Fifty-two eyes of 52 non-glaucomatous healthy subjects aged 21 to 85 years were included in the study. The study was approved by the Institutional Review Board (IRB) of Keimyung University Dongsan Medical Center (IRB no. 2015–12-052) and was performed in accordance with the tenets of the Declaration of Helsinki. None of the subjects had any history of ocular pathology affecting IOP, refractive surgery or trauma, and none had worn contact lenses within the two-week period prior to IOP measurement. Subjects were excluded if they had regular astigmatism greater than 3.50 diopters (D) or any irregular astigmatism. To avoid the double-organ bias, one eye per individual was randomly included in the analysis using a table of random numbers for randomization [22 (
link)]. In a fixed sequence, all of the subjects were examined with the three NCTs, the GAT and ultrasound pachymeter (850, Humphrey Instruments, Inc., San Leandro, CA, USA) to obtain IOP and central corneal thickness (CCT) measurements, respectively. According to the GAT IOP values, the eyes were categorized into low-teen (<14 mmHg), mid-teen (≥14 and ≤17 mmHg) and high-teen (>17 mmHg) groups.
IOP measurements were made by the same experienced ancillary staff using the three NCTs. The order in which the instruments were used was the Canon TX-20P, followed by the Nidek NT-530P, the Topcon CT-1P and the GAT. Each of the tonometers was calibrated according to the manufacturer’s guidelines prior to its use in this study. In manual measurements using the Nidek NT-530P, on the other hand, the operator aligns the cornea by superimposing a reflection of the target from the subject’s cornea on a stationary ring and depresses the trigger when the cornea is aligned. In the present study, the mean of three measurements was used so as to avoid the effect of fluctuations caused by the cardiac pulse cycle.
IOP measurements were taken with the GAT (AT900; Haag-Streit, Köniz, Switzerland) according to the standard procedures. Before acquisition, one drop of 0.5% proparacaine hydrochloride eye drops (Alcaine®, Alcon Laboratories Inc., Fort Worth, TX, USA) was instilled and a fluorescein strip was applied to the inferior conjunctival fornix. To avoid error introduced by topical anesthesia, the GAT was applied five minutes after eyedrop instillation [23 (
link)]. The last IOP measurement was obtained using GAT to avoid a corneal-compression-induced aqueous outflow increase that would have affected subsequent IOP readings [24 (
link), 25 (
link)]. Also, the mean of three measurements of GAT was used and each IOP readings were masked to the one clinician (SPB) performing the measurements. Between each instrumentation application, the subjects were allowed a five-minute rest period to recover from the aqueous outflow. All of the measurements were taken between 11:30 am and 1:30 pm in order to minimize the effects of diurnal IOP variation [26 (
link)].
Pearson correlation analysis, the intraclass correlation coefficient (ICC), the paired t-test were used to assess the correlation, consistency and agreement among the IOP measurements provided by each instrument. We also constructed Bland-Altman plots using Medcalc version 15.2 (Ostend, Belgium) to compare the bias in the IOP measurements of each NCT relative to the GAT. Simple linear regression analysis was used to assess the correlations between CCT and the IOP measurements of each tonometer. The paired t-test was used to analyze the difference between the IOP measurements of each NCT and the GAT in each subgroup divided by the GAT IOP values. Data were analyzed using SPSS version 22 (IBM, Armonk, NY, USA).
Bang S.P., Lee C.E, & Kim Y.C. (2017). Comparison of intraocular pressure as measured by three different non-contact tonometers and goldmann applanation tonometer for non-glaucomatous subjects. BMC Ophthalmology, 17, 199.