The largest database of trusted experimental protocols

AT 10

AT 10 is a key component in the regulation of cellular processes, playing a critical role in a variety of biological pathways.
This molecule is involved in signal transduction, transcriptional regulation, and metabolic control, making it an important target for researchers studying a range of disease states.
The AT 10 molecule has been the focus of extensive investigation, with a growing body of literature exploring its structure, function, and potential therapeutic applications.
Researchers can leverage the power of PubCompare.ai to optimize their AT 10 studies, effortlessly locating the best protocols from literature, pre-prints, and patents, and identifying the optimal products and procedures for their research needs.
By leveraging AI-powered comparisons, PubCompare.ai enables seamless protocol optimization, taking AT 10 research to new hieghts.

Most cited protocols related to «AT 10»

Real-time PCR was performed using a standard TaqMan® PCR kit protocol on an Applied Biosystems 7900HT Sequence Detection System (P/N: 4329002, Applied Biosystems). The 10 µl PCR included 0.67 µl RT product, 1× TaqMan® Universal PCR Master Mix (P/N: 4324018, Applied Biosystems), 0.2 µM TaqMan® probe, 1.5 µM forward primer and 0.7 µM reverse primer. The reactions were incubated in a 384-well plate at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. All reactions were run in triplicate. The threshold cycle (CT) is defined as the fractional cycle number at which the fluorescence passes the fixed threshold. TaqMan® CT values were converted into absolute copy numbers using a standard curve from synthetic lin-4 miRNA.
The method for real-time quantification of pri-miRNA precursors, let-7a-3 and miR-26b, and pre-miRNA precursor miR-30a was described elsewhere (34 (link)).
Publication 2005
Fluorescence MicroRNAs Oligonucleotide Primers pre-miRNA Primary MicroRNA Real-Time Polymerase Chain Reaction
The V3-V4 region of 16S rDNA was amplified using Pro341F/Pro805R for Prokaryotes, 341F/R806 for Bacteria, and ARC344F/Arch806R for Archaea primer sets (Table 1). In addition to the V3-V4 specific priming regions, these primers were complementary to standard Illumina forward and reverse primers. The reverse primer also contained a 6-bp indexing sequence (Table 1) to allow for multiplexing. Amplification primers were designed with Illumina adapters.
To reduce the formation of spurious by-products during the amplification process, the touchdown PCR method for thermal cycling was used with a Rotor-Gene Q quantitative thermal cycler (Qiagen, Germany) [28] (link). The reaction mixture (25 µL) contained 10 ng genomic DNA, MightyAmp for Real Time (SYBR Plus) (Takara, Japan), and 0.25 µM of each primer. The PCR reaction conditions for amplification of DNA were as follows: initial denaturation at 98°C for 2 min, followed by 35 cycles of annealing beginning at 65°C and ending at 55°C for 15 sec, and extension at 68°C for 30 sec. The annealing temperature was lowered 1°C every cycle until reaching 55°C, which was used for the remaining cycles. PCR products were purified through a MultiScreen PCRu96 filter plate (Merck Millipore, USA) and analyzed using a Bioanalyzer DNA 1000 Chip Kit (Agilent Technologies, USA) to detect primer-dimers and determine the average molecular weight of each product. The purified products were quantified by real-time quantitative PCR (q-PCR) on a Rotor-Gene Q quantitative thermal cycler using MightyAmp for Real Time (SYBR Plus), 0.2 µM of each primer, which were derived from Illumina adapters (Table 1), and serially diluted PhiX control library (Illumina, USA) as a standard. The PCR reaction conditions for quantification of each PCR product were as following: initial denaturation at 98°C for 2 min, followed by 30 cycles of denaturation at 98°C for 10 sec, annealing at 60°C for 15 sec, and extension at 68°C for 30 sec. The quantification step was used to determine the concentration of the amplified libraries and to confirm the presence of suitable primers for Illumina sequencing.
Full text: Click here
Publication 2014
Archaea Bacteria DNA, Ribosomal DNA Chips DNA Library Genes Genes, vif Genome Oligonucleotide Primers Prokaryotic Cells Real-Time Polymerase Chain Reaction
We enrolled participants from August 2002 through April 2004; screening took place from August 2002 through September 2007. Participants were followed for events that occurred through December 31, 2009 (Fig. 1 in the Supplementary Appendix, available at NEJM.org).
Eligible participants were between 55 and 74 years of age at the time of randomization, had a history of cigarette smoking of at least 30 pack-years, and, if former smokers, had quit within the previous 15 years. Persons who had previously received a diagnosis of lung cancer, had undergone chest CT within 18 months before enrollment, had hemoptysis, or had an unexplained weight loss of more than 6.8 kg (15 lb) in the preceding year were excluded. A total of 53,454 persons were enrolled; 26,722 were randomly assigned to screening with low-dose CT and 26,732 to screening with chest radiography. Previously published articles describing the NLST10 (link),12 (link) reported an enrollment of 53,456 participants (26,723 in the low-dose CT group and 26,733 in the radiography group). The number of enrolled persons is now reduced by 2 owing to the discovery of the duplicate randomization of 2 participants.
