Alexa Fluor 647
It excites at 650 nm and emits at 665 nm, providing a bright, photostable signal in the red spectrum.
Alexa Fluor 647 is commonly used for labeling proteins, nucleic acids, and other biomolecules, enabling sensitive detection and quantification in flow cytometry, microscopy, and high-throughput assays.
Its excellent photophysical properties and resistance to photobleaching make it a preferred choice for many fluorescence-based experiments and protocols.
Researchers can optimize their studies and take their work to new heights by leveraging the power of Alexa Fluor 647 with PubCompare.ai's AI-driven protocol comparison tool, which helps identify the best products and methodologies from the literature, preprints, and patents.
Most cited protocols related to «Alexa Fluor 647»
Most recents protocols related to «Alexa Fluor 647»
Example 10
This example provides in vitro IC50 data for the blocking of the interaction between recombinant human PD-1 (PD-1-Fc Chimera; Sino Biologics) and human PD-L1 expressed CHO cells by anti-PD-L1 antibody G12. Here, CHO cells expressing PD-L1 were pre-incubated with G12 prior to the addition of rhPD-1-Fc chimeric protein. After incubation and washing, PD-1 binding to cell surface expressed PD-L1 was detected using an Alexa-Fluor 647 tagged anti-PD-1 antibody by flow cytometry (Intellicyt HTFC; FL-4H). This example shows that anti-PD-L1 monoclonal antibody G12 was able to inhibit efficiently the binding of PD-1 to PD-L1 expressed on the surface of CHO cells.
Results: As shown in
Example 10
Binding of MSLN-BiTE to membrane-bound target expressed in cells was determined with an on-cell affinity assay. 3×104 cells per well of a microtiter plate were incubated with MSLN-BiTE protein in a dose response for 16-22 h at 4° C. Cells were washed twice with flow buffer (PBS that contained 2% fetal calf serum and 0.01% sodium azide), and then resuspended in flow buffer and incubated with an anti-His Fab labeled with Alexa Fluor-647 for 50 minutes at 4° C. Cells were fixed after incubation to optimize detection of the fluorescent signal. Cells were then washed twice and resuspended in flow buffer that contained propidium iodide at 1 ug/ml. Cells were analyzed by flow cytometry for live cells that were positive for Alexa Fluor-647. EC50 values were determined from the dose response curve of Alexa Fluor-647 positive cells.
Example 4
To determine where 2F2-grafted “humanized” antibodies and antibody variants are delivered upon internalization into the cell, colocalization studies of the anti-CD79b antibodies internalized into B-cell lines may be assessed in Ramos cell lines. LAMP-1 is a marker for late endosomes and lysosomes (Kleijmeer et al., Journal of Cell Biology, 139(3): 639-649 (1997); Hunziker et al., Bioessays, 18:379-389 (1996); Mellman et al., Annu. Rev. Dev. Biology, 12:575-625 (1996)), including MHC class II compartments (MIICs), which is a late endosome/lysosome-like compartment. HLA-DM is a marker for MIICs.
Ramos cells are incubated for 3 hours at 37° C. with 1 μg/ml 2F2-grafted “humanized” antibodies and antibody variants, FcR block (Miltenyi) and 25 μg/ml Alexa647-Transferrin (Molecular Probes) in complete carbonate-free medium (Gibco) with the presence of 10 μg/ml leupeptin (Roche) and 5 μM pepstatin (Roche) to inhibit lysosomal degradation. Cells are then washed twice, fixed with 3% paraformaldehyde (Electron Microscopy Sciences) for 20 minutes at room temperature, quenched with 50 mM NH4Cl (Sigma), permeabilized with 0.4% Saponin/2% FBS/1% BSA for 20 minutes and then incubated with 1 μg/ml Cy3 anti-mouse (Jackson Immunoresearch) for 20 minutes. The reaction is then blocked for 20 minutes with mouse IgG (Molecular Probes), followed by a 30 minute incubation with Image-iT FX Signal Enhancer (Molecular Probes). Cells are finally incubated with Zenon Alexa488-labeled mouse anti-LAMP1 (BD Pharmingen), a marker for both lysosomes and MIIC (a lysosome-like compartment that is part of the MHC class II pathway), for 20 minutes, and post-fixed with 3% PFA. Cells are resuspended in 20 μl saponin buffer and allowed to adhere to poly-lysine (Sigma) coated slides prior to mounting a coverglass with DAPI-containing VectaShield (Vector Laboratories). For immunofluorescence of the MIIC or lysosomes, cells are fixed, permeabilized and enhanced as above, then co-stained with Zenon labeled Alexa555-HLA-DM (BD Pharmingen) and Alexa488-Lamp1 in the presence of excess mouse IgG as per the manufacturer's instructions (Molecular Probes).
