All experiments were conducted double-blinded with animals randomly assigned into groups. Cisplatin and paclitaxel were used to produce chemotherapy-induced neuropathy. Cisplatin (3 mg/kg i.p.) or saline vehicle was injected four times once weekly
[69 (
link)] in a volume of 10 ml/kg. Cisplatin/saline-treated animals were assessed for mechanical paw withdrawal thresholds and cold withdrawal frequencies every four days. Paclitaxel (2 mg/kg i.p.) or cremophor EL: ethanol: saline (1: 1: 4) vehicle was administered to rats four times every two days
[70 (
link)] in a volume of 1 ml/kg. Animals with paclitaxel/cremophor treatment were assessed for paw withdrawal thresholds to mechanical stimulation every two days and paw withdrawal frequencies to cold stimulation every four days. On the days animals received cisplatin/saline or paclitaxel/cremophor treatments, behavioral testing was performed prior to pharmacological manipulations.
Effects of pharmacological manipulations on mechanical and cold allodynia were assessed on day 28 in animals receiving cisplatin/saline treatments or day 20 in paclitaxel/cremophor-treated animals. On the test days, animals received either vehicle (DMSO), AM1710 either alone or in combination with the CB
2 antagonist AM630 or the CB
1 antagonist AM251, or the CXCR4 antagonist AMD3100. Withdrawal thresholds to mechanical stimulation and withdrawal frequencies to cold stimulation were measured before drug administration (−60 min) and at 30, 90, 150 min post drug administration in cisplatin/saline-treated animals, or at 30 min and 3 h post drug in paclitaxel/cremophor-treated animals. A subset of cisplatin- and paclitaxel-treated animals was additionally tested at 6 h and 24 h post drug administration.
In Experiments 1 and 2, antinociceptive effects of AM1710 in chemotherapy-induced neuropathy evoked by cisplatin or paclitaxel treatments were studied. Effects of AM1710 (0.1, 1 or 5 mg/kg i.p.)
[19 (
link)] or vehicle were assessed in animals receiving cisplatin or paclitaxel treatment. The high dose of AM1710 was also administered to animals that received saline or cremophor-vehicle in lieu of cisplatin or paclitaxel, respectively. To further evaluate the duration of action of the compound, a subset of paclitaxel-treated animals receiving AM1710 (5 mg/kg i.p.) or DMSO vehicle were tested from 30 min to 24 h post injection. Pharmacological specificity of anti-allodynic effects of AM1710 was assessed in both models by co-administering AM1710 (5 mg/kg i.p.) with the CB
2 antagonist AM630 (3 mg/kg i.p.)
[71 (
link)] or CB
1 antagonist AM251 (3 mg/kg i.p.)
[72 (
link)]. Separate groups received AM630 (3 mg/kg i.p.) or AM251 (3 mg/kg i.p.) alone. In Experiments 3 and 4, the CXCR4 antagonist AMD3100 (10 mg/kg i.p.)
[73 (
link)] was administered to animals to examine the impact of blockade of CXCR4 signaling on established neuropathy produced by cisplatin or paclitaxel treatment. AMD3100 (10 mg/kg i.p.) was administered to paclitaxel-treated animals either in absence or presence of AM1710 (5 mg/kg i.p.) to evaluate whether blockade of CXCR4 signaling would enhance CB
2 agonist efficacy.
Deng L., Guindon J., Vemuri V.K., Thakur G.A., White F.A., Makriyannis A, & Hohmann A.G. (2012). The maintenance of cisplatin- and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB2 receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy. Molecular Pain, 8, 71.