Chemical synthesisGeneral remarksMicrowave reactions were carried out in a CEM Discover microwave reactor in sealed vessels (monowave, maximum power 300 W, temperature control by IR sensor, and fixed temperature).
1H and
13C NMR spectra were recorded on a Varian instrument operating at 300, 600 and 75, 125 MHz, respectively. The signals of the deuterated solvent (CDCl
3 or DMSO-D
6) were used as reference. Chemical shifts (δ) are expressed in ppm with the solvent peak as reference and TMS as an internal standard; coupling constants (J) are given in Hertz (Hz). Carbon atom types (C, CH, CH
2, CH
3) were determined by using the DEPT pulse sequence. The signals were assigned using two-dimensional heteronuclear correlations (COSY, HSQC and HMBC). High resolution mass spectra were recorded using electrospray ionization mass spectrometry (ESI-MS). A QTOF Premier instrument with an orthogonal Z-spray-electrospray interface (Waters, Manchester, UK) was used operating in the W-mode. The drying and cone gas was nitrogen set to flow rates of 300 and 30 L/h, respectively. Methanol sample solutions (ca. 1 × 10
−5 M) were directly introduced into the ESI spectrometer at a flow rate of 10 µL/min. A capillary voltage of 3.5 kV was used in the positive scan mode, and the cone voltage set to
Uc = 10 V. For accurate mass measurements, a 2 mg/L standard solution of leucine enkephalin was introduced via the lock spray needle at a cone voltage set to 85 V and a flow rate of 30 μL/min. IR spectra were recorded on a Spectrum RX I FT-IR system (Perkin-Elmer, Waltham, MA, USA) in KBr disks. Optical rotations were measured (Na-D line) at 25°C using a cell with 1dm path length on a Polartronic (Jasco model p-2000) polarimeter. Silica gel 60 (0.063–0.200 mesh, Merck, Whitehouse Station, NJ, USA) was used for column chromatography, and precoated silica gel plates (Merck 60 F254 0.2 mm) were used for thin layer chromatography (TLC). Monitoring of the reaction progress and product purification was carried out by TLC.
Procedure for the synthesis of S-Allylcysteine (2): S-Cysteine hydrochloride (1 g, 6.34 mmol) was added to allyl bromide (1.15 g, 823 µL, 9.51 mmol) in 2M NH
4OH (20 mL). The resulting mixture was stirred at room temperature for 20h. Then, the reaction mixture was concentrated to precipitate the product as a white solid. The solid was filtered, washed with ethanol (3 × 10 mL) and dried under reduced pressure, affording 818 mg (80%) of compound
2. This compound was used in the following step without further purification.
1H NMR (DMSO-D
6, 300 MHz): δ 2.48 (NH
2), 2.72 (1H, dd,
J = 14.6, 8.0 Hz, S-C
H2CHN), 2.87 (1H, dd,
J = 14.6, 4.2 Hz, S-C
H2CHN), 3.06 (2H, d,
J = 7.3 Hz, S-C
H2CH=CH
2), 3.56 (1H, dd,
J = 8.0, 4.2 Hz, -C
H-N), 4.29 (-NH
2), 4.98-5.13 (2H, m, S-CH
2CH=C
H2), 5.59-5.75 (2H, m, S-CH
2C
H=CH
2);
13C NMR (CDCl
3, 75 MHz): δ 31.33 (S-
CH
2CHN), 33.93 (S-
CH
2CH=CH
2), 53.45 (
CH-N), 118.48 (S-CH
2CH=
CH
2), 133.77 (S-CH
2CH=CH
2), 171.33 (-C=O)
Procedure for the synthesis of S-Allylcysteine methyl ester (3a): Thionyl chloride (442.6 mg, 3.72 mmol, 270 µL) was added over 5 min. to dry methanol (15 mL) cooled to -10 °C and the resulting solution was stored for a further 5 min. Then, S-allyl cysteine (500 mg, 3.1 mmol) was added and the mixture was stirred for 10 min. The resulting solution was stored at -10 °C for 2h, kept at room temperature for other 24 h, and then poured into ether (100 mL) and refrigerated for 2 h. The product (488 mg, 90%) separated as colorless needles, was removed by
filtration.
M.p. 114-116 °C; [α]
25 + 4.778 (C = 0,013, CHCl
3); IR (KBr, cm
-1): ν
max 3366 (N-H), 1736 (C=O), 1238 (C-O-C);
1H NMR (DMSO-D
6, 300 MHz): δ 2.51 (NH
2), 2.84 (1H, dd,
J = 14.7, 5.0 Hz, S-C
H2CHN), 2.93 (1H, dd,
J = 14.7, 5.0 Hz, S-C
H2CHN), 3.09 (2H, d,
J = 7.3 Hz, S-C
H2CH=CH
2), 3.70 (3H, s, OCH
3), 4.14 (1H, dd,
J = 7.1, 5.0 Hz, -C
H-N), 5.04-5.15 (2H, m, S-CH
2CH=C
H2), 5.59-5.77 (1H, m, S-CH
2C
H=CH
2);
13C NMR (CDCl
3, 75 MHz): δ 30.09 (S-
CH
2CHN), 34.20 (S-
CH
2CH=CH
2), 52.09 (O
CH
3), 54.52 (
CH-N), 118.86 (S-CH
2CH=
CH
2), 133.37 (S-CH
2CH=CH
2), 168.96 (-C=O).
EIMS: m/z 176,0732 [M + H]
+, Calcd for C
7H
14NO
2S: 176.0354.
General procedure for the synthesis of S-Allyl cysteine esters (3b-3e): Thionyl chloride (3eq) was added over 5 min. to dry ethyl, propyl, butyl, or pentyl alcohol (15 mL) cooled to -10 °C and the resulting solution was stored for a further 5 min. Then, S-allyl cysteine (500 mg, 3.1 mmol) was added and the resulting mixture was stored at -10 °C for 2 h and the kept at room temperature for a further 24 h. Then the excess of alcohol was removed by distillation. The residue was purified by column chromatography over silica gel eluting with dichloromethane-methanol (95:5 ratio) to obtain S-allyl cysteine ethyl ester, S-allyl cysteine propyl ester, S-allyl cysteine butyl ester and S-allyl cysteine pentyl ester in 60% (352 mg), 71% (447 mg), 621% (418 mg) and 85% (609 mg) yields, respectively. Monitoring the reaction progress and product purification was carried out by TLC.
Ethyl S-prop-2-en-1-ylcysteinate (3b): M.p. 121-123°C; [α]
25 + 1.40 (C = 0,62, CHCl
3); IR (KBr, cm
-1): ν
max 3472 (N-H), 1748 (C=O), 1231 (C-O-C);
1H NMR (CDCl
3, 600 MHz): δ 0.96 (3H, t,
J = 7.2 Hz), 2.63 (NH
2), 3.22-3.25 (2H, m, S-C
H2CHN), 3.18-3.22 (2H, m, S-C
H2CH=CH
2), 3.29 (1H, dd,
J = 7.5, 5.0 Hz, -C
H-N), 4.29 (2H, q,
J = 7.0 Hz, OCH
2), 5.15 (1H, d,
J = 10 Hz, S-CH
2CH=C
H2), 5.24 (1H, d,
J = 18 Hz, S-CH
2CH=C
H2), 5.74-5.85 (1H, m, S-CH
2C
H=CH
2);
13C NMR (CDCl
3, 125 MHz): δ 14.05 (CH
3), 30.48 (S-
CH
2CHN), 35.10 (S-
CH
2CH=CH
2), 52.69 (
CH-N), 62.94 (OCH
2), 118.51 (S-CH
2CH=
CH
2), 133.37 (S-CH
2CH=CH
2), 167.95 (-C=O).
