be referred to as conventional solid (i.e. non-flowing) bar soap compositions. Some bar soap composition can comprise convention soap, while others can contain synthetic surfactants, and still others can contain a mix of soap and synthetic surfactant. Bar compositions can include, for example, from about 0% to about 45% of a synthetic anionic surfactant. An example of a suitable conventional soap can include milled toilet bars that are unbuilt (i.e. include about 5% or less of a water-soluble surfactancy builder).

A personal care bar composition can include soap. By weight, the soap can be, for example, from about 45% to about 99%, or from about 50% to about 75%, by weight of the personal care composition. Such soaps can include a typical soap, i.e., an alkali metal or alkanol ammonium salt of an alkane- or alkene monocarboxylic acid. Sodium, magnesium, potassium, calcium, mono-, di- and tri-ethanol ammonium cations, or combinations thereof, can be suitable for a personal care composition. The soap included in a personal care composition can include sodium soaps or a combination of sodium soaps with from about 1% to about 25% ammonium, potassium, magnesium, calcium, or a mixture of these soaps. Additionally, the soap can be well-known alkali metal salts of alkanoic or alkenoic acids having from about 12 to about 22 carbon atoms or from about 12 to about 18 carbon atoms. Another suitable soap can be alkali metal carboxylates of alkyl or alkene hydrocarbons having from about 12 to about 22 carbon atoms. Additional suitable soap compositions are described in U.S. Pre-Grant Publication No. 2012/0219610 A1.

A personal care composition can also include soaps having a fatty acid. For example, one bar soap composition could contain from about 40% to about 95% of a soluble alkali metal soap of C8-C24 or C10-C20 fatty acids. The fatty acid can, for example, have a distribution of coconut oil that can provide a lower end of a broad molecular weight range or can have a fatty acid distribution of peanut or rapeseed oil, or their hydrogenated derivatives, which can provide an upper end of the broad molecular weight range. Other such compositions can include a fatty acid distribution of tallow and/or vegetable oil. The tallow can include fatty acid mixtures that can typically have an approximate carbon chain length distribution of 2.5% C14, 29% C16, 23% C18, 2% palmitoleic, 41.5% oleic, and 3% linoleic. The tallow can also include other mixtures with a similar distribution, such as fatty acids derived from various animal tallows and/or lard. In one example, the tallow can also be hardened (i.e., hydrogenated) such that some or all unsaturated fatty acid moieties can be converted to saturated fatty acid moieties.

Suitable examples of vegetable oil include palm oil, coconut oil, palm kernel oil, palm oil stearine, soybean oil, and hydrogenated rice bran oil, or mixtures thereof, since such oils can be among more readily available fats. One example of a suitable coconut oil can include a proportion of fatty acids having at least 12 carbon atoms of about 85%. Such a proportion can be greater when mixtures of coconut oil and fats such as tallow, palm oil, or non-tropical nut oils or fats can be used where principle chain lengths can be C18 and higher. The soap included in a personal care composition can be, for example, a sodium soap having a mixture of about 67-68% tallow, about 16-17% coconut oil, about 2% glycerin, and about 14% water.

Soap included in a personal care composition can also be unsaturated in accordance with commercially acceptable standards. For example, a soap included in a personal care composition can include from about 37% to about 45% unsaturated saponified material.

Soaps included in a personal care composition can be made, for example, by a classic kettle boiling process or modern continuous soap manufacturing processes wherein natural fats and oils such as tallow or coconut oil or their equivalents can be saponified with an alkali metal hydroxide using procedures well known to those skilled in the art. Soap can also be made by neutralizing fatty acids such as lauric (C12), myrstic (C14), palmitic (C16), or stearic (C18) acids, with an alkali metal hydroxide or carbonate.

Soap included in a personal care composition could also be made by a continuous soap manufacturing process. The soap could be processed into soap noodles via a vacuum flash drying process. One example of a suitable soap noodle comprises about 67.2% tallow soap, about 16.8% coconut soap, about 2% glycerin, and about 14% water, by weight of the soap noodle. The soap noodles can then be utilized in a milling process to finalize a personal care composition.

Test Methods for the Commercial Products/Formulations

Viscosity Test Method

Viscosity is measured using an AR 550 rheometer/viscometer from TA Instruments (New Castle, Del., USA), using parallel steel plates of 40 mm diameter and a gap size of 500 μm. The high shear viscosity at 20 s−1 is obtained from a logarithmic shear rate sweep from 0.1 s−1 to 25 s−1 in 3 minutes time at 21° C.

Test Method for Determining the Logarithm of the Octanol/Water Partition Coefficient (logP)

The value of the log of the Octanol/Water Partition Coefficient (logP) is computed for each PRM in the perfume mixture being tested. The logP of an individual PRM is calculated using the Consensus logP Computational Model, version 14.02 (Linux) available from Advanced Chemistry Development Inc. (ACD/Labs) (Toronto, Canada) to provide the unitless logP value. The ACD/Labs' Consensus logP Computational Model is part of the ACD/Labs model suite.

Cleaning and/or Treatment Composition Examples

A series of cleaning and/or treatment compositions are prepared and evaluated as follows: the examples being designated with the letters CL followed by the sequence to distinguish from the microcapsule examples, noted above. In each example and table below, the amounts of each ingredient is presented as a wt %.

Full text: Click here
Patent 2021

Top products related to «Sodium polymetaphosphate»

Sourced in United States, Germany, United Kingdom, India, Italy, China, Poland, France, Spain, Sao Tome and Principe, Canada, Macao, Brazil, Singapore, Ireland, Iceland, Australia, Japan, Switzerland, Israel, Malaysia, Portugal, Mexico, Denmark, Egypt, Czechia, Belgium
Chitosan is a natural biopolymer derived from the exoskeletons of crustaceans, such as shrimp and crabs. It is a versatile material with various applications in the field of laboratory equipment. Chitosan exhibits unique properties, including biocompatibility, biodegradability, and antimicrobial activity. It can be utilized in the development of a wide range of lab equipment, such as filters, membranes, and sorbents, due to its ability to interact with various substances and its potential for customization.

More about "Sodium polymetaphosphate"