Zinc Oxide
Known for its unique physical and chemical properties, ZnO has garnered significant interest in the scientific community for its potential in catalysis, sensing, and energy storage applications.
PubCompare.ai, an AI-driven platform, empowers researchers to navigate the vast landscape of ZnO-related literature, preprints, and patents, helping them identify the most reproducible and accurate protocols to optimize their experiments.
This comprehensive resource allows users to compare findings, uncover the best approaches, and unlock the full potential of ZnO research.
With its user-friendly interface and advanced analytics, PubCompare.ai streamlines the research process, enabling scientists to make informed decisions and drive breakthroughs in the field of Zinc Oxide.
Most cited protocols related to «Zinc Oxide»
Industrially precipitated silica ULTRASIL® VN 3 (Evonik Industries AG, Essen, Germany) with a specific surface area of 180 m2/g;
The carbon black, HAF N-339 (Konimpex, Konin, Poland) with a specific surface area of 91 m2/g;
The halloysite was applied in the form of nanotubes with a specific surface of 64 m2/g, the material was supplied by Sigma-Aldrich (Saint Louis, MO, USA).
The reference sample was a filler-free natural rubber composition with a cross-linking system. The remaining blends additionally contained hybrid fillers in amounts of 10, 20 and 30 phr. Hybrid fillers were mixtures of cereal straw with functional nano-additives, i.e., carbon black, silica or halloysite, in which the weight ratios were, respectively, straw:nano-additive 2:1 and 5:1.
Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Most recents protocols related to «Zinc Oxide»
Example 2
100 mg of the Sarcodon aspratus extracts according to the present invention;
an appropriate amount of a vitamin mixture;
70 μg of vitamin A acetate;
1.0 mg of vitamin E;
0.13 mg of vitamin B1;
0.15 mg of vitamin B2;
0.5 mg of vitamin B6;
0.2 μg of vitamin B12;
10 mg of vitamin C;
10 μg of biotin;
1.7 mg of nicotinic acid amide;
50 μg of folate;
0.5 mg of calcium pantothenate;
an appropriate amount of a mineral mixture;
1.75 mg of ferrous sulfide;
0.82 mg of zinc oxide;
25.3 mg of magnesium carbonate;
15 mg of potassium phosphate monobasic;
55 mg of dicalcium phosphate;
90 mg of potassium citrate;
100 mg of calcium carbonate; and
24.8 mg of magnesium chloride.
The composition ratio of the vitamins and the mineral mixture described above may be determined according to a composition ratio used in general functional health foods, and the combination ratio of the vitamins and the mineral mixture may be arbitrarily determined. According to a conventional method of preparing functional health foods, these components are mixed, granules are prepared, and the granules are used to prepare a composition for a functional health food.
Example 14
Variables tested include: concentration of HA, concentration of zinc oxide, concentration of titanium dioxide, addition of vitamin C, and serum preparation method.
A serum of the present disclosure can be made with from about 0.25% to about 10% sodium hyaluronate (increasing % results in more viscous serum). 0.5% to about 10% silk solutions can be used to prepare a serum of the present disclosure. A serum of the present disclosure can be clear and have a yellow tinted color. A serum of the present disclosure can have a pH=6. A serum of the present disclosure can have a lubricious texture that is rubbed in easily without residue.
Concentration of HA:
Hyaluronic acid (Sodium Hyaluronate) was tested as an ingredient in the UV silk serum due to its hygroscopic properties and widely accepted use in cosmetic products to promote hydration of skin. 1%, 2.5% and 5% HA solutions were tested. With increasing HA %, the serum became more viscous and gel like. 1% HA was not feasible for the UV serum due to the fact that the UV additives (zinc oxide, titanium dioxide) are not water soluble and need to be dispersed. 1% HA was not viscous enough for dispersion and the UV additives precipitated out. 2.5% gave the best consistency based on preferred feel, texture and viscosity and was able to disperse the UV additives. 5% was a very thick, viscous serum.
Concentration of Mineral Filters: Zinc Oxide and Titanium Dioxide:
Zinc oxide and titanium dioxide were explored as UV additives that are considered safe. These additives mechanically protect from UV radiation by forming a physical reflective barrier on the skin. Both are not soluble in water and must be dispersed for the current aqueous solution. Zinc oxide concentration varied from 2.5%, 3.75%, 5%, 5.625%, 10%, 12% and 15%. Titanium dioxide concentrations varied from 1.25%, 1.875%, 3%, 5% and 10%. Increasing the concentration of UV additives resulted in minor increases of white residue and how well dispersed the additives were, however if mixed well enough the effects were negligible. Zinc oxide and titanium dioxide were mixed together into serums in order to achieve broad spectrum protection. Zinc oxide is a broad spectrum UV additive capable of protecting against long and short UV A and UV B rays. However titanium dioxide is better at UV B protection and often added with zinc oxides for best broad spectrum protection. Combinations included 3.75%/1.25% ZnO/TiO2, 5.625%/1.875% ZnO/TiO2, 12%/3% ZnO/TiO2, 15%/5% ZnO/TiO2. The 3.75%/1.25% ZnO/TiO2 resulted in spf 5 and the 5.625%/1.875% ZnO/TiO2 produced spf 8.
