The largest database of trusted experimental protocols
> Chemicals & Drugs > Organic Chemical > Ammonium carbonate

Ammonium carbonate

Ammonium carbonate is a chemical compound with the formula (NH4)2CO3.
It is a white, crystalline solid that is soluble in water and has a pungent odor.
Ammonium carbonate is commonly used as a leavening agent in baking, as a fire retardant, and in some medicinal applications.
It is also utilized in the production of certain fertilizers and as a source of carbon dioxide.
Ammonium carbonate can be formed through the reaction of ammonia and carbon dioxide, and its properties make it a versatile and widely-used chemical.
Reserch protocols involving ammonium carbonate can be optimized for reproducibility and accuracy using PubCompare.ai's AI-driven tools to locate the best protocols and products from literature, preprints, and patents.

Most cited protocols related to «Ammonium carbonate»

Antioxidant (DPPH and ABTS radical scavenging, reducing power (CUPRAC and FRAP), phosphomolybdenum, and metal chelating (ferrozine method)) and enzyme inhibitory activities [cholinesterase (ChE) Elmann’s method], tyrosinase (dopachrome method), α-amylase (iodine/potassium iodide method), and α -glucosidase (chromogenic PNPG method)) were determined using the methods previously described by Zengin et al. (2014) (link) and Dezsi et al. (2015) (link).
For the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assay: Sample solution (1 mg/mL; 1 mL) was added to 4 mL of a 0.004% methanol solution of DPPH. The sample absorbance was read at 517 nm after a 30 min incubation at room temperature in the dark. DPPH radical scavenging activity was expressed as millimoles of trolox equivalents (mg TE/g extract).
For ABTS (2,2′-azino-bis(3-ethylbenzothiazoline) 6-sulfonic acid) radical scavenging assay: Briefly, ABTS+ was produced directly by reacting 7 mM ABTS solution with 2.45 mM potassium persulfate and allowing the mixture to stand for 12–16 in the dark at room temperature. Prior to beginning the assay, ABTS solution was diluted with methanol to an absorbance of 0.700 ± 0.02 at 734 nm. Sample solution (1 mg/mL; 1 mL) was added to ABTS solution (2 mL) and mixed. The sample absorbance was read at 734 nm after a 30 min incubation at room temperature. The ABTS radical scavenging activity was expressed as millimoles of trolox equivalents (mmol TE/g extract) (Mocan et al., 2016a (link)).
For CUPRAC (cupric ion reducing activity) activity assay: Sample solution (1 mg/mL; 0.5 mL) was added to premixed reaction mixture containing CuCl2 (1 mL, 10 mM), neocuproine (1 mL, 7.5 mM) and NH4Ac buffer (1 mL, 1 M, pH 7.0). Similarly, a blank was prepared by adding sample solution (0.5 mL) to premixed reaction mixture (3 mL) without CuCl2. Then, the sample and blank absorbances were read at 450 nm after a 30 min incubation at room temperature. The absorbance of the blank was subtracted from that of the sample. CUPRAC activity was expressed as milligrams of trolox equivalents (mg TE/g extract).
For FRAP (ferric reducing antioxidant power) activity assay: Sample solution (1 mg/mL; 0.1 mL) was added to premixed FRAP reagent (2 mL) containing acetate buffer (0.3 M, pH 3.6), 2,4,6-tris(2-pyridyl)-S-triazine (TPTZ) (10 mM) in 40 mM HCl and ferric chloride (20 mM) in a ratio of 10:1:1 (v/v/v). Then, the sample absorbance was read at 593 nm after a 30 min incubation at room temperature. FRAP activity was expressed as milligrams of trolox equivalents (mg TE/g extract).
For phosphomolybdenum method: Sample solution (1 mg/mL; 0.3 mL) was combined with 3 mL of reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate and 4 mM ammonium molybdate). The sample absorbance was read at 695 nm after a 90 min incubation at 95°C. The total antioxidant capacity was expressed as millimoles of trolox equivalents (mmol TE/g extract) (Mocan et al., 2016c (link)).