Participants were enrolled at 1 of the 10 LSS or 23 ACRIN centers. Before randomization, each participant provided written informed consent. After the participants underwent randomization, they completed a questionnaire that covered many topics, including demographic characteristics and smoking behavior. The ACRIN centers collected additional data for planned analyses of cost-effectiveness, quality of life, and smoking cessation. Participants at 15 ACRIN centers were also asked to provide serial blood, sputum, and urine specimens. Lung-cancer and other tissue specimens were obtained at both the ACRIN and LSS centers and were used to construct tissue microarrays. All biospecimens are available to researchers through a peer-review process.
Publication 2011
BLOOD Chest Diagnosis Hemoptysis Lung Cancer Microarray Analysis Peer Review Radiography, Thoracic Sputum Tissues Urine X-Rays, Diagnostic
Primary genotype data were obtained for nine breast cancer GWAS in populations of European ancestry (Supplementary Table 1). Standard quality control was performed on all scans as follows. We excluded all individuals with low call rate (<95%) and extremely high or low heterozygosity (P < 1 × 10−5), as well as all individuals evaluated to be of non-European ancestry (>15% non-European component, as determined by multidimensional scaling using the HapMap version 2 CEU, JPT/CHB and YRI populations as a reference). We excluded SNPs with MAF < 1%; call rate < 95%; or call rate < 99% and MAF < 5% and all SNPs with genotype frequencies that departed from Hardy-Weinberg equilibrium at P < 1 × 10−6 in controls or P < 1 × 10−12 in cases. For highly significant SNPs, genotype intensity cluster plots were examined manually to judge reliability, either centrally or by contacting the original investigators.
Data were imputed for all scans for ~2.6 million SNPs with the HapMap version 2 CEU panel (Utah residents of Northern and Western European ancestry) as a reference, using the program MaCH v1.0. Imputation was conducted separately for each scan. Estimated per-allele ORs and standard errors were generated from the imputed genotypes using ProbABEL63 (link). For two studies (UK2 and HEBCS), estimates were adjusted by the first three principal components, as this was found to materially reduce the inflation of test statistics. Residual inflation was then adjusted for by multiplying the variance by a genomic control adjustment factor, based on the ratio of the median χ2 test statistic to its expected value64 (link). BBCS and UK2 used the same control data (WTCCC2) but different genotyping platforms. Data were imputed separately for these studies. For the combined analysis, the control set was divided randomly between the two studies, in proportion to the size of the case series, to provide disjoint strata. Overall significance tests for each SNP were performed using a fixed-effects meta-analysis; data were only included for a given study if the imputation accuracy r2 was >0.3.
Publication 2013
Alleles CASP8 protein, human Europeans factor A Genome Genome-Wide Association Study HapMap Heterozygote Malignant Neoplasm of Breast Population Group Radionuclide Imaging
Details of SP3 optimization experiments for protein binding as well as digestion conditions are
given in the Supplementary Information. Step-by-step protocols for performing SP3 can also be found
in the Supplementary Information.
The Sera-Mag SP3 bead mix that had been prepared as discussed above was stored as a stock at a
concentration of 10 μg/μl. Unless otherwise noted, all reactions are carried
out in untreated PCR tubes (Ratiolab). To each protein mixture to be treated, 2 μl of
this bead stock (20 μg) was added and pipette mixed to generate a homogeneous
solution. Although 20 μg of beads exceeds the required amount given the binding
capacity of 1 μg of beads per 100 μg of protein determined above, it is
beneficial to retain the absolute bead concentration at values
> 0.1 μg/μl in solution to promote bead aggregation as the
reaction progresses (e.g., 20 μg of beads after addition of 195 μl in
peptide SP3 gives 0.1 μg/μl in the total volume of 200 μl). The
bead–protein mixture was then acidified (pH ∼2) through the addition of formic acid,
and acetonitrile (100% stock) was added to a reach a final concentration of 50% (v/v)
of the total volume. Mixtures were incubated upright for 8 min at room temperature and then
placed on a magnetic rack for a further 2 min. While on the magnet, the supernatant was
removed and discarded. The beads were rinsed through addition of 200 μl of 70%
absolute ethanol, incubated for 30 s, and the supernatant discarded. This step was repeated
one further time. Beads were then rinsed one further time with 180 μl of 100%
acetonitrile, incubated for 30 s, and the supernatant discarded. All rinses were carried out
while tubes were mounted on the magnetic rack. Rinsed beads were then reconstituted in aqueous
buffer (e.g., 5 μl of 50 mM HEPES pH 8), pipette mixed, and incubated for
5 min at room temperature to elute proteins. The composition of the elution buffer can be
catered to the desired downstream protocol.
Full text: Click here
Publication 2014
acetonitrile Buffers Ethanol formic acid Gastrointestinal Diseases HEPES Proteins Serum

