Alkenes
These versatile organic molecules are widely used in a variety of chemical processes, including polymerization, hydrogenation, and oxidation reactions.
Alkenes display unique reactivity and physical properties that make them valuable intermediates in the synthesis of a wide range of pharmaceuticals, fuels, and other important chemicals.
Researchers optimizing alkene-based protocols can leverage PubCompare.ai's AI-powered tools to easily locate the best experimental protocols from literature, preprints, and patents, facilitating improved reproducability and efficincy in their alkene research.
Most cited protocols related to «Alkenes»
Most recents protocols related to «Alkenes»
Example 8
Cyclohexene (1a) and polar organic solvent (as mentioned in Table 1) in (1:2 to 1:10 weight ratio with respect to the substrate) was taken in to a 60 ml vessel. Further, the hybrid photocatalyst was added and the resulting mixture was saturated with CO2 by purging at 1 atm pressure. The reaction vessel was sealed and irradiated with 20 W LED light (Model No. HP-FL-20 W-F, Hope LED Opto-Electric CO., Ltd) for 24 h. The conversion of the olefin and selectivity of the α,β-unsaturated hydroxyl or carbonyl compound as determined by GC-FID and GC-MS is mentioned in the Table 1 (entry 8-13).
Example 3
Cyclohexene (1a) and polar organic solvent, preferably acetonitrile in (1:2 to 1:10 weight ratio with respect to the substrate) was taken in to a 60 ml vessel. Further, the bare graphene oxide as photocatalyst (1 to 10 mol % of the substrate) was added and the resulting mixture was saturated with CO2 by purging at 1 atm pressure. The reaction vessel was sealed and irradiated with 20 W LED light (Model No. HP-FL-20 W-F, Hope LED Opto-Electric CO., Ltd) for 24 h. The intensity of the LED light at the reaction flask was measured to be 86 W/m2 by intensity meter. The conversion of the olefin was examined by GC-FID based on the unreacted substrate. The selectivity of the α,β-unsaturated hydroxyl or carbonyl compounds was determined by GC-MS. The conversion of olefin and the selectivity towards the corresponding α,β-unsaturated hydroxyl and ketone is given in the Table 1, entry 3.
Example 109
The alkene (2.91 mmol) was dissolved in MeOH (0.1 M) and Pd(OH)2/C (0.146 mmol) was added. A Parr Hydrogenator was used at 40 psi. The palladium catalyst was carefully filtered off through celite and rinsed with EtOAc. The crude material was used in the next step and provided quantitative yield.
Example 1
An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their percent composition in the crude oil fractions) are given in Table 1 below.
Details of the un-hydrotreated heavy stream are shown below in Table 2, where the heavy stream is designated EX-1(A).
The same Arab light crude oil used in Example 1 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3(A), results are designated CE-1. Specifically, the temperature was 675° and the TOS was 75 seconds.
As can be seen in Table 4, the combined yields of total light olefins from the present methods are significantly higher than the yields from the comparative methods. Further, each of examples 3(A), 3(B), and 3(Combined) show significantly decreased levels of coke formation relative to the comparative example CE-1.
Example 2
The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an Hz/oil ratio 1200:1(v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.
The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below and are designated EX-2.
The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization of the product is given in Table 5 below.
As can be seen in Table 5, utilizing a hydrotreated heavy stream as the feed to the catalytic reactor results in higher conversion; greater yield of C2, C3, and C4 olefins; greater yield of gasoline; and significantly decreased coke formation, among other advantages.
Example 3
The respective fractions of Arab light crude were cracked at the conditions described below. A catalyst with the composition shown in Table 3 below as used in all of the reactions.
An Advanced Cracking Evaluation (ACE) unit was used to simulate a commercial FCC process. The reaction was run two times with fresh catalyst to simulate two separate FCC reaction zones in parallel.
Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B). The weight ratio of catalyst to hydrocarbons was 8.
It should be understood that time-on-stream (TOS) is directly proportional to residence time.
The light stream from Example 1 was fed to the advanced cracking evaluation unit. A time-on-stream (TOS) of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 675° C. was used.
The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization is shown in both Table 4 and Table 5.
The streams of Examples 3(A) and 3(B) were combined to form a single stream. The single stream simulates the output of processing a whole crude according to the methods of the present disclosure.
Example 3(Combined) is a weighted average of Examples 3(A) and 3(B). Example 3(A) represented 53 wt. % of Example 3(Combined). Example 3(B) represented 44 wt. % of Example 3 (Combined).
Example 1
An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their wt. % composition in the crude oil) are given in Table 1 below.
The same Arab light crude oil used in Example 3 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3.
As can be seen in Table 4, the yield of total light olefins from the inventive EX-3 is significantly higher than the yield of light olefins in the comparative CE-1. Additionally, EX-3 shows significantly lower coke formation than the comparative CE-1.
Example 2
The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an H2/oil ratio 1200:1 (v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.
The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below.
Example 3
A catalyst with the composition shown in Table 3 below as used in all of the reactions.
An Advanced Cracking Evaluation (ACE) unit was used to simulate a down-flow FCC reaction zone with multiple inlet points. The ACE unit emulates commercial FCC process.
Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B).
The light stream from Example 1 was combined with the hydrotreated heavy stream from Example 2 to form a combined feed stream. The combined feed stream was fed to the ACE unit. A time-on-stream (TOS) of 75 seconds and a temperature of 675° C. was used. Fresh catalyst was steamed deactivated at 810° C. for 6 hours to resemble the equilibrium catalyst in the actual process. The steam deactivated catalyst was used in this reaction. It should be understood that TOS is directly proportional to residence time.
Top products related to «Alkenes»
More about "Alkenes"
These versatile organic molecules have a wide range of applications in various chemical processes, including polymerization, hydrogenation, and oxidation reactions.
Alkenes display unique reactivity and physical properties that make them valuable intermediates in the synthesis of a diverse array of pharmaceuticals, fuels, and other important chemicals.
Researchers working on alkene-based protocols can leverage the AI-powered tools offered by PubCompare.ai to easily locate and compare the best experimental procedures from literature, preprints, and patents.
This can help improve the reproducability and effeciency of their alkene research.
Some related terms and subtopics to consider include: di-tert-butyl peroxide (a radical initiator used in alkene polymerization), Solvesso 150 (a solvent mixture used in alkene-based formulations), Irganox® 1076 (an antioxidant used to stabilize alkene-containing products), 5-norbornene-2-carboxylic acid (a cyclic alkene used in polymer synthesis), Gantrez® S-97 (a copolymer of methyl vinyl ether and maleic anhydride), silica gel (a common desiccant used in alkene purification), HP-INNOWAX (a stationary phase used in gas chromatography of alkenes), DMSO (a solvent used in alkene reactions), and 5-vinyl-2-norbornene (a cyclic alkene monomer).