For metal chelating activity assay: Briefly, sample solution (1 mg/mL; 2 mL) was added to FeCl2 solution (0.05 mL, 2 mM). The reaction was initiated by the addition of 5 mM ferrozine (0.2 mL). Similarly, a blank was prepared by adding sample solution (2 mL) to FeCl2 solution (0.05 mL, 2 mM) and water (0.2 mL) without ferrozine. Then, the sample and blank absorbances were read at 562 nm after 10 min incubation at room temperature. The absorbance of the blank was sub-tracted from that of the sample. The metal chelating activity was expressed as milligrams of EDTA (disodium edetate) equivalents (mg EDTAE/g extract).
For ChE inhibitory activity assay: Sample solution (1 mg/mL; 50 μL) was mixed with DTNB (5,5-dithio-bis(2-nitrobenzoic) acid, Sigma, St. Louis, MO, United States) (125 μL) and AChE [acetylcholines-terase (Electric ell AChE, Type-VI-S, EC 3.1.1.7, Sigma)], or BChE [BChE (horse serum BChE, EC 3.1.1.8, Sigma)] solution (25 μL) in Tris–HCl buffer (pH 8.0) in a 96-well microplate and incubated for 15 min at 25°C. The reaction was then initiated with the addition of acetylthiocholine iodide (ATCI, Sigma) or butyrylthiocholine chloride (BTCl, Sigma) (25 μL). Similarly, a blank was prepared by adding sample solution to all reaction reagents without enzyme (AChE or BChE) solution. The sample and blank absorbances were read at 405 nm after 10 min incubation at 25°C. The absorbance of the blank was subtracted from that of the sample and the cholinesterase inhibitory activity was expressed as galanthamine equivalents (mgGALAE/g extract) (Mocan et al., 2016b (link)).
For Tyrosinase inhibitory activity assay: Sample solution (1 mg/mL; 25 μL) was mixed with tyrosinase solution (40 μL, Sigma) and phosphate buffer (100 μL, pH 6.8) in a 96-well microplate and incubated for 15 min at 25°C. The reaction was then initiated with the addition of L-DOPA (40 μL, Sigma). Similarly, a blank was prepared by adding sample solution to all reaction reagents without enzyme (tyrosinase) solution. The sample and blank absorbances were read at 492 nm after a 10 min incubation at 25°C. The absorbance of the blank was subtracted from that of the sample and the tyrosinase inhibitory activity was expressed as kojic acid equivalents (mgKAE/g extract) (Mocan et al., 2017 (link)).
For α-amylase inhibitory activity assay: Sample solution (1 mg/mL; 25 μL) was mixed with α-amylase solution (ex-porcine pancreas, EC 3.2.1.1, Sigma) (50 μL) in phosphate buffer (pH 6.9 with 6 mM sodium chloride) in a 96-well microplate and incubated for 10 min at 37°C. After pre-incubation, the reaction was initiated with the addition of starch solution (50 μL, 0.05%). Similarly, a blank was prepared by adding sample solution to all reaction reagents without enzyme (α-amylase) solution. The reaction mixture was incubated 10 min at 37°C. The reaction was then stopped with the addition of HCl (25 μL, 1 M). This was followed by addition of the iodine-potassium iodide solution (100 μL). The sample and blank absorbances were read at 630 nm. The absorbance of the blank was subtracted from that of the sample and the α-amylase inhibitory activity was expressed as acarbose equivalents (mmol ACE/g extract) (Savran et al., 2016 (link)).
For α-glucosidase inhibitory activity assay: Sample solution (1 mg/mL; 50 μL) was mixed with glutathione (50 μL), α-glucosidase solution (from Saccharomyces cerevisiae, EC 3.2.1.20, Sigma) (50 μL) in phosphate buffer (pH 6.8) and PNPG (4-N-trophenyl-α-D-glucopyranoside, Sigma) (50 μL) in a 96-well microplate and incubated for 15 min at 37°C. Similarly, a blank was prepared by adding sample solution to all reaction reagents without enzyme (α-glucosidase) solution. The reaction was then stopped with the addition of sodium carbonate (50 μL, 0.2 M). The sample and blank absorbances were read at 400 nm. The absorbance of the blank was subtracted from that of the sample and the α-glucosidase inhibitory activity was expressed as acarbose equivalents (mmol ACE/g extract) (Llorent-Martínez et al., 2016 (link)).
All the assays were carried out in triplicate. The results are expressed as mean values and standard deviation (SD). The differences between the different extracts were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s honestly significant difference post hoc test with α = 0.05. This treatment was carried out using SPSS v. 14.0 program.
Publication 2017