EIMS: m/z 190,0879 [M + H]
+, Calcd for C
8H
16NO
2S: 190.0356.
Propyl S-prop-2-en-1-ylcysteinate (3c): M.p. 115-117 °C; [α]
25 + 3.750 (C = 0,015, CHCl
3); IR (KBr, cm
-1): ν
max 3375 (N-H), 1736 (C=O), 1182 (C-O-C);
1H NMR (CDCl
3, 300 MHz): δ 0.91 (3H, t,
J = 7.5 Hz), 1.53-1.72 (2H, m), 1.98 (NH
2), 2.83 (1H, dd,
J = 13.5, 5.0 Hz, S-C
H2CHN), 2.65 (1H, dd,
J = 13.5, 5.0 Hz, S-C
H2CHN), 3.11 (2H, d,
J = 7.0 Hz, S-C
H2CH=CH
2), 3.58 (1H, dd,
J = 7.4, 5.0 Hz, -C
H-N), 4.05 (2H, t,
J = 6.7 Hz, OCH
2), 5.07-5.16 (2H, m, S-CH
2CH=C
H2), 5.64-5.82 (1H, m, S-CH
2C
H=CH
2);
13C NMR (CDCl
3, 75 MHz): δ 10.41 (CH
3), 21.97 (CH
2), 35.14 (S-
CH
2CHN), 35.82 (S-
CH
2CH=CH
2), 54.11 (
CH-N), 66.82 (OCH
2), 117.61 (S-CH
2CH=
CH
2), 134.01 (S-CH
2CH=CH
2), 174.15 (-C=O). EIMS: m/z 204,1036 [M + H]
+, Calcd for C
9H
18NO
2S: 204.0603.
Butyl S-prop-2-en-1-ylcysteinate (3d): M.p. 101-103°C; [α]
25 + 3.40 (C = 0,57, CHCl
3); IR (KBr, cm
-1): ν
max 3396 (N-H), 1750 (C=O), 1233 (C-O-C);
1H NMR (CDCl
3, 600 MHz): δ 0.93 (3H, t,
J = 7.5 Hz), 1.34-1.43 (2H, m), 1.62-1.70 (2H, m), 2.62 (NH
2), 3.19 (2H, d,
J = 6.8 Hz, S-C
H2CH=CH
2), 3.23 (1H, dd,
J = 13.9, 7.0 Hz, S-C
H2CHN), 3.29 (1H, dd,
J = 13.9, 7.0 Hz, S-C
H2CHN), 4.17-4.28 (1H, m, -C
H-N), 4.38 (2H, t,
J = 6.5 Hz, OCH
2), 5.14 (1H, d,
J = 10 Hz, S-CH
2CH=C
H2), 5.24 (1H, d,
J = 17 Hz, S-CH
2CH=C
H2), 5.74-5.83 (1H, m, S-CH
2C
H=CH
2);
13C NMR (CDCl
3, 125 MHz): δ 13.66 (CH
3), 19.02 (2CH
2), 30.53 (S-
CH
2CHN), 35.11 (S-
CH
2CH=CH
2), 52.67 (
CH-N), 66.75 (OCH
2), 118.49 (S-CH
2CH=
CH
2), 133.38 (S-CH
2CH=CH
2), 168.08 (-C=O). EIMS: m/z 218,1206 [M + H]
+, Calcd for C
10H
20NO
2S: 218.0457.
Pentyl S-prop-2-en-1-ylcysteinate (3e): M.p. 98-100°C; [α]
25 + 1.558 (C = 0,018, CHCl
3); IR (KBr, cm
-1): ν
max 3448 (N-H), 1747 (C=O), 1234 (C-O-C);
1H NMR (CDCl
3, 600 MHz): δ 0.93 (3H, t,
J = 7.0 Hz), 1.31-1.42 (4H, m), 1.60-1.74 (2H, m), 1.82 (NH
2), 2.71 (1H, dd,
J = 13.5, 5.3 Hz, S-C
H2CHN), 2.90 (1H, dd,
J = 13.5, 5.3 Hz, S-C
H2CHN), 3.18 (2H, d,
J = 7.17 Hz, S-C
H2CH=CH
2), 3.60-3.69 (1H, m, -C
H-N), 4.16 (2H, t,
J = 6.7 Hz,-OCH
2), 5.11-5.20 (2H, m, S-CH
2CH=C
H2), 5.72-5.89 (1H, m, S-CH
2C
H=CH
2);
13C NMR (CDCl
3, 125 MHz): δ 13.70 (CH
3), 22.03 (CH
2), 27.78 (CH
2), 28.01 (CH
2), 34.83 (S-
CH
2CHN), 35.53 (S-
CH
2CH=CH
2), 54.84 (CH-N), 65.04 (OCH
2), 117.23 (S-CH
2CH=
CH
2), 134.82 (S-CH
2CH=CH
2), 173.91 (-C=O); EIMS: m/z 232.1368 [M + H]
+, Calcd for C
11H
22NO
2S: 232.1371.
General procedure for condensation using HBTU A solution of 3,4-diacetoxycaffeic acid (
5) or 3,4-disilylated caffeic acid (
7) (1 mmol) and triethylamine (4 mmol) in THF (10 mL) was stirred for 15 min. Then, HBTU (1.5 mmol) was added and the resulting mixture was stirred for 10 min. Then, S-allyl cysteine ester (
3a-3e) (1.2 mmol) was added and the resulting mixture was allowed to stir for 15 h. The solvent was removed under reduced pressure, and the residue was chromatographed on silica gel. Elution with hexane-ethyl acetate (1:1 ratio) afforded compounds
6a-6e in yields ranging 30-40% [
6a, 35% (148 mg);
6b, 39% (170 mg);
6c, 34% (153 mg);
6d, 33% (153 mg) and
6e, 40% (191 mg)] or
8a-8e in yields ranging 50-60% [
8a, 50% (283 mg);
8b, 50% (578 mg);
8c, 52% (309 mg); 8
d, 50% (304 mg) and
8e, 60% (373 mg)].
