All of the marine and terrestrial samples were collected in 2001–2013 from a stony shore and a farm in Yugawara (35°08′N, 139°07′E), Japan, respectively. The stony shoreline surveyed represented ∼0.2 hectares and ranged in depth from 0 to 5 m, where brown and red macroalgae are dominant primary producers but seagrass is absent. The farm was also approximately 0.2 hectares with cultivation of fruits and vegetables, all of which were C3 plants. Green leaves and/or nuts were collected for higher plants, and whole samples of 1–15 individuals within a single stage were collected for the other species. The collected samples were cleaned with distilled water to remove surface contaminants and stored at −20°C. For most terrestrial species and marine macroalgae, whole-organism samples were prepared for isotopic analyses. For the remaining marine specimens, small samples of muscle tissue were taken. Shell samples were taken from several gastropod and lobster specimens, and scales were dissected from most of the fish species (Appendices A1 and A2). There was no substantial effect on the trophic position estimates among these different tissue types within a single animal specimen (e.g., Chikaraishi et al. 2010 , 2011 ; Ogawa et al. 2013 ). The bulk-carbon and bulk-nitrogen isotopic compositions of representative samples (40 coastal marine and 69 terrestrial samples, Appendices A1 and A2) were determined using a Flash EA (EA1112) instrument coupled to a DeltaplusXP IRMS instrument with a ConFlo III interface (Thermo Fisher Scientific, Bremen, Germany). Carbon and nitrogen isotopic compositions are reported in the standard delta (δ) notation relative to the Vienna Peedee Belemnite (VPDB) and to atmospheric nitrogen (AIR), respectively.
The nitrogen isotopic composition of amino acids was determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) after HCl hydrolysis and N-pivaloyl/isopropyl (Pv/iPr) derivatization, according to the procedure in Chikaraishi et al. (2009 ) (which are described in greater detail athttp://www.jamstec.go.jp/biogeos/j/elhrp/biogeochem/download_e.html ). In brief, samples were hydrolyzed using 12 Mol/L HCl at 110°C. The hydrolysate was washed with n-hexane/dichloromethane (3/2, v/v) to remove hydrophobic constituents. Then, derivatizations were performed sequentially with thionyl chloride/2-propanol (1/4) and pivaloyl chloride/dichloromethane (1/4). The Pv/iPr derivatives of amino acids were extracted with n-hexane/dichloromethane (3/2, v/v). The nitrogen isotopic composition of amino acids was determined by GC/C/IRMS using a 6890N GC (Agilent Technologies, Palo Alto, CA) instrument coupled to a DeltaplusXP IRMS instrument via a GC-C/TC III interface (Thermo Fisher Scientific, Bremen, Germany). To assess the reproducibility of the isotope measurement and obtain the amino acid isotopic composition, reference mixtures of nine amino acids (alanine, glycine, leucine, norleucine, aspartic acid, methionine, glutamic acid, phenylalanine, and hydroxyproline) with known δ15N values (ranging from −25.9‰ to +45.6‰, Indiana University, SI science co.) were analyzed after every four to six samples runs, and three pulses of reference N2 gas were discharged into the IRMS instrument at the beginning and end of each chromatography run for both reference mixtures and samples. The isotopic composition of amino acids in samples was expressed relative to atmospheric nitrogen (AIR) on scales normalized to known δ15N values of the reference amino acids. The accuracy and precision for the reference mixtures were always 0.0‰ (mean of Δ) and 0.4–0.7‰ (mean of 1σ) for sample sizes of ≥1.0 nmol N, respectively.
The δ15N values were determined for the following 10 amino acids: alanine, glycine, valine, leucine, isoleucine, proline, serine, methionine, glutamic acid, and phenylalanine (Appendices A1 and A2). These amino acids were chosen because their peaks were always well separated with baseline resolution in the chromatogram (Chikaraishi et al. 2009 ). Also, it should be noted that glutamine was quantitatively converted to glutamic acid during acid hydrolysis; as a result, the α-amino group of glutamine contributed to the δ15N value calculated for glutamic acid.
The TPGlu/Phe value (and its potential uncertainty calculated by taking into account the propagation of uncertainty on each factor in the Eq. (1 )) was calculated from the observed δ15N values (as 1σ = 0.5‰) of glutamic acid and phenylalanine in the organisms of interest, using eq. (1 ) with the β value of −3.4 ± 0.9‰ for coastal marine and +8.4 ± 1.6‰ for terrestrial samples, and with the TDF value of 7.6 ± 1.2‰ for both ecosystems, according to Chikaraishi et al. (2009 , 2010 , 2011 ). The TPTr/Scr values were not calculated, because we did not measure the δ15N values of lysine and tyrosine for all investigated samples and of serine for approximately a half of samples.
The nitrogen isotopic composition of amino acids was determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) after HCl hydrolysis and N-pivaloyl/isopropyl (Pv/iPr) derivatization, according to the procedure in Chikaraishi et al. (2009 ) (which are described in greater detail at
The δ15N values were determined for the following 10 amino acids: alanine, glycine, valine, leucine, isoleucine, proline, serine, methionine, glutamic acid, and phenylalanine (Appendices A1 and A2). These amino acids were chosen because their peaks were always well separated with baseline resolution in the chromatogram (Chikaraishi et al. 2009 ). Also, it should be noted that glutamine was quantitatively converted to glutamic acid during acid hydrolysis; as a result, the α-amino group of glutamine contributed to the δ15N value calculated for glutamic acid.
The TPGlu/Phe value (and its potential uncertainty calculated by taking into account the propagation of uncertainty on each factor in the Eq. (
Full text: Click here