Individuals were grouped as follows. Group 1 (five
D. reticulatum fed a lab diet for 7 days); Group 2 (five
D. reticulatum fed a lab diet for 14 days); Group 3 (five
D. reticulatum fed a lab diet and infected on Day 7 with
P. hermaphrodita with feces collected 7 days postinfection—14 days in total); Group 4 (three
A. valentianus fed a lab diet for 7 days); Group 5 (three
A. valentianus fed a lab diet for 14 days); Group 6 (three
A. valentianus infected with
P. hermaphrodita with feces collected 7 days postinfection—14 days in total). Feces were collected from each slug for DNA extraction.
DNA was extracted from feces using DNeasy PowerSoil Pro Kit (Qiagen) following the manufacturer's instructions. The presence of bacterial DNA was checked after extractions using PCR amplification of the hypervariable regions of the 16S rRNA gene. This was carried out using the primers 27f (5′‐AGAGTTTGATCMTGGCTCAG‐3′) and 1492r (5′‐TACGGYTACCTTGTTACGACTT‐3′) (Lane, 1991 ) with the following thermocycler conditions: 3 min at 95°C followed by 35 cycles of 15 s at 95°C, 30 s at 55°C, 1.5 min at 72°C, and a final step of 8 min at 72°C. Amplicons were visualized using agarose gel electrophoresis to confirm that PCRs had worked; in all cases, bands of the correct size were present, and no amplification of bacterial DNA could be seen in the extraction negative control or the PCR negative control.
DNA samples were sent for 16S rRNA metagenomic sequencing (Novogene). The V4 hypervariable region of the 16S rRNA gene was amplified using the primers 515F (5′‐GTGCCAGCMGCCGCGGTAA‐3′) and 806R (5′‐GGACTACHVGGGTWTCTAAT‐3′). All PCR reactions were carried out with Phusion® High‐Fidelity PCR Master Mix (New England Biolabs). Sequencing libraries were generated with NEBNext® Ultra
TM DNA Library Prep Kit for Illumina and quantified via Qubit and Q‐PCR. Libraries were sequenced on an Illumina NovaSeq. 6000 platform to generate 2 × 250 bp paired‐end reads.
Analysis of the raw reads occurred at Novogene using the following method. Paired‐end reads were merged using FLASH (V1.2.7) (Magoč and Salzberg, 2011 (
link)). Quality filtering on the raw tags was performed under specific filtering conditions to obtain high‐quality clean tags according to the QIIME (V1.7.0) (Caporaso et al., 2010 (
link)). The tags were compared with the reference database (SILVA database) using the UCHIME algorithm (Edgar et al., 2011 (
link)) to detect chimera sequences. Detected chimera sequences were then removed to obtain Effective Tags. All Effective Tags were processed by UPARSE software (v7.0.1090) (Edgar, 2013 (
link)). Sequences with ≥97% similarity were assigned to the same Operational Taxonomic Units (OTUs).
For each OTU, QIIME (Version 1.7.0) in the Mothur method was performed against the SSU rRNA database of SILVA Database for species annotation at each taxonomic rank (Threshold:0.8~1) (Quast et al., 2012 (
link)). MUSCLE (Version 3.8.31) (Edgar, 2004 (
link)) was used to obtain the phylogenetic relationship of all OTUs.
OTUs abundance information was normalized using a standard of sequence number corresponding to the sample with the least sequences. OTUs were analyzed for Alpha diversity (Wilcoxon test function) and Beta diversity (AMOVA—Analysis of Molecular Variance) to obtain richness and evenness information in samples. AMOVA was also used to compare the taxonomic compositions of infected and noninfected slugs in weighted PCoA. Analysis of Alpha and Beta diversity were all performed on the normalized data and calculated with QIIME (Version 1.7.0). Significant intragroup variation is detected via MetaStats based on their abundance.
Sheehy L., MacDonald‐Howard K., Williams C.D., Weedall G.D., Jones H, & Rae R. (2023). A parasitic nematode induces dysbiosis in susceptible but not resistant gastropod hosts. MicrobiologyOpen, 12(2), e1346.