Methyl N-{(2E)-3-[3,4-bis(acetyloxy)phenyl]prop-2-enoyl}-S-prop-2-en-1-ylcysteinate (6a): M.p. 107-109°C; [α]
25 + 5.292 (C = 0,019, CHCl
3); IR (KBr, cm
-1): ν
max 3394 (N-H), 1770, 1743 and 1662 (C=O), 1259 (C-O-C), 1205 ((C=O)-O);
1H NMR (CDCl
3, 300 MHz): δ 2.30 (3H, s, ((
CH
3-C=O)-O), 2.31 (3H, s, (
CH
3-C=O)-O), 2.95 (1H, dd,
J = 14.0, 5.0 Hz, S-C
H2CHN), 3.04 (1H, dd,
J = 14.0, 5.0 Hz, S-C
H2CHN), 3.13 (2H, d,
J = 7.0 Hz, S-C
H2CH=CH
2), 3.79 (3H, s, OCH
3), 4.89-4.98 (1H, m, -C
H-N), 5.07-5.17 (2H, m, S-CH
2CH=C
H2), 5.66-5.82 (1H, m, S-CH
2C
H=CH
2), 6.40 (1H, d,
J = 15.6 Hz, –CO–C
H=), 6.47 (1H, d, J = 7.5 Hz, -CH-N
H-C=O), 7.20 (1H, d,
J = 8.3 Hz, Ar-H), 7.39 (1H, d,
J = 1.8 Hz, Ar-H), 7.35 (1H, dd,
J = 8.3, 1.8 Hz, Ar-H), 7.59 (1H, d,
J = 15.6 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 75 MHz): δ 20.76 ((
CH
3-C=O)-O), 20.79 ((
CH
3-C=O)-O), 32.76 (S-
CH
2CHN), 35.33 (S-
CH
2CH=CH
2), 52.05 (CH-N), 52.88 (OCH
3), 118.19 (C=
C-CO-), 121.08 (S-CH
2CH=
CH
2), 122.61 (Ar), 123.99 (Ar), 126.45 (Ar), 129.16 (Ar), 133.64 (Ar), 133.54 (S-CH
2CH=CH
2), 140.37 (Ar-
C=C), 142.50 (Ar-O), 143.29 (Ar-O), 165.09 (-NH-
C=O), 168.21 ((CH
3-
C=O)-O), 168.25 ((CH
3-
C=O)-O), 171.44 ((NCH-
C=O)-O); EIMS: m/z 444.1090 [M + Na]
+, Calcd for C
20H
24NO
7S: 444.1093
Ethyl N-{(2E)-3-[3,4-bis(acetyloxy)phenyl]prop-2-enoyl}-S-prop-2-en-1-ylcysteinate (6b): M.p. 96-99°C; [α]
25 + 13.60 (C = 0,835, CHCl
3); IR (KBr, cm
-1): ν
max 3317 (N-H), 1774, 1734 and 1655 (C=O), 1265 (C-O-C), 1209 ((C=O)-O);
1H NMR (CDCl
3, 600 MHz): δ 1.31 (3H, t,
J = 7.1 Hz), 2.30 (3H, s, ((
CH
3-C=O)-O), 2.31 (3H, s, (
CH
3-C=O)-O), 2.96 (1H, dd,
J = 14.0, 5.4 Hz, S-C
H2CHN), 3.05 (1H, dd,
J = 14.0, 5.4 Hz, S-C
H2CHN), 3.14 (2H, d,
J = 7.02 Hz, S-C
H2CH=CH
2), 4.26 (2H, q,
J = 7.0 Hz, OCH
2), 4.90-4.94 (1H, m, -C
H-N), 5.10-5.15 (2H, m, S-CH
2CH=C
H2), 5.71-5.80 (1H, m, S-CH
2C
H=CH
2), 6.41 (1H, d,
J = 15.7 Hz, –CO–C
H=), 6.51 (1H, d, J = 7.5 Hz, -CH-N
H-C=O), 7.21 (1H, d,
J = 8.4 Hz, Ar-H), 7.34 (1H, d,
J = 2.0 Hz, Ar-H), 7.37 (1H, dd,
J = 8.4, 2.0 Hz, Ar-H), 7.58 (1H, d,
J = 15.7 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ 14.28 (CH
3), 20.76 ((
CH
3-C=O)-O), 20.79 ((
CH
3-C=O)-O), 32.89 (S-
CH
2CHN), 35.39 (S-
CH
2CH=CH
2), 52.16 (CH-N), 62.11 (OCH
2), 118.03 (S-CH
2CH=
CH
2), 118.13 (C=
C-CO-), 121.16 (Ar), 122.61 (Ar), 123.99 (Ar), 126.44 (Ar), 133.73 (S-CH
2CH=CH
2), 140.30 (Ar-
C=C), 142.50 (Ar-O), 143.29 (Ar-O), 165.08 (-NH-
C=O), 168.20 ((CH
3-
C=O)-O), 168.26 ((CH
3-
C=O)-O), 170.94 ((NCH-
C=O)-O); EIMS: m/z 436.1430 [M + H]
+, Calcd for C
21H
26NO
7S: 436.1431.
Propyl N-{(2E)-3-[3,4-bis(acetyloxy)phenyl]prop-2-enoyl}-S-prop-2-en-1-ylcysteinate (6c): M.p. 80-82°C; [α]
25 + 1.442 (C = 0,011, CHCl
3); IR (KBr, cm
-1): ν
max 3315 (N-H), 1766, 1735 and 1658 (C=O), 1209 (C-O-C), 1184 ((C=O)-O);
1H NMR (CDCl
3, 300 MHz): δ 0.96 (3H, t,
J = 7.5 Hz), 1.62-1.77 (2H, m), 2.29 (3H, s, ((CH
3-C=O)-O), 2.30 (3H, s, (CH
3-C=O)-O), 2.94 (1H, dd,
J = 13.9, 5.3 Hz, S-C
H2CHN), 3.04 (1H, dd,
J = 13.9, 4.9 Hz, S-C
H2CHN), 3.13 (2H, d,
J = 7.20 Hz, S-C
H2CH=CH
2), 4.14 (2H, t,
J = 6.7 Hz, OCH
2), 4.87-4.97 (1H, m, -CH-N), 5.05-5.18 (2H, m, S-CH
2CH=C
H2), 5.64-5.82 (1H, m, S-CH
2C
H=CH
2), 6.41 (1H, d,
J = 15.6 Hz, –CO–C
H=), 6.52 (1H, d, J = 7.5 Hz, -CH-N
H-C=O), 7.20 (1H, d,
J = 8.3 Hz, Ar-H), 7.24 (1H, d,
J = 1.6 Hz, Ar-H), 7.34 (1H, dd,
J = 8.3, 1.6 Hz, Ar-H), 7.58 (1H, d,
J = 15.6 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 75 MHz): δ 10.46 (CH
3), 20.77 ((
CH
3-C=O)-O), 22.00 ((
CH
3-C=O)-O), 32.86 (S-
CH
2CHN), 35.37 (S-
CH
2CH=CH
2), 52.16 (CH-N), 67.61 (OCH
2), 118.12 (S-CH
2CH=
CH
2), 121.16 (=
C-CO-), 122.58 (Ar), 123.97 (Ar), 126.44 (Ar), 129.14 (Ar), 133.66 (S-CH
2CH=CH
2), 140.25 (Ar-C=), 142.48 (Ar-O), 143.25 (Ar-O), 165.09 (N-C=O), 168.19 ((CH
3-
C=O)-O), 168.24 ((CH
3-
C=O)-O), 171.62 ((NCH-
C=O)-O); EIMS: m/z 472.1401 [M + Na]
+, Calcd for C
22H
27NO
7S-Na: 472.1406.