Vitamin C:
Sodium ascorbyl phosphate was used as a vitamin C source. Formulations were created with the vitamin C concentration equal to that in the silk gel (0.67%). Formulations were also created with 20% sodium ascorbyl phosphate which is soluble in water.
Serum Preparation:
The vitamin C (sodium ascorbyl phosphate) must first be dissolved in water. Sodium hyaluronate is then added to the water, mixed vigorously and left to fully dissolve. The result is a viscous liquid (depending on HA %). The viscosity of the HA solution allows even dispersion of the zinc oxide and titanium dioxide and therefore HA must be mixed before addition of UV additives. The zinc oxide and titanium dioxide are then added to the solution and mixed vigorously with the use of an electric blender. Silk solution is then added and mixed to complete the serum formulation.
Chemical Filters:
A UV serum of the present disclosure can include one, or a combination of two or more, of these active chemical filter ingredients: oxybenzone, avobenzone, octisalate, octocrylene, homosalate and octinoxate. A UV serum of the present disclosure can also include a combination of zinc oxide with chemical filters.
In an embodiment, a UV serum of the present disclosure can be applied approximately 15 minutes before sun exposure to all skin exposed to sun, and can be reapplied at least every 2 hours. In an embodiment, a UV serum of the present disclosure includes water, zinc oxide, sodium hyaluronate, titanium dioxide, silk, and vitamin C or a vitamin C derivative such as sodium ascorbyl phosphate. In an embodiment, a UV serum of the present disclosure protects skin and seals in moisture with the power of silk protein. In an embodiment, a UV serum of the present disclosure improves skin tone, promotes collagen production and diminishes the appearance of wrinkles and fine lines with the antioxidant abilities of vitamin C. In an embodiment, a UV serum of the present disclosure delivers moisture for immediate and long-term hydration throughout the day with concentrated hyaluronic acid. In an embodiment, a UV serum of the present disclosure helps prevent sunburn with the combined action of zinc oxide and titanium dioxide. In an embodiment, a UV serum of the present disclosure is designed to protect, hydrate, and diminish fine lines while shielding skin from harsh UVA and UVB rays. In an embodiment, the silk protein in a UV serum of the present disclosure stabilizes and protects skin while sealing in moisture, without the use of harsh chemical preservatives or synthetic additives. In an embodiment, the vitamin C/derivative in a UV serum of the present disclosure acts as a powerful antioxidant that supports skin rejuvenation. In an embodiment, the sodium hyaluronate in a UV serum of the present disclosure nourishes the skin and delivers moisture for long-lasting hydration. In an embodiment, the zinc oxide and titanium dioxide in a UV serum of the present disclosure shields skin from harmful UVA and UVB rays. The silk protein stabilization matrix in a UV serum of the present disclosure protects the active ingredients from the air, to deliver their full benefits without the use of harsh chemicals or preservatives. The silk matrix also traps moisture within the skin furthering the hydrating effect of the sodium hyaluronate.
Example 54
A solution is first prepared by dissolving or otherwise adding NaOH to water. Where applicable, hyaluronic acid is added to the NaOH solution and stirred to dissolution. Where applicable, glycerin is also added to the solution and stirred. Silk is then added. The resulting mixture is then heated to about 50 to 60° C. with stirring. One or more of coconut oil, vitamin E, jojoba oil, shea butter, and raspberry seed oil are combined and then heated to about 70° C. with stirring. One or both of titanium dioxide and zinc oxide are then added to the oil blend and stirred. The combination of the oil blend and oxides are added to the aqueous mixture. The titanium oxide and/or zinc oxide may be added to the aqueous phase, the oil phase, or both. HCl is then added to the combined mixture and stirred. Where applicable, aspen bark and/or sodium anisate is then added with stirring.
The laser used in the fabrication process was a YLP-F Series Optical Fiber Laser marking machine, with the following conditions: laser wavelength 1.06 μm, engraving line speed 2000 mm/s, power 16 W, and engraving 1000 times. The microneedles could be fabricated by Huasheng Precision Hardware Co., Ltd. The acidic detergent contained 24% zinc oxide, 30% ammonium chloride, 6% hydrochloric acid, 30% acetic acid, 12% deionized water, and 3% surfactant and was provided by the company Yuncaitaotao.
The conditions of gold plating were as follows: the modified electrode was used as the working electrode, the pure gold electrode was used as the counter electrode, and silver chloride was used as the reference electrode, forming a three-electrode system. The three electrodes were immersed in 0.2 mmol/L gold sulfite solution, and a constant voltage of −0.3 V was applied and maintained for 1200 s. A uniform layer of gold atoms was coated on the electrode surface. The thickness of the gold plating was not characterized in this work.