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2015
acetonitrile ammonium carbonate Ammonium Hydroxide ARID1A protein, human Buffers Capillaries Cells Centrifugation Chromatography Cold Temperature Glutamine Immune Tolerance Jurkat Cells Methanol Nitrogen Phenformin Radionuclide Imaging Valine
Agarose-normal melting (molecular biology grade-MB), agarose-low melting (MB), sodium chloride (analytical reagent grade-AR), potassium chloride (AR), disodium hydrogen phosphate (AR), potassium dihydrogen phosphate (AR), disodium ethylenediaminetetraacetic acid (disodium EDTA) (AR), tris (AR), sodium hydroxide (AR), sodium dodecyl sulphate / sodium lauryl sarcosinate (AR), tritron X 100 (MB), trichloro acetic acid, zinc sulphate (AR), glycerol (AR), sodium carbonate (AR), silver nitrate (AR), ammonium nitrate (AR), silicotungstic acid (AR), formaldehyde (AR) and lymphocyte separation media (Ficoll/ Histopaque 1077 [Sigma]/ HiSep [Himeda]).
Publication 2011
ammonium nitrate dodecyl sulfate Edetic Acid Ficoll Formaldehyde Glycerin histopaque Lymphocyte Potassium Chloride potassium phosphate, monobasic Sepharose silicotungstic acid Silver Nitrate sodium carbonate Sodium Chloride Sodium Hydroxide sodium phosphate, dibasic Sodium Sarcosinate Trichloroacetic Acid Tromethamine Zinc Sulfate
Determination of total phenolic content (TPC): Amount of TP were assessed using the Folin-Ciocalteu reagent [25 ]. Briefly, the crude extract (50 mg) was mixed with Folin-Ciocalteu reagent (0.5 mL) and deionized water (7.5 mL). The mixture was kept at room temperature for 10 min, and then 20% sodium carbonate (w/v, 1.5 mL) was added. The mixture was heated in a water bath at 40 oC for 20 min and then cooled in an ice bath; absorbance was read at 755 nm using a spectrophotometer (U-2001, Hitachi Instruments Inc., Tokyo, Japan). Amounts of TP were calculated using gallic acid calibration curve within range of 10-100 mgL-1(R2 = 0.9986). The results were expressed as gallic acid equivalents (GAE) g/100g of dry plant matter. All samples were analyzed thrice and the results averaged. The results are reported on dry weight basis (DW).
Determination of total flavonoid contents (TFC): The TFC were measured following a previously reported spectrophotometric method [26 (link)]. Briefly, extracts of each plant material (1 mL containing 0.1 mg/mL) were diluted with water (4 mL) in a 10 mL volumetric flask. Initially, 5% NaNO2 solution (0.3 mL) was added to each volumetric flask; at 5 min, 10% AlCl3 (0.3 mL) was added; and at 6 min, 1.0 M NaOH (2 mL) was added. Water (2.4 mL) was then added to the reaction flask and mixed well. Absorbance of the reaction mixture was read at 510 nm. TFC were determined as catechin equivalents (g/100g of dry weight). Three readings were taken for each sample and the results averaged.
Determination of reducing power: The reducing power of the extracts was determined according to the procedure described earlier [27 ], with a slight modification. Concentrated extract (2.5-10.0 mg) was mixed with sodium phosphate buffer (5.0 mL, 0.2 M, pH 6.6) and potassium ferricyanide (5.0 mL, 1.0%); the mixture was incubated at 50 oC for 20 min. Then 10% trichloroacetic acid (5 mL) was added and the mixture centrifuged at 980 g for 10 min at 5 °C in a refrigerated centrifuge (CHM-17; Kokusan Denki, Tokyo, Japan). The upper layer of the solution (5.0 mL) was decanted and diluted with 5.0 mL of distilled water and ferric chloride (1.0 mL, 0.1%), and absorbance read at 700 nm using a spectrophotometer (U-2001, Hitachi Instruments Inc., Tokyo, Japan). All samples were analyzed thrice and the results averaged.
DPPH. scavenging assay: 1, 1–diphenyl–2-picrylhydrazyl (DPPH) free radical scavenging activity of the extracts was assessed using the procedure reported earlier [28 (link)]. Briefly, to extract (1.0 mL) containing 25 μg/mL of dry matter in methanol, freshly prepared solution of DPPH (0.025 g/L, 5.0 mL) was added. Absorbance at 0, 0.5, 1, 2, 5 and 10 min was measured at 515 nm using a spectrophotometer. The scavenging amounts of DPPH radical (DPPH.) was calculated from a calibration curve. Absorbance read at the 5th min was used for comparison of radical scavenging activity of the extracts.
Determination of antioxidant activity in linoleic acid system: The antioxidant activity of the tested plant extracts was also determined by measuring the oxidation of linoleic acid [28 (link)]. Five mg of each plant extract were added separately to a solution of linoleic acid (0.13 mL), 99.8% ethanol (10 mL) and 0.2 M sodium phosphate buffer (pH 7, 10 mL). The mixture was made up to 25 mL with distilled water and incubated at 40 oC up to 360 h. Extent of oxidation was measured by peroxide value applying thiocyanate method as described by Yen et al. [27 ]. Briefly, ethanol (75% v/v, 10 mL ), aqueous solution of ammonium thiocyanate (30% w/v, 0.2 mL), sample solution (0.2 mL) and ferrous chloride (FeCl2) solution (20 mM in 3.5% HCl; v/v, 0.2 mL) were added sequentially. After 3 min of stirring, the absorption was measured at 500 nm using a spectrophotometer (U-2001, Hitachi Instruments Inc., Tokyo, Japan). A control contained all reagents with exception of extracts. Synthetic antioxidants butylated hydroxytoluene (BHT) was used as a positive control. Percent inhibition of linoleic acid oxidation was calculated with the following equation: 100 – [(increase in absorbance of sample at 360 h / increase in absorbance of control at 360 h) × 100], to express antioxidant activity.
Publication 2009
Cells were washed twice with phosphate buffered saline (Mediatech, Manassas, VA) (1 mM pH 7.4) before being scraped into 750 µL of ice-cold methanol/water (4/1 v/v). For cells treated with rapamycin, samples were spiked with internal standards (500 ng [13C4]-succinate, 500 ng [13C6]-citrate, 500 ng [13C3]-pyruvate, 2 µg [13C3]-lactate, 500 ng [13C4,15N]-aspartate, 2 µg [13C5,15N]-glutamate and 500 ng [13C6]-glucose 6-phosphate). Samples were pulse-sonicated for 30 s with a probe tip sonicator and centrifuged at 16,000 × g for 10 min. The supernatant was transferred to two new tubes: 50 µL were transferred to one tube and diluted 5 times with 50 mM ammonium carbonate for direct analysis of the underivatized redox cycling metabolites (Figure 2) and 700 µL were transferred to one tube containing 300 µL of phenylhydrazine in water (3 mg/mL) for analysis of underivatized and derivatized metabolites (Figure 2). Derivatization was conducted by incubation at room temperature for 2 h before evaporation to dryness under nitrogen. 100 µL of water was used to re-suspend the samples. Injection volume was 5 µL in both methods. The phenylhydrazine-derivatized samples were run with gradient 1 and the underivatized samples were run with gradient 2.
Publication 2016
ammonium carbonate Aspartate Cells Citrates Cold Temperature Glucose-6-Phosphate Glutamates Ice Lactates Methanol Nitrogen Oxidation-Reduction phenylhydrazine Phosphates Pulse Rate Pyruvate Saline Solution Sirolimus Succinate