Butyl N-{(2E)-3-[3,4-bis(acetyloxy)phenyl]prop-2-enoyl}-S-prop-2-en-1-ylcysteinate (6d): M.p. 94-97°C; [α]
25 + 8.30 (C = 0,65, CHCl
3); IR (KBr, cm
-1): ν
max 3309 (N-H), 1774, 1742 and 1662 (C=O), 1265 (C-O-C), 1209 ((C=O)-O);
1H NMR (CDCl
3, 600 MHz): δ 0.95 (3H, t,
J = 7.2 Hz), 1.36-1.44 (2H, m), 1.61-1.72 (2H, m), 2.30 (3H, s, ((CH
3-C=O)-O), 2.31 (3H, s, ((CH
3-C=O)-O), 2.95 (1H, dd,
J = 13.8, 5.4 Hz, S-C
H2CHN), 3.05 (1H, dd,
J = 13.9, 5.4 Hz, S-C
H2CHN), 3.10-3.16 (2H, m, S-C
H2CH=CH
2), 4.19 (2H, q,
J = 6.9 Hz, OCH
2), 4.90-4.96 (1H, m, -CH-N), 5.08-5.15 (2H, m, S-CH
2CH=C
H2), 5.70-5.79 (1H, m, S-CH
2C
H=CH
2), 6.41 (1H, d,
J = 15.6 Hz, –CO–C
H=), 6.50 (1H, d, J = 7.2 Hz, -CH-N
H-C=O), 7.21 (1H, d,
J = 8.3 Hz, Ar-H), 7.35 (1H, s, Ar-H), 7.38 (1H, d,
J = 8.3, Ar-H), 7.59 (1H, d,
J = 15.6 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ 13.77 (CH
3), 19.19 (CH
2), 20.70 ((
CH
3-C=O)-O), 20.78 ((
CH
3-C=O)-O), 23.18 (CH
2), 32.97 (S-
CH
2CHN), 35.41 (S-
CH
2CH=CH
2), 52.20 (CH-N), 65.94 (OCH
2), 118.01 (S-CH
2CH=
CH
2), 118.11 (=
C-CO-), 121.17 (Ar), 122.60 (Ar), 123.98 (Ar), 126.43 (Ar), 133.73 (S-CH
2CH=CH
2), 140.29 (Ar-C=), 142.51 (Ar-O), 143.29 (Ar-O), 165.09 (N-C=O), 168.18 ((CH
3-
C=O)-O), 168.23 ((CH
3-
C=O)-O), 171.02 ((NCH-
C=O)-O); EIMS: m/z 464.1743 [M + H]
+, Calcd for C
23H
29NO
7S: 464.1745.
Pentyl N-{(2E)-3-[3,4-bis(acetyloxy)phenyl]prop-2-enoyl}-S-prop-2-en-1-ylcysteinate (6e): M.p. 101-103°C; [α]
25 + 3.087 (C = 0,0119, CHCl
3); IR (KBr, cm
-1): ν
max 3317 (N-H), 1768, 1743 and 1656 (C=O), 1219 (C-O-C), 1184 ((C=O)-O);
1H NMR (CDCl
3, 300 MHz): δ 0.90 (3H, t,
J = 7.1 Hz), 1.28-1.39 (4H, m), 1.60-1.74 (2H, m), 2.29 (3H, s, ((CH
3-C=O)-O), 2.30 (3H, s, ((CH
3-C=O)-O), 2.94 (1H, dd,
J = 13.9, 5.3 Hz, S-C
H2CHN), 3.05 (1H, dd,
J = 13.9, 4.8 Hz, S-C
H2CHN), 3.13 (2H, d,
J = 7.3 Hz, S-C
H2CH=CH
2), 4.18 (2H, t,
J = 6.8 Hz, OCH
2), 4.87-4.96 (1H, m, -C
H-N), 5.06-5.10 (2H, m, S-CH
2CH=C
H2), 5.66-5.82 (1H, m, S-CH
2C
H=CH
2), 6.40 (1H, d,
J = 15.6 Hz, –CO–C
H=), 6.48 (1H, d, J = 7.4 Hz, -CH-N
H-C=O), 7.20 (1H, d,
J = 8.4 Hz, Ar-H), 7.34 (1H, d,
J = 1.8 Hz, Ar-H), 7.38 (1H, dd,
J = 8.4, 1.8 Hz, Ar-H), 7.58 (1H, d,
J = 15.6 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 75 MHz): δ 14.07 (CH
3), 20.77 ((
CH
3-C=O)-O), 20.80 ((
CH
3-C=O)-O), 22.37 (CH
2), 28.07 (CH
2), 28.29 (CH
2), 32.89 (S-
CH
2CHN), 35.41 (S-
CH
2CH=CH
2), 52.18 (CH-N), 66.23 (OCH
2), 118.13 (S-CH
2CH=
CH
2), 119.0 (=
C-CO-), 121.15 (Ar), 122.60 (Ar), 123.99 (Ar), 126.44 (Ar), 133.67 (S-CH
2CH=CH
2), 140.29 (Ar-
C=C), 142.50 (Ar-O), 143.28 (Ar-O), 165.07 (N-C=O), 168.20 ((CH
3-
C=O)-O), 168.25 ((CH
3-
C=O)-O), 171.02 ((NCH-
C=O)-O); EIMS: m/z 500.1719 [M + Na]
+, Calcd for C
24H
31NO
7S-Na: 500.1719.
Methyl N-[(2E)-3-(3,4-bis{[tert-butyl(dimethyl)silyl]oxy}phenyl)prop-2-enoyl]-S-prop-2-en-1-yl-L-cysteinate(8a): colorless oil; [α]
25 + 2.50 (C = 0,50, CHCl
3); IR (KBr, cm
-1): ν
max 3309 (N-H), 1742 and 1666 (C=O), 1424 (Si-C), 1249 (C-O-C), 1202 ((C=O)-O), 1106 (Si-O);
1H NMR (CDCl
3, 600 MHz): δ 0.21 (12H, s, -Si-C
H3), 0.98 (9H, s, -C-(C
H3)
3), 1.0 (9H, s, -C-(C
H3)
3), 2.96 (1H, dd,
J = 14.0, 5.0 Hz, S-C
H2CHN), 3.04 (1H, dd,
J = 14.0, 5.0 Hz, S-C
H2CHN), 3.14 (2H, t
app,
J = 7.5 Hz, S-C
H2CH=CH
2), 3.80 (3H, s, OCH
3), 4.93-4.98 (1H, m, -C
H-N), 5.08-5.16 (2H, m, S-CH
2CH=C
H2), 5.70-5.80 (1H, m, S-CH
2C
H=CH
2), 6.25 (1H, d,
J = 15.5 Hz, –CO–C
H=C), 6.35 (1H, d, J = 7.2 Hz, -CH-N
H-C=O), 6.81 (1H, d,
J = 8.0 Hz, Ar-H), 6.98-7.02 (2H, m, Ar-H), 7.52 (1H, d,
J = 15.5 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ -3.92 (-Si-
CH
3), -3.44 (-Si-
CH
3), 18.60 (-Si-
C-(CH
3)
3), 18.64 (-Si-
C-(CH
3)
3), 26.03 (-C-(
CH
3)
3), 26.07 (-C-(
CH
3)
3), 32.96 (S-
CH
2CHN), 35.40 (S-
CH
2CH=CH
2), 52.04 (CH-N), 52.85 (OCH
2), 117.58 (Ar), 118.07 (S-CH
2CH=
CH
2), 118.16 (Ar), 120.88 (C=
C-CO-), 121.29 (Ar), 122.01 (Ar), 133.73 (S-CH
2CH=CH
2), 142.07 (Ar-
C=C), 147.27 (Ar-O), 149.23 (Ar-O), 165.90 (-NH-
C=O), 171.67 (CH-
C=O)-O).
