We first conducted meta-analyses of the BPRS or PANSS total score at 4 weeks for the three comparisons of olanzapine vs haloperidol, amisulpride vs haloperidol and olanzapine vs placebo, using Review Manager software by the Cochrane Collaboration [21] . 4-week was chosen because all the studies reported BPRS at this point in time. Following the strict intention-to-treat principle, missing data were supplemented by the last-observation-carried-forward (LOCF) method even when a participant dropped out before the first post-baseline rating. Unless statistically significant heterogeneity was noted, we obtained the standardized mean difference (Cohen's d) based on the Mantel-Haenszel fixed effect model.
We next calculated the numbers of responders defined as 10% through 90% reduction on the BPRS or PANSS total score at 4 weeks. The percentage reduction was calculated according to the formulae: B% = (B0−B4LOCF) * 100/(B0−18) for BPRS and P% = (P0−P4LOCF) * 100/(P0−30) for PANSS, where B0 and P0 are BPRS and PANSS scores at baseline and B4 and P4 are respective scores at 4 weeks, because 18 and 30 are the minimum scores for BPRS and PANSS, respectively, according to the original rating system. We then ran meta-analyses of response rates defined as 10% through 90% reduction for each comparison in terms of risk difference. The pooled NNT was obtained by taking the inverse of this pooled risk difference, because the response rates for a certain cutoff did not differ substantively among the trials included in the meta-analysis, [22] .
These actual NNTs were then compared with NNTs converted from Cohen's d according to Kraemer's method and to Furukawa's method using the formulae discussed in theIntroduction . The agreement between the actual and the converted was quantified by ANOVA intraclass correlation coefficient (two-way mixed effects, absolute agreement, single measure) by using SPSS Version 17.
We next calculated the numbers of responders defined as 10% through 90% reduction on the BPRS or PANSS total score at 4 weeks. The percentage reduction was calculated according to the formulae: B% = (B0−B4LOCF) * 100/(B0−18) for BPRS and P% = (P0−P4LOCF) * 100/(P0−30) for PANSS, where B0 and P0 are BPRS and PANSS scores at baseline and B4 and P4 are respective scores at 4 weeks, because 18 and 30 are the minimum scores for BPRS and PANSS, respectively, according to the original rating system. We then ran meta-analyses of response rates defined as 10% through 90% reduction for each comparison in terms of risk difference. The pooled NNT was obtained by taking the inverse of this pooled risk difference, because the response rates for a certain cutoff did not differ substantively among the trials included in the meta-analysis, [22] .
These actual NNTs were then compared with NNTs converted from Cohen's d according to Kraemer's method and to Furukawa's method using the formulae discussed in the