Most recents protocols related to «Ammonium carbonate»

Example 8

Into a 5 L reactor was added 946 g Mg(OAc)2 tetrahydrate, 7.85 g Ca(AcO)2 monohydrate and 10 g Zn(AcO)2 dihydrate in 3 L deionized (DI) water at room temperature. This mixture was stirred until the solids dissolved (first solution). Into a separate 20 L reactor equipped with mechanical stirring was 12 L deionized water (DI). To this solution was added 432.5 g ammonium carbonate. This mixture was stirred until the solids dissolved at room temperature (second solution). Once the second solution becomes homogeneous, the first solution was immediately added into the 20 L reactor maintaining the mechanical stirring at 200 rpm. After the addition of the solution was complete, the reaction was stirred for an additional 30 minutes where solids started to precipitate. The precipitated solids were filtered using vacuum filtration. The solids were washed several times with DI water and then filtered. After the filter cake was dried, the solids were washed with additional DI water. The solids were removed and dried in a vacuum oven at 40° C. for 3 hours.

The solids were removed from the vacuum oven and cooled to room temperature. The solids were transferred to a porcelain crucible. The solids were transferred to a porcelain crucible and introduced into an annealing furnace at atmospheric pressure and the solid was heated at 950° C. for 2 hours, yielding 97 g of nanomaterial.