EIMS: m/z 566, 2751 [M + H]
+, Calcd for C
28H
48NO
5SSi
2: 566.1994.
Ethyl N-[(2E)-3-(3,4-bis{[tert-butyl(dimethyl)silyl]oxy}phenyl)prop-2-enoyl]-S-prop-2-en-1-yl-L-cysteinate(8b): colorless oil; [α]
25 + 2.30 (C = 0,585, CHCl
3); IR (KBr, cm
-1): ν
max 3293 (N-H), 1750 and 1662 (C=O), Si-C (1416), 1257 (C-O-C), 1209 ((C=O)-O), 1209 (Si-O);
1H NMR (CDCl
3, 600 MHz): δ 0.21 (12H, s, -Si-C
H3), 0.98 (9H, s, -C-(C
H3)
3), 1.0 (9H, s, -C-(C
H3)
3), 1.31 (3H, t,
J = 7.2 Hz), 2.96 (1H, dd,
J = 13.94, 5.2 Hz, S-C
H2CHN), 3.05 (1H, dd,
J = 13.94, 5.2 Hz, S-C
H2CHN), 3.14 (2H, t
app,
J = 6.8 Hz, S-C
H2CH=CH
2), 4.26 (2H, q, J = 7.1 Hz, OCH
2), 4.91-4.96 (1H, m, -C
H-N), 5.09-5.16 (2H, m, S-CH
2CH=C
H2), 5.70-5.79 (1H, m, S-CH
2C
H=CH
2), 6.26 (1H, d,
J = 15.6 Hz, –CO–C
H=C), 6.36 (1H, d, J = 7.5 Hz, -CH-N
H-C=O), 6.81 (1H, d,
J = 8.0 Hz, Ar-H), 6.98-7.02 (2H, m, Ar-H), 7.52 (1H, d,
J = 15.6 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ -3.92 (-Si-
CH
3), -3.43 (-Si-
CH
3), 14.31 (-Si-
C-(CH
3)
3), 18.60 (-Si-
C-(CH
3)
3), 18.64 (-Si-
C-(CH
3)
3), 26.03 (-C-(
CH
3)
3), 26.07 (-C-(
CH
3)
3), 33.03 (S-
CH
2CHN), 35.45 (S-
CH
2CH=CH
2), 52.15 (CH-N), 62.06 (OCH
2), 117.54 (Ar), 118.09 (S-CH
2CH=
CH
2), 120.62 (Ar), 121.29 ((C=
C-CO-), 121.99 (Ar), 128.32 (Ar), 133.77 (S-CH
2CH=CH
2), 138.59 (Ar-
C=C), 147.27 (Ar-O), 149.60 (Ar-O), 165.88 (-NH-
C=O), 171.17 (CH-
C=O)-O).
EIMS: m/z 580,2944 [M + H]
+, Calcd for C
29H
50NO
5SSi
2: 580.2170.
Propyl N-[(2E)-3-(3,4-bis{[tert-butyl(dimethyl)silyl]oxy}phenyl)prop-2-enoyl]-S-prop-2-en-1-yl-L-cysteinate(8c): colorless oil; [α]
25 + 1.70 (C = 0,665, CHCl
3); IR (KBr, cm
-1): ν
max 3277 (N-H), 1742 and 1662 (C=O), 1416 (Si-C), 1257 (C-O-C), 1209 ((C=O)-O), 1122 (Si-O);
1H NMR (CDCl
3, 600 MHz): δ 0.21 (12H, s, -Si-C
H3), 0.98 (3H, t,
J = 7.0 Hz), 0.99 (9H, s, -C-(C
H3)
3), 1.0 (9H, s, -C-(C
H3)
3), 1.67-1.74 (2H, m), 2.95 (1H, dd,
J = 14.0, 5.3 Hz, S-C
H2CHN), 3.05 (1H, dd,
J = 14.0, 5.3 Hz, S-C
H2CHN), 3.15 (2H, t
app,
J = 6.8 Hz, S-C
H2CH=CH
2), 4.15 (2H, t,
J = 6.6 Hz, OCH
2), 4.92-4.97 (1H, m, -C
H-N), 5.10-5.15 (2H, m, S-CH
2CH=C
H2), 5.71-5.79 (1H, m, S-CH
2C
H=CH
2), 6.25 (1H, d,
J = 15.5 Hz, –CO–C
H=C), 6.37 (1H, d, J = 7.6 Hz, -CH-N
H-C=O), 6.81 (1H, d,
J = 8.0 Hz, Ar-H), 6.98-7.02 (2H, m, Ar-H), 7.52 (1H, d,
J = 15.5 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ -4.06 (-Si-
CH
3), -3.92 (-Si-
CH
3), 10.50 (-Si-
C-(CH
3)
3), 18.60 (-Si-
C-(CH
3)
3), 18.64 (-Si-
C-(CH
3)
3), 22.05 (CH
2), 26.03 (-C-(
CH
3)
3), 26.06 (-C-(
CH
3)
3), 33.09 (S-
CH
2CHN), 35.46 (S-
CH
2CH=CH
2), 52.16 (CH-N), 67.60 (OCH
2), 117.17 (Ar), 118.10 (S-CH
2CH=
CH
2), 120.62 (Ar), 121.29 ((C=
C-CO-), 121.98 (Ar), 128.32 (Ar), 133.76 (S-CH
2CH=CH
2), 142.05 (Ar-
C=C), 147.26 (Ar-O), 149.19 (Ar-O), 165.90 (-NH-
C=O), 171.27 (CH-
C=O)-O).
EIMS: m/z 594, 3136 [M + H]
+, Calcd for C
30H
52NO
5SSi
2: 594.2331.
