ISDD was verified against experimentally measured particle transport data for three different particles (polystyrene, iron oxide, silica) from three independent studies utilizing particles of different density, size and agglomeration state. Each study used a different method for quantifying particle transport (see Kinetic Data). This approach limits the potential for method-dependent bias. Superparamagnetic iron oxide nanoparticles with a manufacturer reported diameter of 30 nm (20 nm core by transmission electron microscopy (TEM)), with ~10 nm polymer coating) were obtained from Ocean Nanotechnologies (Springdale, AS). Particle size was verified by Dynamic Light Scattering (DLS) in MilliQ water and RPMI media. DLS sizing was conducted using a custom built high-sensitivity DLS instrument, enabling size-class determination at low particle concentrations (10 μg/mL) similar to those used in in vitro experiments. The instrument is a modification of the instrument developed by our team [32 (link)], and its accuracy was verified against polystyrene beads (Polysciences Inc, Warrington PA, Cat# 16905). The original instrument was enhanced by introducing optic fibers and avalanche photodiodes to improve the collecting efficiency.
Carboxylated fluorescent polystyrene spheres with manufacturer reported diameters of 24, 100, 210, 500 and 1100 nm in diameter were obtained from Invitrogen/Molecular Probes. Particles were virtually monodisperse in our experimental system (fluorescence microscopy, see Particokinetic Data) and could be described according to their reported primary particle size.
The amorphous silica nanoparticles used by Lison et al. [33 (link)] to generate the cellular dose data simulated here had a reported particle size of 29.3 nm (TEM) and a hydrodynamic diameter of 34.8 nm in the study media, DMEM.
Carboxylated fluorescent polystyrene spheres with manufacturer reported diameters of 24, 100, 210, 500 and 1100 nm in diameter were obtained from Invitrogen/Molecular Probes. Particles were virtually monodisperse in our experimental system (fluorescence microscopy, see Particokinetic Data) and could be described according to their reported primary particle size.
The amorphous silica nanoparticles used by Lison et al. [33 (link)] to generate the cellular dose data simulated here had a reported particle size of 29.3 nm (TEM) and a hydrodynamic diameter of 34.8 nm in the study media, DMEM.
Full text: Click here