Patent 2024

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2024
This study classified stone composition into mixed stones, calcium oxalate monohydrate (COM), anhydrous uric acid (UAA), magnesium ammonium phosphate hexahydrate (MAPH), dicalcium phosphate dihydrate (DCDP), carbonate apatite (CA), L-cystine, ammonium uric acid (AUA), and other stones, based on the results of stone composition analysis. Stones with more than one component were defined as mixed components. Stones with less than 3 cases of single-component stones are known as other types of stones. Other types of calculi in this study included 2 patients with xanthine stones, 2 patients with magnesium ammonium phosphate monohydrate (MAPM) stones, 2 patients with sodium urate monohydrate stones, and 1 patient with calcite stones. Infected stones were defined as stones containing magnesium ammonium phosphate and carbonate apatite.[9 (link)]
Publication 2024

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2024
Preparation method of the enzyme immobilized on the support for the continuous flow bioreactor
An ammonium carbonate buffer pH 7.8 was prepared by mixing 65 mL of 0.1M ammonium carbonate solution with 35 mL of 0.1M HCl solution and 100 grams of glass beads were added to the buffer followed by addition of 1 gram of subtilisin A while mixing to afford a uniform 61 Technium Vol. 20, pp.56-79 ( 2024) ISSN: 2668-778X www.techniumscience.com slurry, which was frozen in liquid air and lyophilized for 24 hours and grounded to afford a powder.
Publication 2024

Top products related to «Ammonium carbonate»

Sourced in United States, Germany, Italy, India, France, Spain, United Kingdom, Australia, Switzerland, Poland, Portugal, China, Canada, Sao Tome and Principe, Brazil, Ireland, Mexico, Sweden, Hungary, Singapore, Malaysia, Pakistan, Thailand, Cameroon, Japan, Chile
Sodium carbonate is a water-soluble inorganic compound with the chemical formula Na2CO3. It is a white, crystalline solid that is commonly used as a pH regulator, water softener, and cleaning agent in various industrial and laboratory applications.
Sourced in United States, Germany, Italy, Spain, France, India, China, Poland, Australia, United Kingdom, Sao Tome and Principe, Brazil, Chile, Ireland, Canada, Singapore, Switzerland, Malaysia, Portugal, Mexico, Hungary, New Zealand, Belgium, Czechia, Macao, Hong Kong, Sweden, Argentina, Cameroon, Japan, Slovakia, Serbia
Gallic acid is a naturally occurring organic compound that can be used as a laboratory reagent. It is a white to light tan crystalline solid with the chemical formula C6H2(OH)3COOH. Gallic acid is commonly used in various analytical and research applications.
Sourced in Germany, United States, United Kingdom, India, Italy, France, Spain, Australia, China, Poland, Switzerland, Canada, Ireland, Japan, Singapore, Sao Tome and Principe, Malaysia, Brazil, Hungary, Chile, Belgium, Denmark, Macao, Mexico, Sweden, Indonesia, Romania, Czechia, Egypt, Austria, Portugal, Netherlands, Greece, Panama, Kenya, Finland, Israel, Hong Kong, New Zealand, Norway
Hydrochloric acid is a commonly used laboratory reagent. It is a clear, colorless, and highly corrosive liquid with a pungent odor. Hydrochloric acid is an aqueous solution of hydrogen chloride gas.
Sourced in Germany, United States, Italy, India, United Kingdom, China, France, Poland, Spain, Switzerland, Australia, Canada, Sao Tome and Principe, Brazil, Ireland, Japan, Belgium, Portugal, Singapore, Macao, Malaysia, Czechia, Mexico, Indonesia, Chile, Denmark, Sweden, Bulgaria, Netherlands, Finland, Hungary, Austria, Israel, Norway, Egypt, Argentina, Greece, Kenya, Thailand, Pakistan
Methanol is a clear, colorless, and flammable liquid that is widely used in various industrial and laboratory applications. It serves as a solvent, fuel, and chemical intermediate. Methanol has a simple chemical formula of CH3OH and a boiling point of 64.7°C. It is a versatile compound that is widely used in the production of other chemicals, as well as in the fuel industry.
Sourced in Germany, United States, India, United Kingdom, Italy, China, Spain, France, Australia, Canada, Poland, Switzerland, Singapore, Belgium, Sao Tome and Principe, Ireland, Sweden, Brazil, Israel, Mexico, Macao, Chile, Japan, Hungary, Malaysia, Denmark, Portugal, Indonesia, Netherlands, Czechia, Finland, Austria, Romania, Pakistan, Cameroon, Egypt, Greece, Bulgaria, Norway, Colombia, New Zealand, Lithuania
Sodium hydroxide is a chemical compound with the formula NaOH. It is a white, odorless, crystalline solid that is highly soluble in water and is a strong base. It is commonly used in various laboratory applications as a reagent.
Sourced in United States, United Kingdom, Germany, Spain, France
Ammonium carbonate is a chemical compound that is commonly used as a laboratory reagent. It is a crystalline solid with the chemical formula (NH4)2CO3. Ammonium carbonate is soluble in water and has a pungent, ammonia-like odor.
Sourced in Germany, United States, Italy, United Kingdom, France, Spain, China, Poland, India, Switzerland, Sao Tome and Principe, Belgium, Australia, Canada, Ireland, Macao, Hungary, Czechia, Netherlands, Portugal, Brazil, Singapore, Austria, Mexico, Chile, Sweden, Bulgaria, Denmark, Malaysia, Norway, New Zealand, Japan, Romania, Finland, Indonesia
Formic acid is a colorless, pungent-smelling liquid chemical compound. It is the simplest carboxylic acid, with the chemical formula HCOOH. Formic acid is widely used in various industrial and laboratory applications.
Sourced in United States, Germany, Italy, India, China, Spain, Poland, France, United Kingdom, Australia, Brazil, Singapore, Switzerland, Hungary, Mexico, Japan, Denmark, Sao Tome and Principe, Chile, Malaysia, Argentina, Belgium, Cameroon, Canada, Ireland, Portugal, Israel, Romania, Czechia, Macao, Indonesia
DPPH is a chemical compound used as a free radical scavenger in various analytical techniques. It is commonly used to assess the antioxidant activity of substances. The core function of DPPH is to serve as a stable free radical that can be reduced, resulting in a color change that can be measured spectrophotometrically.
Sourced in Germany, United States, Italy, India, China, United Kingdom, France, Poland, Spain, Switzerland, Australia, Canada, Brazil, Sao Tome and Principe, Ireland, Belgium, Macao, Japan, Singapore, Mexico, Austria, Czechia, Bulgaria, Hungary, Egypt, Denmark, Chile, Malaysia, Israel, Croatia, Portugal, New Zealand, Romania, Norway, Sweden, Indonesia
Acetonitrile is a colorless, volatile, flammable liquid. It is a commonly used solvent in various analytical and chemical applications, including liquid chromatography, gas chromatography, and other laboratory procedures. Acetonitrile is known for its high polarity and ability to dissolve a wide range of organic compounds.
Sourced in United States, Germany, Italy, India, Spain, United Kingdom, France, Poland, China, Sao Tome and Principe, Australia, Brazil, Macao, Switzerland, Canada, Chile, Japan, Singapore, Ireland, Mexico, Portugal, Sweden, Malaysia, Hungary
Quercetin is a natural compound found in various plants, including fruits and vegetables. It is a type of flavonoid with antioxidant properties. Quercetin is often used as a reference standard in analytical procedures and research applications.