Accordingly, colocalization of 2F2-grafted “humanized” antibodies or antibody variants with MIIC or lysosomes of B-cell lines as assessed by immunofluorescence may indicate the molecules as excellent agents for therapy of tumors in mammals, including B-cell associated cancers, such as lymphomas (i.e. Non-Hodgkin's Lymphoma), leukemias (i.e. chronic lymphocytic leukemia), and other cancers of hematopoietic cells.
Example 3
Binding to CD25 expressing Karpas 299 cells was examined by staining Karpas299 cells with test articles (anti-CD25 primary antibodies) starting at a concentration of 20 g/ml antibodies followed by semi-log dilution series (7-point) for 30 minutes on ice. This was followed by staining with a secondary antibody (Alexa Fluor 647-AffiniPure F(ab′)2 Fragment Rabbit Anti-Human IgG Fcγ fragment—(Jackson ImmunoResearch)) at a concentration of 1 μg/ml for 30 minutes on ice. All samples were stained in duplicates. Live cells were gated using FSC vs SSC parameters by flow cytometry during sample acquisition. Mean fluorescence intensity (MFI) of stained cells were plotted on an XY chart, graphing MFI against the log of the concentration, and the data fit to a non-linear regression curve from which the EC50 is calculated. Results are shown in
Images were captured with a Zeiss upright microscope (AxioImager M1, Oberkochen, Germany). To quantify the percentage of nuclei (DAPI+) expressing CD63, MyoVision software was used for automated analysis of nuclear density in cross-sections [39 (link)], and nuclei-expressing CD63 (identified as DAPI+/CD63+ events) were counted manually in a blinded manner by the same assessor for all sections using the Zen Blue software.
Top products related to «Alexa Fluor 647»
More about "Alexa Fluor 647"
This bright, photostable dye excites at 650 nm and emits at 665 nm, providing a vivid signal in the red spectrum that is perfect for a wide range of applications.
One of the key advantages of Alexa Fluor 647 is its ability to label a variety of biomolecules, including proteins, nucleic acids, and other important cellular components.
This makes it an essential tool for techniques like flow cytometry, microscopy, and high-throughput assays, where it enables sensitive detection and quantification of these labeled targets.
Researchers can further leverage the power of Alexa Fluor 647 by using PubCompare.ai's AI-driven protocol comparison tool.
This innovative platform helps identify the best products and methodologies from the literature, preprints, and patents, allowing scientists to optimize their studies and take their work to new heights.
In addition to Alexa Fluor 647, researchers may also utilize other fluorescent dyes like Alexa Fluor 488, DAPI, and Hoechst 33342 for their experimental needs.
Flow cytometry instruments, such as the FACSCanto II and FACSCalibur, are commonly used to analyze samples labeled with these dyes.
Detergents like Triton X-100 and Bovine serum albumin (BSA) are also frequently employed in fluorescence-based protocols to enhance signal and minimize background.
By combining the versatility of Alexa Fluor 647 with the intelligence of PubCompare.ai's protocol comparison tool, researchers can unlock new possibilities in their work and advance the field of biomedical research to new frontiers.