Butyl N-[(2E)-3-(3,4-bis{[tert-butyl(dimethyl)silyl]oxy}phenyl)prop-2-enoyl]-S-prop-2-en-1-yl-L-cysteinate(8d): colorless oil; [α]
25 + 2.50 (C = 0,64, CHCl
3); IR (KBr, cm
-1): ν
max 3285 (N-H), 1742 and 1655 (C=O), 1416 (Si-C), 1265 (C-O-C), 1209 ((C=O)-O), 1122 (Si-O);
1H NMR (CDCl
3, 600 MHz): δ 0.21 (12H, s, -Si-C
H3), 0.95 (3H, t,
J = 7.1 Hz), 0.98 (9H, s, -C-(C
H3)
3), 1.0 (9H, s, -C-(C
H3)
3), 1.34-1.45 (2H, m), 1.61-1.71 (2H, m), 2.95 (1H, dd,
J = 13.90, 5.2 Hz, S-C
H2CHN), 3.05 (1H, dd,
J = 13.90, 5.4 Hz, S-C
H2CHN), 3.05 (2H, t
app,
J = 6.7 Hz, S-C
H2CH=CH
2), 4.20 (2H, t,
J = 6.7 Hz, OCH
2), 4.91-4.96 (1H, m, -C
H-N), 5.08-5.016 (2H, m, S-CH
2CH=C
H2), 5.70-5.79 (1H, m, S-CH
2C
H=CH
2), 6.25 (1H, d,
J = 15.5 Hz, –CO–C
H=C), 6.36 (1H, d, J = 7.6 Hz, -CH-N
H-C=O), 6.81 (1H, d,
J = 8.0 Hz, Ar-H), 6.97-7.02 (2H, m, Ar-H), 7.52 (1H, d,
J = 15.5 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ -4.02 (-Si-
CH
3), -3.92 (-Si-
CH
3), 13.80 (-Si-
C-(CH
3)
3), 18.60 (-Si-
C-(CH
3)
3), 18.64 (-Si-
C-(CH
3)
3), 19.22 (CH
2), 26.03 (-C-(
CH
3)
3), 26.07 (-C-(
CH
3)
3), 30.65 (CH
2), 33.10 (S-
CH
2CHN), 35.47 (S-
CH
2CH=CH
2), 52.17 (CH-N), 65.90 (OCH
2), 117.68 (Ar), 118.09 (S-CH
2CH=
CH
2), 120.62 (Ar), 121.99 ((C=
C-CO-), 123.62 (Ar), 128.32 (Ar), 133.77 (S-CH
2CH=CH
2), 142.05 (Ar-
C=C), 147.27 (Ar-O), 149.20 (Ar-O), 165.90 (-NH-
C=O), 171.26 (CH-
C=O)-O).
EIMS: m/z 609.3315 [M + H]
+, Calcd for C
31H
54NO
5SSi
2: 609.3293.
Pentyl N-[(2E)-3-(3,4-bis{[tert-butyl(dimethyl)silyl]oxy}phenyl)prop-2-enoyl]-S-prop-2-en-1-yl-L-cysteinate(8f): colorless oil; [α]
25 + 2.80 (C = 0,925, CHCl
3); IR (KBr, cm
-1): ν
max 3277 (N-H), 1750 and 1662 (C=O), 1416 (Si-C), 1249 (C-O-C), 1209 ((C=O)-O), 1122 (Si-O);
1H NMR (CDCl
3, 600 MHz): δ 0.21 (12H, s, -Si-C
H3), 0.91 (3H, t,
J = 7.0 Hz), 0.98 (9H, s, -C-(C
H3)
3), 1.0 (9H, s, -C-(C
H3)
3), 1.29-1.39 (4H, m), 1.60-1.73 (2H, m), 2.95 (1H, dd,
J = 13.90, 5.2 Hz, S-C
H2CHN), 3.05 (1H, dd,
J = 13.90, 5.4 Hz, S-C
H2CHN), 3.15 (2H, t
app,
J = 6.9 Hz, S-C
H2CH=CH
2), 4.18 (2H, t,
J = 6.6 Hz, OCH
2), 4.91-4.97 (1H, m, -C
H-N), 5.10-5.16 (2H, m, S-CH
2CH=C
H2), 5.70-5.80 (1H, m, S-CH
2C
H=CH
2), 6.24 (1H, d,
J = 15.7 Hz, –CO–C
H=C), 6.37 (1H, d, J = 7.5 Hz, -CH-N
H-C=O), 6.81 (1H, d,
J = 8.0 Hz, Ar-H), 6.98-7.02 (2H, m, Ar-H), 7.52 (1H, d,
J = 15.7 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ -4.02 (-Si-
CH
3), -3.92 (-Si-
CH
3), 14.09 (-Si-
C-(CH
3)
3), 18.60 (-Si-
C-(CH
3)
3), 18.64 (-Si-
C-(CH
3)
3), 22.40 (CH
2), 26.03 (-C-(
CH
3)
3), 26.06 (-C-(
CH
3)
3), 28.12 (CH
2), 28.30 (CH
2), 33.09 (S-
CH
2CHN), 35.46 (S-
CH
2CH=CH
2), 52.17 (CH-N), 66.18 (OCH
2), 117.68 (Ar), 118.08 (S-CH
2CH=
CH
2), 120.61 (Ar), 121.29 ((C=
C-CO-), 121.98 (Ar), 128.32 (Ar), 133.77 (S-CH
2CH=CH
2), 142.04 (Ar-
C=C), 147.26 (Ar-O), 149.19 (Ar-O), 165.88 (-NH-
C=O), 171.25 (CH-
C=O)-O).
EIMS: m/z 623,3478 [M + H]
+, Calcd for C
32H
56NO
5SSi
2: 623.3431.
Procedure for desprotection of compounds 8a-8eTo a solution of compound 8 (1 mmol) in THF-H
2O (1:1) (10 mL) was added KF (4 mmol) and the mixture was stirred for 12 h. Then an aqueous saturated solution of NH
4Cl was added and the mixture was extracted with dichloromethane (3 × 10 mL). The combined organic phases were dried over anhydrous MgSO
4 and the solvent was evaporated under reduced pressure to afford hybrids
9a-9e in yields ranging 50%-96% [
9a, 69% (233 mg);
9b, 50% (176 mg);
9c, 67% (246 mg);
9d, 86% (326 mg) and
9e, 96% (378
mg)].
Methyl N-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoyl]-S-2-propen-1-yl-L-cysteinate (9a): M.p. 101-103°C; [α]
25 + 10.10 (C = 0,60, CHCl
3); IR (KBr, cm
-1): ν
max 3460 (OH), 3222 (N-H), 1750 and 1665 (C=O), 1265 (C-O-C), 1209 ((C=O)-O);
1H NMR (CDCl
3, 600 MHz): δ 2.93 (1H, dd,
J = 14.0, 5.0 Hz, S-C
H2CHN), 3.02 (1H, dd,
J = 14.10, 5.0 Hz, S-C
H2CHN), 3.12 (2H, t
app,
J = 7.0 Hz, S-C
H2CH=CH
2), 3.78 (s, OCH
3), 4.86-4.96 (1H, m, -C
H-N), 5.04-5.16 (2H, m, S-CH
2CH=C
H2), 5.67-5.78 (1H, m, S-CH
2C
H=CH
2), 6.26 (1H, d,
J = 15.7 Hz, –CO–C
H=C), 6.78 (d,
J = 7.2 Hz, -CH-N
H-C=O), 6.81 (1H, d, J = 8.0 Hz, Ar), 6.86 (1H, dd, J = 8.0, 1.5 Hz, Ar), 7.02 (1H, d, J = 1.5 Hz, Ar), 7.47 (1H, d,
J = 15.6 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ 32.65 (S-
CH
2CHN), 35.26 (S-
CH
2CH=CH
2), 52.22 (CH-N), 68.13 (OCH
3), 114.55 (Ar), 115.54 (Ar), 116.62 ((C=
C-CO-), 118.27 (S-CH
2CH=
CH
2), 121.98 (Ar), 127.16 (Ar), 133.59 (S-CH
2CH=CH
2), 143.13 (Ar-
C=C), 144.39 (Ar-O), 146.96 (Ar-O), 167.18 (-NH-
C=O), 171.83 (CH-
C=O)-O); EIMS: m/z 338.1062 [M + H]
+, Calcd for C
16H
20NO
5S: 338.1061.
