Acetic Acid
It serves as a building block for numerous other chemicals and is a key component in the production of a variety of products, from pharmaceuticals to food additives.
Acetic Acid's unique properties, such as its ability to act as a solvent, a preservative, and a pH regulator, make it an indispensable tool for researchers and scientists working in diverse fields.
This MeSH term provides a comprehensive overview of the chemical structure, properties, and applications of Acetic Acid, serving as a valuable resource for those seeking to expand their knowledge or conduct research in this area.
Most cited protocols related to «Acetic Acid»
To prepare extended DNA fibers (Parra and Windle, 1993 (link)), 2 μl cells resuspended in PBS (106 cells/ml) were spotted onto cleaned glass slides and lysed with 5 μl of 0.5% SDS in 200 mM Tris-HCl, pH 7.4, 50 mM EDTA (10 min, 20°C). Slides were tilted (15° to horizontal), allowing a stream of DNA to run slowly down the slide, air dried, and then fixed in methanol/acetic acid (3:1). For most purposes, cells containing halogenated DNA were diluted 30- and 100-fold with untreated HeLa cells, before spreading. This simplifies the spreads, allows isolated labeled DNA fibers to be found with relative ease, and makes possible the identification of replicons from a single labeled cell (see Fig.
To estimate the extension of DNA fibers, spreads were prepared from HeLa cells infected with adenovirus serotype 2 and grown in medium supplemented with 100 μM BrdU 15–20 h after infection (Pombo et al., 1994 (link)). Abundant Br-labeled DNA molecules measured 13.9 ± 1.3 μm (mean ± SD; n = 50). As the viral genome is 36 kbp, the extension of these DNA fibers is 2.59 ± 0.24 kbp/μm.
Most recents protocols related to «Acetic Acid»
Example 30
To a stirred solution of 3-(3,4-dimethoxyphenyl)-5-(4-piperidyl)-1,2,4-oxadiazole (150 mg, 518 μmol) in N,N-dimethylformamide (1.50 mL) were added (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) (196 mg, 518 μmol), N-ethyl-N-(propan-2-yl)propan-2-amine (201 mg, 1.56 mmol, 271 μL), and 2-(benzylamino)acetic acid (89 mg, 544 μmol). The mixture was stirred at 20° C. for 16 h and filtered, and the crude filtrate was purified directly by prep-HPLC (column: Luna C8 100×30 5 μm; mobile phase: [water (10 mM ammonium carbonate)-acetonitrile]; B%: 30%-60%, 12 min) to give 2-(benzylamino)-1-[4-[3-(3,4-dimethoxyphenyl)-1,2,4-oxadiazol-5-yl]-1-piperidyl]ethanone (48 mg, 110 μmol, 21%) as a yellow solid. 1H NMR (400 MHz, METHANOL-d4) δ=7.65 (dd, J=1.8, 8.2 Hz, 1H), 7.57 (d, J=1.8 Hz, 1H), 7.40-7.30 (m, 4H), 7.28-7.22 (m, 1H), 7.06 (d, J=8.4 Hz, 1H), 4.45 (br d, J=13.7 Hz, 1H), 3.94-3.83 (m, 7H), 3.78 (s, 2H), 3.57-3.44 (m, 2H), 3.40-3.33 (m, 1H), 3.27-3.20 (m, 1H), 3.01 (t, J=11.2 Hz, 1H), 2.17 (dd, J=2.8, 13.3 Hz, 2H), 1.93-1.73 (m, 2H); LCMS (ESI) m/z: [M+H]+=437.3.
Example 26
Synthesis of 169-A.
A mixture of tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (750 mg, 3.54 mmol), 1-methylpiperidin-4-one (800 mg, 7.08 mmol) and acetic acid (2 drops) in DCE (15 mL) was stirred at 50° C. for 2 h. Then Sodium triacetoxyborohydride (1.50 g, 7.08 mmol) was added into above mixture and stirred at 50° C. for another 2 h. After the reaction was completed according to LCMS, the solvent was diluted with water (10 mL) and then extracted by DCM (10 mL×3). The combined organics washed with brine (10 mL×3), dried over anhydrous Na2SO4 and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜50:1) to give 169-A (750 mg, 69%) as a yellow oil.
Synthesis of 169-B.
A solution of 169-A (400 mg, 1.29 mmol) in DCM (10 mL) was added TFA (5 mL) and stirred at room temperature for 1 h. when LCMS showed the reaction was finished. The solvent was removed in vacuo to give 169-B as a crude product and used to next step directly.
Synthesis of 169-C.
A mixture of 143-C (306 mg, 0.65 mmol) and 169-B (crude product from last step) in acetonitrile (6 mL) was stirred at 50° C. for 30 min. Then Na2CO3 (624 mg, 6.50 mmol) was added into above mixture and stirred at 50° C. for 3 h. After the reaction was completed according to LCMS, the mixture was cooled to room temperature. The Na2CO3 was removed by filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜20:1) to give 169-C (230 mg, 76%) as a yellow solid.
Synthesis of 169.