Most recents protocols related to «AT 10»

Example 1

Cell-free fractions were prepared as previously described (25). Briefly, Lactobacillus acidophilus strain La-5 was grown overnight in modified DeMann, Rogosa and Sharpe medium. (mMRS; 10 g peptone from casein, 8 g meat extract, 4 g yeast extract, 8 g D(+)-glucose, 2 g dipotassium hydrogen phosphate, 2 g di-ammonium hydrogen citrate, 5 g sodium acetate, 0.2 g magnesium sulfate, 0.04 g manganese sulfate in 1 L distilled water) (MRS; BD Diagnostic Systems, Sparks, MD). The overnight culture was diluted 1:100 in fresh medium. When the culture grew to an optical density at 600 nm (OD600) of 1.6 (1.2×108 cells/ml), the cells were harvested by centrifugation at 6,000×g for 10 min at 4° C. The supernatant was sterilized by filtering through a 0.2-μm-pore-size filter (Millipore, Bioscience Division, Mississauga, ON, Canada) and will be referred to as cell-free spent medium (CFSM). Two litres of L. acidophilus La-5 CFSM was collected and freeze-dried (Unitop 600 SL, VirTis Co., Inc. Gardiner, NY., USA). The freeze-dried CFSM was reconstituted with 200 ml of 18-Ω water. The total protein content of the reconstituted CFSM was quantified using the BioRad DC protein assay kit II (Bio-Rad Laboratories Ltd., Mississauga, ON, Canada). Freeze-dried CFSM was stored at −20° C. prior to the assays.

Full text: Click here
Patent 2024
ammonium citrate Biological Assay casein peptone Cells Centrifugation Diagnosis Freezing Glucose Hydrogen Lactobacillus acidophilus L Cells manganese sulfate Meat potassium phosphate, dibasic Proteins Sodium Acetate Sulfate, Magnesium Unitop Yeast, Dried

Example 1

10 g (33.09 mmol) of 1-(2-fluoro-6-trifluoromethyl-benzyl)-6-methyl-1H-pyrimidine-2,4-dione (III), 6.8 g (49.62 mmol) of K2CO3 and 2.4 g (6.6 mmol) of tetrabutylammonium iodide were mixed with 50 mL of acetone at the temperature of about 20° C. Subsequently, 13.6 g (43.12 mmol) of (R)-2-((tert-butoxycarbonyl)amino)-2-phenylethyl methanesulfonate (IVa) were added and the obtained mixture was heated at the temperature of about 55° C. and maintained under stirring for about 16 hours at said temperature.

Once this maintenance was finished, the solvent was vacuum distilled and 50 mL of ethyl acetate and 50 mL of water were added to the residue thus obtained. A 1 M aqueous solution of HCl was slowly added, maintaining the temperature between 20 and 25° C. until achieving a pH of between 7 and 8. The aqueous phase was separated and treated with 3 fractions of 30 mL each of ethyl acetate. All the organic extracts were pooled and the solvent was removed by means of vacuum to obtain a slightly yellowish oily residue to which 45 mL of methanol were added, obtaining complete dissolution of the residue.