Ethyl N-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoyl]-S-2-propen-1-yl-L-cysteinate (9b): M.p. 110-112°C; [α]
25 + 12.70 (C = 0,54, CHCl
3); IR (KBr, cm
-1): ν
max 3467 (OH), 3213 (N-H), 1742 and 1662 (C=O), 1265 (C-O-C), 1202 ((C=O)-O);
1H NMR (CDCl
3, 600 MHz): δ 1.29 (3H, t,
J = 7.0 Hz), 2.93 (1H, dd,
J = 14.10, 5.2 Hz, S-C
H2CHN), 3.03 (1H, dd,
J = 14.10, 5.2 Hz, S-C
H2CHN), 3.13 (2H, t
app,
J = 6.2 Hz, S-C
H2CH=CH
2), 4.24 (2H, t,
J = 7.0 Hz, OCH
2), 4.86-4.93 (1H, m, -C
H-N), 5.07-5.13 (2H, m, S-CH
2CH=C
H2), 5.67-5.77 (1H, m, S-CH
2C
H=CH
2), 6.26 (1H, d,
J = 15.6 Hz, –CO–C
H=C), 6.77-6.87 (3H, m, Ar-H, -CH-N
H-C=O), 7.01 (1H, s, Ar-H), 7.46 (1H, d,
J = 15.6 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ 14.24 (CH
3), 32.66 (S-
CH
2CHN), 35.28 (S-
CH
2CH=CH
2), 52.34 (CH-N), 62.41 (OCH
2), 114.76 (Ar), 115.57 (Ar), 116.57 ((C=
C-CO-), 118.25 (S-CH
2CH=
CH
2), 121.95 (Ar), 127.12 (Ar), 133.59 (S-CH
2CH=CH
2), 143.18 (Ar-
C=C), 144.36 (Ar-O), 147.0 (Ar-O), 167.31 (-NH-
C=O), 171.40 (CH-
C=O)-O); EIMS: m/z 352.1219 [M + H]
+, Calcd for C
17H
22NO
5S: 352.1215.
Propyl N-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoyl]-S-2-propen-1-yl-L-cysteinate (9c): M.p. 129-131°C; [α]
25 + 12.70 (C = 0,61, CHCl
3); IR (KBr, cm
-1): ν
max 3467 (OH), 3206 (N-H), 1750 and 1662 (C=O), 1257 (C-O-C), 1209 ((C=O)-O);
1H NMR (CDCl
3, 600 MHz): δ 0.95 (3H, t,
J = 7.0 Hz), 1.63-1.73 (CH
2, m), 2.94 (1H, dd,
J = 14.10, 5.2 Hz, S-C
H2CHN), 3.03 (1H, dd,
J = 14.10, 5.2 Hz, S-C
H2CHN), 3.13 (2H, t
app,
J = 6.2 Hz, S-C
H2CH=CH
2), 4.15 (2H, q,
J = 7.0 Hz, OCH
2), 4.89-4.94 (1H, m, -C
H-N), 5.08-5.14 (2H, m, S-CH
2CH=C
H2), 5.69-5.77 (1H, m, S-CH
2C
H=CH
2), 6.27 (1H, d,
J = 15.6 Hz, –CO–C
H=C), 6.76 (d,
J = 7.2 Hz, -CH-N
H-C=O), 6.82 (1H, d, J = 8.0 Hz, Ar), 6.86 (1H, d,
J = 8.0 Hz, Ar), 7.02 (1H, s, Ar), 7.48 (1H, d,
J = 15.5 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ 10.48 (CH
3), 22.0 (CH
2), 32.77 (S-
CH
2CHN), 35.32 (S-
CH
2CH=CH
2), 52.31 (CH-N), 67.90 (OCH
2), 114.74 (Ar), 115.50 (Ar), 116.63 ((C=
C-CO-), 118.24 (S-CH
2CH=
CH
2), 121.86 (Ar), 127.15 (Ar), 133.60 (S-CH
2CH=CH
2), 143.13 (Ar-
C=C), 144.33 (Ar-O), 146.97 (Ar-O), 167.15 (-NH-
C=O), 171.45 (CH-
C=O)-O); EIMS: m/z 366.1375 [M + H]
+, Calcd for C
18H
24NO
5S: 366.1377.
Butyl N-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoyl]-S-2-propen-1-yl-L-cysteinate (9d): M.p. 119-121°C; [α]
25 + 11.0 (C = 0,65, CHCl
3); IR (KBr, cm
-1): ν
max 3467 (OH), 3206 (N-H), 1734 and 1662 (C=O), 1265 (C-O-C), 1209 ((C=O)-O);
1H NMR (CDCl
3, 600 MHz): δ 0.93 (3H, t,
J = 7.0 Hz), 1.32-1.46 (CH
2, m), 1.57-1.71 (CH
2, m), 2.94 (1H, dd,
J = 14.10, 5.2 Hz, S-C
H2CHN), 3.03 (1H, dd,
J = 14.10, 5.2 Hz, S-C
H2CHN), 3.13 (2H, t
app,
J = 6.2 Hz, S-C
H2CH=CH
2), 4.19 (2H, q,
J = 6.2 Hz, OCH
2), 4.88-4.94 (1H, m, -C
H-N), 5.07-5.15 (2H, m, S-CH
2CH=C
H2), 5.66-5.80 (1H, m, S-CH
2C
H=CH
2), 6.27 (1H, d,
J = 15.6 Hz, –CO–C
H=C), 6.73 (d,
J = 7.2 Hz, -CH-N
H-C=O), 6.83 (1H, d, J = 8.2 Hz, Ar), 6.88 (1H, d,
J = 8.2 Hz, Ar), 7.04 (1H, s, Ar), 7.49 (1H, d,
J = 15.5 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ 13.77 (CH
3), 19.19 (CH
2), 30.60 (CH
2), 32.80 (S-
CH
2CHN), 35.34 (S-
CH
2CH=CH
2), 52.33 (CH-N), 66.19 (OCH
2), 114.77 (Ar), 115.52 (Ar), 116.70 ((C=
C-CO-), 118.22 (S-CH
2CH=
CH
2), 121.84 (Ar), 127.19 (Ar), 133.63 (S-CH
2CH=CH
2), 143.11 (Ar-
C=C), 144.38 (Ar-O), 146.96 (Ar-O), 167.10 (-NH-
C=O), 171.41 (CH-
C=O)-O); EIMS: m/z 380.1532 [M + H]
+, Calcd for C
19H
26NO
5S: 380.1536.
