4-((3-bromophenyl)amino)-6,7-dimethoxyquinazoline
Our tool helps users locate the best protocols from literature, preprints, and patents using AI-driven comparisons to enhance reproducibility and accuracy.
Simplify your workflow with this cutting-edge solution.
Most cited protocols related to «4-((3-bromophenyl)amino)-6,7-dimethoxyquinazoline»
Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Most recents protocols related to «4-((3-bromophenyl)amino)-6,7-dimethoxyquinazoline»
Example 32
To a solution of compound 32-1 (650 mg, 1.44 mmol, 1 eq) in EtOH (2 mL) was added H2SO4 (1.20 g, 12.19 mmol, 0.65 mL, 8.47 eq) and sodium nitrite (298.1 mg, 4.32 mmol, 3 eq). The mixture was stirred at 60° C. for 2 hr. The reaction mixture was diluted with H2O (5 mL) and the mixture was extracted with EA (5 mL*3). The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The residue was purified by column chromatography (SiO2, Petroleum ether/Ethyl acetate=0/1 to 1:1) to give the crude product (180 mg, 0.30 mmol, 20.9% yield) as a white solid. 40 mg of the crude product were purified by prep-HPLC to give the title compound (26 mg) as white solid. LCMS (ESI): RT=0.949 min, mass calc. for C21H17BrF3NO 435.04, m/z found 437.7 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ 1.08-1.29 (m, 1H) 1.21 (d, J=6.53 Hz, 5H) 4.15 (dq, J=13.80, 6.69 Hz, 1H) 7.67-7.79 (m, 1H) 7.71 (d, J=2.01 Hz, 1H) 7.76 (d, J=8.53 Hz, 2H) 7.89-7.99 (m, 3H) 8.39-8.52 (m, 3H).
Example 32
To a solution of (R)-5-(tert-butyl)-N-(8-(2-((1-methyl-1H-pyrazol-4-yl)amino)pyrimidin-4-yl)-2,3,4,5-tetrahydro-1H-benzo[c]azepin-5-yl)-1,3,4-oxadiazole-2-carboxamide (105 mg, 0.21 mmol) in CH3CN (8 mL) was added 1,1-difluoro-2-iodoethane (23 μL, 0.26 mmol) and potassium carbonate (89 mg, 0.64 mmol). The mixture was stirred at 80° C. for 18 h. The reaction mixture was cooled to room temperature and filtered. The filtrate was concentrated and the crude product was purified by prep-HPLC (CH3CN/H2O with 0.05% TFA as mobile phase) to give (R)-5-(tert-butyl)-N-(2-(2,2-difluoroethyl)-8-(2-((1-methyl-1H-pyrazol-4-yl)amino)pyrimidin-4-yl)-2,3,4,5-tetrahydro-1H-benzo[c]azepin-5-yl)-1,3,4-oxadiazole-2-carboxamide as a yellow solid (30 mg, yield: 25%). ESI-MS (M+H)+: 552.0. 1H NMR (400 MHz, METHANOL-d4) δ: 8.42 (d, J=5.3 Hz, 1H), 8.23 (d, J=8.4 Hz, 1H), 8.19 (s, 1H), 7.95 (s, 1H), 7.68-7.65 (m, 1H), 7.62 (d, J=7.8 Hz, 1H), 7.30 (d, J=5.5 Hz, 1H), 6.40 (tt, J=53.5 Hz, 3.6 Hz, 1H), 5.70 (dd, J=9.8 Hz, 2.5 Hz, 1H), 4.83 (br d, J=14.3 Hz, 1H), 4.67 (br d, J=14.3 Hz, 1H), 3.90 (s, 3H), 3.83-3.67 (m, 2H), 3.59 (dt, J=15.0 Hz, 3.4 Hz, 2H), 2.52-2.31 (m, 2H), 1.49 (s, 9H)
Example 27
An aqueous solution of LiOH (0.4 N, 47.7 mL, 19.1 mmol, 4.0 eq.) was added to a solution of compound 31 (2.50 g, 4.76 mmol, 1.0 eq.) in dioxane (47.7 mL) at 0° C. The reaction mixture was stirred at r.t. for 2 h and then concentrated. Column chromatography (100% CH2Cl2 to CH2Cl2/MeOH/NH4OH 80:20:1) afforded compound 32 (2.36 g, 99% yield) as an amorphous solid. MS ESI m/z calcd for C24H41N4O5S [M+H]+ 497.27, found 497.28.
Example 11
The kinase selectivity of the compounds of the present application was assessed using the KINOMEscAN™ methodology across a panel of 456 kinases (Ambit Biosciences, San Diego, Calif.). Compounds 6 and 32 were screened at a concentration of 1 μM. Both compounds were slightly less selective than Alectinib. Compound 6 was more selective than compound 32 with 34 interactions mapped compared to 39 with an S-score (1)=0.06, which may explain the increase in cytotoxicity against the neuroblastoma cell lines (
Example 13
To about 3 mL of saturated or cloudy solutions of Compound 1 Di-Hydrochloric Acid Salt Form I prepared in n-butanol was added about 25 mg of Compound 1 Di-Hydrochloric Acid Salt Form I followed by stirring at 25±1° C. for 3 days, which was filtered and analyzed by XRPD as Compound 1 Di-Hydrochloric Acid Salt Form IV.
The crystallinity of the di-hydrochloric acid salt Form IV was confirmed by XRPD (
Top products related to «4-((3-bromophenyl)amino)-6,7-dimethoxyquinazoline»
More about "4-((3-bromophenyl)amino)-6,7-dimethoxyquinazoline"
It is commonly used as a starting material in the synthesis of pharmaceutical intermediates and can be analyzed using advanced analytical techniques like MeSH-TOF II ESI-TOF-MS spectrometry and Ascend® 850 NMR spectrometry.
Researchers can utilize PubCompare.ai's innovative AI-powered platform to streamline their workflow and enhance the reproducibility and accuracy of their studies on BQD.
The platform helps users locate the best protocols from literature, preprints, and patents using AI-driven comparisons, allowing them to identify the most effective methods and products.
Key subtopics related to BQD include its chemical structure, synthesis, purification, and characterization.
Researchers may also be interested in exploring its biological activities, such as its potential as a therapeutic agent or a chemical probe.
Additionally, the use of related compounds like Methyltetrazine-PEG4 succinimidyl ester, DBCO-PEG4 succinimidyl ester, and ATCC® VR-64™ may be relevant in certain applications.
PubCompare.ai's platform can be particularly useful for researchers working with BQD, as it provides a comprehensive and efficient way to navigate the available protocols and identify the most suitable ones for their specific needs.
By streamlining the research process and enhancing reproducibility, the platform can help researchers save time and resources while improving the quality of their work.