Example 2

16.1 g (99.24 mmol) of iodine monochloride (ICI) were dissolved in 40 mL of methanol at the temperature of about 10° C. The methanol solution previously obtained according to the methodology described in Example 1 comprising 3-((R)-2-(tert-butoxycarbonyl)amino-2-phenylethyl)-1-(2-fluoro-6-trifluoromethylbenzyl)-6-methyl-1H-pyrimidine-2,4-dione (II) was added to the iodine monochloride solution, maintaining the temperature between 20 and 25° C. Once the addition was finished, the obtained solution was heated to about 50° C. and was maintained under stirring for 2 hours at the mentioned temperature.

Once the maintenance was finished, the solvent was vacuum distilled and 50 mL of acetone were slowly added to the obtained oily residue at the temperature of between and 25° C. The addition of acetone caused a solid precipitate to appear almost immediately. The obtained mixture was maintained for 1 hour under stirring at the mentioned temperature. The resulting solid was isolated by filtration, washed with two fractions of 25 mL of acetone, and finally dried at the temperature of 50° C. to obtain 15.6 g (80.8% yield) of a white solid corresponding to the 3-((R)-2-(amino-2-phenylethyl)-1-(2-fluoro-6-trifluoromethylbenzyl)-5-iodo-6-methyl-1H-pyrimidine-2,4-dione hydrochloride salt (Ia) (UHPLC purity: 98.9%).

1H-NMR (d6-DMSO, 400 MHz) δ (ppm): 8.70 (2H, s broad), 7.65-7.48 (3H, m), 7.40-7.32 (5H, m), 5.40-5.29 (2H, dd), 4.47 (1H, t), 4.25 (2H, dd), 2.65 (3H, s).

13C-NMR (d6-DMSO, 100 MHz) δ (ppm): 161.87, 159.47, 159.41, 154.19, 150.98, 134.70, 129.93, 129.84, 129.01, 128.58, 127.38, 122.61, 122.34, 122.22, 121.34, 121.10, 74.80, 52.26, 45.45, 44.60, 25.66.

The DSC of this compound is shown in FIG. 1 and the XRPD is shown in FIG. 2.

Full text: Click here
Patent 2024
1H NMR Acetone Anabolism Carbon-13 Magnetic Resonance Spectroscopy elagolix ethyl acetate Filtration Iodine iodine monochloride methanesulfonate Methanol Oils potassium carbonate Pyrimidines Sodium Chloride Solvents Sulfoxide, Dimethyl TERT protein, human tetrabutylammonium iodide Vacuum

Example 1

a. Materials and Methods

i. Vector Construction

1. Virus-Like Particle

As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.

The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (FIG. 3), which includes the following elements: CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), CaMV 35S 3′ terminator (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

2. Recombinant Immune Complex

The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (FIG. 3, RIC vector). Both cassettes contain CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

ii. Agroinfiltration of Nicotiana benthamiana Leaves

Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).

iii. Protein Extraction

Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.

iv. SDS-PAGE and Western Blot

Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).

v. Immunization of Mice and Sample Collection

All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.

vi. Antibody Measurements

Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.

vii. Electron Microscopy

Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.

viii. Statistical Analysis

The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.

b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2

BeYDV plant expression vectors (FIG. 3) expressing either the target VLP HBche-L2, or L2 and HBche alone as controls, were agroinfiltrated into the leaves of N. benthamiana and analyzed for VLP production. After 4-5 days post infiltration (DPI), leaves displayed only minor signs of tissue necrosis, indicating that the VLP was well-tolerated by the plants (FIG. 4A). Leaf extracts analyzed by reducing SDS-PAGE showed an abundant band near the predicted size of 51 kDa for HBche-L2, just above the large subunit of rubisco (RbcL). HBche was detected around the predicted size of 38 kDa (FIG. 4B). Western blot probed with anti-L2 polyclonal serum detected a band for HBche-L2 at ˜51 kDa (FIG. 4B). These results indicate that this plant system is capable of producing high levels of L2-containing HBc VLP.

To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (FIG. 3) expressing both the L2-fused 6D8 heavy chain and the light chain was agroinfiltrated into leaves of N. benthamiana and analyzed for RIC production. To create more homogenous human-type glycosylation, which has been shown to improve antibody Fc receptor binding in vivo, transgenic plants silenced for xylosyltransferase and fucosyltransferase were employed (Castilho and Steinkellner 2012). By western blot, high molecular weight bands >150 kDa suggestive of RIC formation were observed (FIG. 4C). Expression of soluble L2 RIC was lower than HBche-L2 due to relatively poor solubility of the RIC (FIG. 4C).