Pentyl N-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoyl]-S-2-propen-1-yl-L-cysteinate (9e): M.p. 111-113°C; [α]
25 + 14.4 (C = 0,80, CHCl
3); IR (KBr, cm
-1): ν
max 3460 (OH), 3206 (N-H), 1734 and 1655 (C=O), 1265 (C-O-C), 1209 ((C=O)-O);
1H NMR (CDCl
3, 600 MHz): δ 0.89 (3H, t,
J = 6.5 Hz), 1.28-1.37 (CH
2, m), 1.61-1.69 (CH
2, m), 2.92 (1H, dd,
J = 14.10, 5.2 Hz, S-C
H2CHN), 3.03 (1H, dd,
J = 14.10, 5.2 Hz, S-C
H2CHN), 3.13 (2H, t
app,
J = 6.2 Hz, S-C
H2CH=CH
2), 4.17 (2H, q,
J = 6.2 Hz, OCH
2), 4.87-4.94 (1H, m, -C
H-N), 5.07-5.14 (2H, m, S-CH
2CH=C
H2), 5.68-5.77 (1H, m, S-CH
2C
H=CH
2), 6.25 (1H, d,
J = 15.6 Hz, –CO–C
H=C), 6.78-6.87 (3H, m), 7.01 (1H, s, Ar), 7.46 (1H, d,
J = 15.5 Hz, Ar-C
H=C);
13C NMR (CDCl
3, 125 MHz): δ 14.06 (CH
3), 18.12 (CH
2), 21.20 (CH
2), 28.06 (CH
2), 32.74 (S-
CH
2CHN), 35.29 (S-
CH
2CH=CH
2), 52.31 (CH-N), 66.47 (OCH
2), 114.54 (Ar), 115.47 (Ar), 116.59 ((C=
C-CO-), 118.21 (S-CH
2CH=
CH
2), 121.98 (Ar), 127.13 (Ar), 133.60 (S-CH
2CH=CH
2), 143.11 (Ar-
C=C), 144.40 (Ar-O), 146.99 (Ar-O), 167.18 (-NH-
C=O), 171.55 (CH-
C=O)-O); EIMS: m/z 394.1688 [M + H]
+, Calcd for C
20H
28NO
5S: 394.1691.
4.2. Biological activity assaysCell lines and culture mediumBiological assays were performed using an adenocarcinoma colon cancer cell line (SW480) and non-malignant cells (CHO-K1). These were obtained from the European Collection of Authenticated Cell Cultures (ECACC, England) and maintained in Dulbecco’s Modified Eagle Medium, supplemented with 10% heat-inactivated (56 °C) horse serum, 1% penicillin/streptomycin and 1% non-essential amino acids (Gibco Invitrogen, Carlsbad, USA). For all experiments, horse serum was reduced to 3%, and the medium was supplemented with 5 mg/ml transferrin, 5 ng/mL selenium and 10 mg/ml insulin (ITS-defined medium; Gibco, Invitrogen, Carlsbad, USA) (32 ).
Cell Viability The cell viability of the synthesized hybrids, lead, and reference compounds was evaluated through Sulforhodamine B (SRB) assay, a colorimetric test that is based on staining of total cellular protein of adherent cells. The cells were seeded to a final density of 20.000 cells/well in 96-well tissue culture plates and incubated at 37 °C in a humidified atmosphere at 5% CO
2. All cultures were allowed to grow for 24 h and afterward they were treated with DMSO (dimethylsulfoxide; vehicle control 1%) or increasing concentrations (0.01–0.1 mM) of the synthesized hybrids, as well as SAC and caffeic acid (Lead compounds) and 5-fluorouracil (5-FU; the standard drug). After treatment, the cells were fixed with trichloroacetic acid (50% v/v) (MERCK) for a period of one h at 4 °C. The cell proteins were determined by staining with 0.4% (w/v) SRB (Sigma-Aldrich, United States), then they were washed with 1% acetic acid for the removal of unbound SRB and left for air-drying. Protein bound SRB was solubilized in 10 mM Tris-base and the absorbance was measured at 492 nm in a microplate reader (Mindray MR-96A) (33 ). All of the experiments were performed at least in quintuplicate.
Antiproliferative activityAntiproliferative effect of the most active compounds was also tested through Sulforhodamine B (SRB) assay. Briefly, the cells were seeded to a final density of 2500 cells/well in 96-well tissue culture plates and incubated in the same conditions described for viability. The cultures were allowed to grow for 24 h and then were treated with increasing concentrations of the selected hybrids (0.1 – 0.55 mM, ranges depended on the IC
50 -50% inhibitory concentration- values) or DMSO (vehicle control, 1%), for 0, 2, 4, 6, and 8 days. Culture media was replaced every 48 h. After each incubation time, the cells were fixed, stained, and read as previously described for this technique (32 ).
Measurement of Mitochondrial Membrane Potential (ΔΨm)Mitochondrial membrane permeability changes were assessed through the fluorescent dye DiOC
6 (3,3’-dihexyloxacarbocyanine iodide, Thermo Fisher Scientific, Waltham, MA, USA), and propidium iodide (PI). The cells were seeded to a final density of 2.5 x 10
5 cells/well in 6-well tissue culture plates and were allowed to grow for 24 h. Then, they were treated with hybrids
6e,
9a,
9b,
9c, and
9e with its respective IC
50 (0.18, 0.12, 0.12, 0.11, and 0.12 mM, respectively), being harvested by scrapping at 48 h in the same culture mean, and stained with DiOC
6 and PI at room temperature for 30 min in darkness. The cells were collected to analyze 10,000 events by flow cytometry with excitation at 488 nm and detection of the emission with the green (530/15 nm) and the red (610/20 nm) filters. This method allowed us quantifying cells with depolarized mitochondrial membrane (34 ).
Cell cycle analysisCell cycle distribution was analyzed by labelling cells with propidium iodide (PI). Assays were carried out as described by Nicoletti
et al. (1991). In brief, cells were seeded in 6-well tissue culture plates at a density of 2.5 x 10
5 cells/well, incubated at 37 °C in a 5% CO
2 atmosphere. The cultures were allowed to grow for 24 h and then were treated for 48 h with 1% DMSO (vehicle control) or hybrids
6e,
9a,
9b,
9c, and
9e with the IC
50 for each compound (0.18, 0.12, 0.12, 0.11, and 0.12mM, respectively). After the treatment, the cells were collected by scraping and the centrifuged cell pellet was resuspended with phosphate buffered saline (PBS). The cell suspension was fixed in 1.8 mL 70% ethanol at 4°C overnight, afterward, these were centrifuged, washed twice in PBS and resuspended in 300 µL of PBS containing 0.25 mg/mL RNAse (Type I-A, Sigma-Aldrich, Germany) and 0.1 mg/mL PI. Following the incubation in the dark at room temperature for 30 min, the PI fluorescence of 10,000 cells was analyzed using a FACS Canto II flow cytometer and the software BD FACS Diva 6.1.3. (BD Biosciences, San Jose). PI signal was analyzed with excitation at 488 nm, using a Sapphire laser, and fluorescence was detected at 610nm. The cell clumps were excluded with the PI-Area vs PI-Width signals. The cell cycle model was fixed using the software FlowJo 7.6.2 (Ashland, OR, USA), applying the Dean-Jett-Fox model (34 , 35 (
link)).
Statistical analysisAll experiments were performed at least three times. The data are reported as mean ± SE (standard error). Statistical differences between the control group (non-treated) and treated cells were evaluated by one-way ANOVA followed by the Dunnett′s test. Values with
p ≤ 0.05 were considered significant. The data were analyzed with GraphPad Prism version 7.04 for Windows (Graph Pad Software, San Diego, California, USA).
Castrillón W., Herrera-R A., Prieto L.J., Conesa-Milián L., Carda M., Naranjo T., Maldonado M.E, & Cardona-G W. (2019). Synthesis and in-vitro Evaluation of S-allyl Cysteine Ester - Caffeic Acid Amide Hybrids as Potential Anticancer Agents. Iranian Journal of Pharmaceutical Research : IJPR, 18(4), 1770-1789.