A mixture of 169-C (230 mg, 0.49 mmol) and Pd/C (230 mg) in MeOH (10 mL) was stirred at room temperature for 30 min under H2 atmosphere. Pd/C was then removed by filtration through the Celite. The filtrate was concentrated and the residue was purified by Pre-TLC (DCM:MeOH=10:1) to give 169 (150 mg, 70%) as a white solid.
Compounds 152, 182, 199, 201, 202, 203, 235, 236 and 256 were synthesized in a similar manner using the appropriately substituted aldehyde or ketone variant of 169.
Compound 152.
50 mg, 36%, a light yellow solid.
Compound 182.
70 mg, 38%, a red solid.
Compound 199.
50 mg, 54%, a light yellow solid.
Compound 201.
30 mg, 42%, as a yellow solid.
Compound 202.
30 mg, 42%, a yellow solid.
Compound 203.
30 mg, 18%, a yellow solid.
Compound 235.
170 mg, 87%, a white solid.
Compound 236.
70 mg, 50%, a white solid.
Compound 256.
20 mg, 8%, a light yellow solid.
Compounds 210, 211, 215, 222, 223, 242 and 262 were synthesized in a similar manner using the appropriately substituted amine variant of 169.
Compound 210.
160 mg, 96%, a tan solid.
Compound 211.
70 mg, 40%, a white solid
Compound 215.
70 mg, 75%, a white solid.
Compound 222.
30 mg, 42%, a yellow solid.
Compound 223.
35 mg, 31%, a white solid.
Compound 242.
50 mg, 34%, a white solid.
Compound 262.
38 mg, 43%, a white solid.
Example 12
There has been a growing interest in the fabrication of nanofibers derived from natural polymers due to their ability to mimic the structure and function of extracellular matrix. Electrospinning is a simple technique to obtain nano-micro fibers with customized fiber topology and composition (
The current study aimed to improve and maintain nano-fibrous and porous structure of the electrospun membranes by introducing a new post electrospinning chemical treatment. Membrane thickness was tripled in this research in order to increase the general tearing strength. Scanning electron micrograph (SEM) examination (
Chitosan membranes treated by TEA/tboc showed better nano-fiber morphology characteristics than membranes neutralized by saturated Na2CO3 solution before and after being soaked in PBS. Retention of the nanofibrous structure for guided tissue regeneration applications may be of benefit for enabling nutrient exchange between soft gingival tissue and bone compartments and for mimicking the natural nanofibrillar components of the extracellular matrix during regeneration.
Example 125
Methyl 4-((5-(benzyloxy)-2-methoxyphenyl)(ethyl)amino)butanoate (184). 5-(Benzyloxy)-N-ethyl-2-methoxyaniline (146) (0.681 g, 2.65 mmol), DIEA (0.92 mL, 5.3 mmol), and methyl 4-iodobutyrate (0.72 mL, 5.3 mmol) in DMF (5 mL) were stirred at 70° C. for 5 days. The reaction mixture was cooled to rt, diluted with EtOAc (60 mL), washed with water (4×50 mL), brine (75 mL), dried over Na2SO4 and evaporated. The residue was purified by chromatography on a silica gel column (2.5×30 cm bed, packed with CHCl3), eluant: 5% MeOH in CHCl3 to get compound 184 (0.72 g, 76%) as a dark amber oil.
Methyl 4-(ethyl(5-hydroxy-2-methoxyphenyl)amino)butanoate (186). Ester 184 (0.72 g, 2.0 mmol) was stirred under reflux with 6 mL of water and 6 mL of conc HCl for 1.5 hrs and then evaporated to dryness to give acid 185 as a brown gum. The crude acid was dissolved in 50 mL of methanol containing 1 drop (cat.) of methanesulfonic acid ant the solution was kept for 2 hrs at rt. After that the mixture was concentrated in vacuum and the residue was mixed with 20 mL of saturated NaHCO3. The product was extracted with EtOAc (3×40 mL). The extract was washed with brine (40 mL), dried over Na2SO4 and evaporated. The residue was purified by chromatography on a silica gel column (2.5×30 cm bed, packed with CHCl3), eluant: 5% MeOH in CHCl3 to get compound 186 (0.444 g, 83%) as a brown oil.
N-(6-(dimethylamino)-9-(4-(ethyl(4-methoxy-4-oxobutyl)amino)-2-hydroxy-5-methoxyphenyl)-3H-xanthen-3-ylidene)-N-methylmethanaminium chloride (187). To a stirred suspension of tetramethylrhodamine ketone 101 (0.234 g, 0.830 mmol) in 10 mL of dry chloroform was added oxalyl chloride (72 μL, 0.82 mmol) upon cooling to 0-5° C. The resulting red solution was stirred for 0.5 h at 5° C., and the solution of compound 186 (0.222 g, 0.831 mmol) in dry chloroform (5 mL) was introduced. The reaction was allowed to heat to rt, stirred for 72 h, diluted with CHCl3 (100 mL and washed with sat. NaHCO3 solution (2×30 mL) The organic layer was extracted with 5% HCl (3×25 mL). The combined acid extract was washed with CHCl3 (2×15 mL; discarded), saturated with sodium acetate and extracted with CHCl3 (5×30 mL). The extract was washed with brine (50 mL), dried over Na2SO4 and evaporated. The crude product was purified by chromatography on silica gel column (2×50 cm bed, packed with CHCl3/MeOH/AcOH/H2O (100:20:5:1)), eluant: CHCl3/MeOH/AcOH/H2O (100:20:5:1) to give the product 187 (0.138 g, 29%) as a purple solid.