After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (FIGS. 4A-4C and 6).

c. Purification and Characterization of HBche-L2 and L2 RIC

To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (FIG. 5A). To demonstrate particle formation, sucrose fractions were examined by electron microscopy. Both HBche and HBche-L2 formed ˜30 nm particles, although the appearance of HBche-L2 VLP suggested slightly larger, fuller particles (FIGS. 5C and 5D). As most plant proteins do not sediment with VLP, pooling peak sucrose fractions resulted in >95% pure HBche-L2 (FIG. 5B), yielding sufficient antigen (>3 mg) for vaccination from a single plant leaf.

L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (FIG. 5B). Western blot confirmed the presence of L2 in this band, indicating proper RIC formation (FIG. 5B). L2 RIC bound to human complement C1q receptor with substantially higher affinity compared to free human IgG standard, suggesting proper immune complex formation (FIG. 5E).

d. Mouse Immunization with HBche-L2 and L2 RIC

Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (FIG. 6). After one or two doses, the combined VLP/RIC treatment group outperformed both the VLP or RIC groups, reaching mean endpoint titers of >200,000, which represent a 700-fold increase over immunization with L2 alone (FIG. 6). After the third dose, both the VLP and combined VLP/RIC groups reached endpoint titers >1,300,000, a 2-fold increase over the RIC alone group. To determine the antibody subtypes produced by each treatment group, sera were assayed for L2-binding IgG1 and IgG2a. All four groups produced predominately IgG1 (FIG. 7, note dilutions). However, RIC and especially VLP-containing groups had an elevated ratio of IgG2a:IgG1 (>3-fold) compared to L2 alone (FIG. 7).

In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (FIG. 5, p<0.001). Additionally, VLP and RIC combined further enhanced neutralization activity ($5-fold, p<0.05) compared to either antigen alone, supporting the strong synergistic effect of delivering L2 by both platforms simultaneously.

In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (FIG. 6). Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the other groups had much more homogenous antibody responses, especially the VLP-containing groups, which had no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2. Moreover, significant synergy of VLP and RIC systems was observed when the systems were delivered together, after one or two doses (FIG. 6). Since equivalent amounts of L2 were delivered with each dose, the enhanced antibody titer did not result from higher L2 doses. Rather, these data suggest that higher L2-specific antibody production may be due to augmented stimulation of L2-specific B cells by T-helper cells that were primed by RIC-induced antigen presenting cells. Although treatment with VLP and RIC alone reached similar endpoint titers as the combined VLP/RIC group after 3 doses, virus neutralization was substantially higher (>5-fold) in the combined group (FIG. 8). Together, these data indicate unique synergy exists when VLP and RIC are delivered together. Inventors have observed similarly significant synergistic enhancement of immunogenicity for a variety of other antigens.

Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2.

Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (FIG. 7). Importantly, production of IgG2a is associated with successful clearance of a plethora of viral pathogens (Coutelier et al. 1988; Gerhard et al. 1997; Wilson et al. 2000; Markine-Goriaynoff and Coutelier 2002).

The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (FIG. 6). However, yield suffered from insolubility of the RIC (FIG. 4C). We found that the 11-128 segment of L2 expresses very poorly on its own in plants and may be a contributing factor to poor L2 RIC yield. Importantly, we have produced very high yields of RIC with different antigen fusions. Thus, in some aspects, antibody fusion with a shorter segment of L2 could substantially improve the yield of L2 RIC.

e. Neutralization of HPV Pseudovirions

Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.

TABLE 1
L2-specific serum IgG and pseudovirus neutralization
titers from IP immunized mice
Neutralization of Pseudoviruses
ImmunogenSerum IgGHPV 16HPV 18HPV 58
HBc-L2>50,000 400
~70,0001600400400
>80,0001600400800
L2 (11-128)~8000 200
~12,000 400
~50,000 800200400

