Research corneas were incubated in three washes of antibiotic/antimycotic solution in PBS, 15-minute each. Primary cultures of hCECs were established as described. Primary hCECs were isolated using a two-step, peel-and-digest method. Corneoscleral rims were placed endothelial-side-up on a disposable cornea vacuum punch (Ripon, England), and mildly stabilized by the vacuum suction created (Figure 2A ). A brief 30 seconds treatment with Trypan Blue solution (0.2%) was used to delineate Schwalbe's line. The DM-endothelial layer was carefully stripped off, approximately 1 mm anterior to the Schwalbe's line (away from the trabecular meshwork) from the posterior stroma under the dissecting microscope (Nikon, Japan). Paired DM-endothelial layers obtained were pooled and digested enzymatically in collagenase A (2 mg/ml) for at least 2 hours and up to 6 hours. This allowed full detachment of the CE from the DM, which tended to conglomerate into tightly-packed hCEC clusters. The hCEC cultures were rinsed once in PBS and further dissociated in TE for 5 minutes. Cell pellets collected after a mild centrifugation (800 g for 5 minutes) were plated equally into organ-culture dishes coated with FNC coating mixture, in four culture conditions coded as M1, M2, M3, and M4 (Table 1 ). All incubation and cultivation of hCECs were carried out in a humidified incubator at 37°C containing 5% CO2. Fresh media were replenished every two days.
After primary cultures of hCECs reached confluence at P0, cells were dissociated using TE, and sub-cultured on FNC-coated culture dishes at a matched plating density of 5,000 cells/cm2. Subsequent passages of hCECs (P1 through to P3) were also dissociated using TE. During the course of the study, cultures with insufficient cell numbers for subsequent passage were excluded. A Nikon TS1000 microscope with a Nikon DS-Fi1 digital camera was used to capture phase contrast images during expansion and at confluence to document general hCEC morphology. Variation in hCEC size (polymegathism) and the variation in cell shape (pleomorphism) of confluent cultures at P0 were assessed using Nikon NIS-Elements basic research software (Nikon, Japan). In each culture condition, the mean and standard deviation of cultivated corneal endothelial cell sizes were calculated, from which a coefficient of variation index in cell area (SD/mean cell area X 100) was calculated. The closer the calculated index value was to zero, the more uniform the overall cell sizes were and vice versa [22] (link).
After primary cultures of hCECs reached confluence at P0, cells were dissociated using TE, and sub-cultured on FNC-coated culture dishes at a matched plating density of 5,000 cells/cm2. Subsequent passages of hCECs (P1 through to P3) were also dissociated using TE. During the course of the study, cultures with insufficient cell numbers for subsequent passage were excluded. A Nikon TS1000 microscope with a Nikon DS-Fi1 digital camera was used to capture phase contrast images during expansion and at confluence to document general hCEC morphology. Variation in hCEC size (polymegathism) and the variation in cell shape (pleomorphism) of confluent cultures at P0 were assessed using Nikon NIS-Elements basic research software (Nikon, Japan). In each culture condition, the mean and standard deviation of cultivated corneal endothelial cell sizes were calculated, from which a coefficient of variation index in cell area (SD/mean cell area X 100) was calculated. The closer the calculated index value was to zero, the more uniform the overall cell sizes were and vice versa [22] (link).
Full text: Click here