4-((4-(6-(dimethylamino)-3-(dimethyliminio)-3H-xanthen-9-yl)-5-hydroxy-2-methoxyphenyl)(ethyl)amino)butanoate (188). Methyl ester 187 (0.136 g, 0.240 mmol) was dissolved in 5 mL of 1M KOH (5 mmol). The reaction mixture was kept at rt for 1.5 hrs and the acetic acid (1 mL) was added. The mixture was extracted with CHCl3 (4×30 mL), and combined extract was washed with brine (20 mL), filtered through the paper filter and. The crude product was purified by chromatography on silica gel column (2×50 cm bed, packed with MeCN/H2O (4:1)), eluant: MeCN/H2O/AcOH/(4:1:1) to give the product 188 (0.069 g, 98%) as a purple solid.
N-(6-(dimethylamino)-9-(4-((4-(2,5-dioxopyrrolidin-1-yloxy)-4-oxobutyl)(ethyl)amino)-2-hydroxy-5-methoxyphenyl)-3H-xanthen-3-ylidene)-N-methylmethanaminium chloride (189). To a solution of the acid 188 (69 mg, 0.12 mmol) in DMF (2 mL) and DIEA (58 μL, 0.33 mmol) was added N-hydroxysuccinimide trifluoroacetate (70 mg, 0.33 mmol). The reaction mixture was stirred for 30 min, diluted with chloroform (100 mL) and washed with water (5×50 mL), brine (50 mL), filtered through paper and concentrated in vacuum. The crude product was purified by precipitation from CHCl3 solution (5 mL) with ether (20 mL) to give compound 189 (55 mg, 67%) as a purple powder.
Example 22
To a stirred solution of 3-(3,4-dimethoxyphenyl)-5-(4-piperidyl)-1,2,4-oxadiazole (150 mg, 518 μmol) in N,N-dimethylformamide (2 mL) was added (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) (196 mg, 518 μmol) and N-ethyl-N-(propan-2-yl)propan-2-amine (201 mg, 1.56 mmol, 271 μL) and 2-[benzoyl(methyl)amino]acetic acid (105 mg, 544 μmol). The mixture was stirred at 20° C. for 5 h, then cooled and purified directly by prep-HPLC (column: Luna C8 100×30 5 μm; mobile phase: [water (10 mM ammonium carbonate)-acetonitrile]; B%: 30%-60%, 12 min) to give N-[2-[4-[3-(3,4-dimethoxyphenyl) -1,2,4-oxadiazol-5-yl]-1-piperidyl]-2-oxo-ethyl]-N-methyl-benzamide (133 mg, 282 μmol, 54%) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ=7.59 (dd, J=1.8, 8.4 Hz, 1H), 7.49-7.32 (m, 5H), 7.27 (br d, J=6.8 Hz, 1H), 7.16-7.08 (m, 1H), 4.44-4.24 (m, 2H), 4.21-4.03 (m, 1H), 4.02-3.88 (m, 1H), 3.88-3.74 (m, 6H), 3.56 (br d, J=13.7 Hz, 1H), 3.48-3.33 (m, 1H), 3.11-2.77 (m, 5H), 2.20-1.99 (m, 2H), 1.86 (br t, J=12.6 Hz, 1H), 1.74-1.48 (m, 2H), 1.43-1.26 (m, 1H); LCMS (ESI) m/z: [M+H]+=465.3.
Top products related to «Acetic Acid»
More about "Acetic Acid"
It serves as a fundamental building block for a vast array of chemicals, including pharmaceuticals, food additives, and other essential products.
One of the key properties of acetic acid is its ability to act as a solvent, preservative, and pH regulator, making it an indispensable tool for researchers and scientists across diverse fields.
Acetic acid's unique chemical structure and properties allow it to be used in a variety of applications, from chemical synthesis to food preservation.
Closely related to acetic acid are other important compounds like methanol, glacial acetic acid, sodium hydroxide, acetonitrile, hydrochloric acid, chitosan, formic acid, gallic acid, and ethanol.
These substances often play complementary roles in research, industrial processes, and product formulations involving acetic acid.
The comprehensive understanding of acetic acid's structure, properties, and applications, as provided by the MeSH term description, serves as a valuable resource for those seeking to expand their knowledge or conduct research in this area.
Leveraging cutting-edge technologies like PubCompare.ai's AI-driven platform can further optimize and streamline the research process, helping researchers identify the most effective protocols and solutions for their acetic acid-related projects.