More about "Ammonium carbonate"

Ammonium carbonate, also known as ammonium bicarbonate or hair salt, is a versatile chemical compound with the formula (NH4)2CO3.
It is a white, crystalline solid that is soluble in water and has a pungent, ammonia-like odor.
This compound is commonly used as a leavening agent in baking, as a fire retardant, and in certain medicinal applications.
It is also utilized in the production of some fertilizers and as a source of carbon dioxide.
Ammonium carbonate can be formed through the reaction of ammonia (NH3) and carbon dioxide (CO2).
Its properties make it a widely-used and valuable chemical in various industries.
Optimizing research protocols involving ammonium carbonate can be achieved using AI-driven tools like PubCompare.ai, which help locate the best protocols and products from literature, preprints, and patents.
Closely related chemicals include sodium carbonate (also known as washing soda or soda ash), which is used in glass production, and gallic acid, a natural compound found in plants that has antioxidant properties.
Hydrochloric acid (HCl), methanol, and sodium hydroxide (NaOH) are also commonly used in chemical research and processes.
DPPH (2,2-diphenyl-1-picrylhydrazyl) is a stable free radical used to measure the antioxidant activity of compounds, while acetonitrile and formic acid are often used as solvents or mobile phases in analytical techniques like high-performance liquid chromatography (HPLC) and mass spectrometry.
Quercetin is a flavonoid with potent antioxidant and anti-inflammatory properties.
By understanding the properties and applications of ammonium carbonate and related chemicals, researchers can optimize their protocols, improve reproducibility, and make data-driven decisions for their ammonium carbonate-based studies.