Full text: Click here
Patent 2024
3' Untranslated Regions 5' Untranslated Regions AA 149 Agrobacterium tumefaciens aluminum potassium sulfate aluminum sulfate Amino Acids Animals Animals, Transgenic Antibodies Antibody Formation Antigen-Presenting Cells Antigens B-Lymphocytes Bacteria Bromphenol Blue Buffers Cell Culture Techniques Cells Centrifugation Chromatography, Affinity Cloning Vectors Cold Temperature Combined Modality Therapy complement 1q receptor Complement Receptor Complex, Immune Complex Extracts Cytotoxicities, Antibody-Dependent Cell Cytotoxin Digestion DNA, A-Form DNA Sequence Edetic Acid Electron Microscopy Electroporation Enzyme-Linked Immunosorbent Assay Epitopes ethane sulfonate Fc Receptor Females Formvar Fucosyltransferase G-substrate Gamma Rays Genes Genes, vif Glycerin Goat Helix (Snails) Helper-Inducer T-Lymphocyte Homo sapiens Homozygote Horseradish Peroxidase Human papillomavirus 16 Human papillomavirus 18 Human Papilloma Virus Vaccine IGG-horseradish peroxidase IgG1 IgG2A Immune Sera Immunoglobulin Heavy Chains Immunoglobulins Immunologic Factors Institutional Animal Care and Use Committees Introns Inventors L2 protein, Human papillomavirus type 16 Light Macrophage Mammals Matrix Attachment Regions Mice, Inbred BALB C Microscopy Milk, Cow's Morpholinos Mus Necrosis Needles Nicotiana Oligonucleotide Primers Oligonucleotides Open Reading Frames Opsonophagocytosis Papilloma Pathogenicity Plant Development Plant Extracts Plant Leaves Plant Proteins Plants Plants, Transgenic polyacrylamide gels Polystyrenes polyvinylidene fluoride prisma Protein Glycosylation Proteins Punctures Rabbits Receptors, IgG Recombinant Proteins Replicon Reproduction Response, Immune Ribulose-Bisphosphate Carboxylase Large Subunit Satellite Viruses SDS-PAGE Serum Serum Albumin, Bovine Sodium Ascorbate Sodium Chloride sodium phosphate Specimen Collection Stars, Celestial Strains Sucrose Sulfate, Magnesium Syringes System, Immune Technique, Dilution Tissue, Membrane Tissues Transferase Transmission Electron Microscopy Triton X-100 Tromethamine Tween 20 Ultraviolet Rays uranyl acetate Vaccination Vaccines Vaccines, Recombinant Virion Viroids Virus Vision Western Blotting xylosyltransferase

Example 4

[Figure (not displayed)]

To a solution of (S)-2-(6-(2-ethyl-5-fluoro-4-hydroxyphenyl)-1H-indazol-3-yl)-5-propyl-4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridine-6-carboxylic acid, TFA (30 mg, 0.052 mmol), N,N-dimethylazetidin-3-amine, 2HCl (27.0 mg, 0.156 mmol), and DIPEA (0.064 mL, 0.364 mmol) in DMF (1.5 mL), was added HATU (29.6 mg, 0.078 mmol) and the reaction mixture was stirred at RT overnight. Hydrazine (5 eq) was added, the reaction mixture was stirred at RT for 10 min, concentrated and purified by preparative HPLC to provide the TFA salt of the title compound (29.6 mg, 74% yield). (m/z): [M+H]+ calcd for C30H36FN7O2 546.29 found 546.6.

Full text: Click here
Patent 2024
Amines Azetidines Carboxylic Acids DIPEA High-Performance Liquid Chromatographies hydrazine Indazoles pyridine Sodium Chloride

Example 2

A reaction solution was prepared by dissolving manganese (II) acetylacetonate acetate (Mn(CH3COCHCOCH2)2) and Cobalt (II) acetate tetrahydrate (Co(CH3COO)2.4H2O) in a mixture of oleic acid (OLAC) and 1-octadecene. The reaction solution had a molar ratio of 4.5 mol OLAC: mol Metal (Mn+Co) and a combined metal concentration of 0.9 mmol Mn/mL of 1-octadecene. The reaction solution was heated to a temperature of 130° C. under flowing nitrogen and held at 130° C. for 60 minutes. The mixture was then heated under an inert atmosphere of nitrogen at a rate of 10° C./min to reflux (320° C.). The reaction mixture was held at 320° C. for 120 min. The reaction mixture was cooled under an inert atmosphere using a flow of RT air to cool the exterior of the reaction vessel. The nanoparticles were collected and purified via repeated washing and decanting/centrifugation steps using hexane as a hydrophobic solvent, and isopropanol as a counter solvent. The purified nanoparticles were dispersed in toluene. TEM images illustrated that the nanoparticles are rod-shaped, have an average length of 64.1 with a length distribution of 15% and an average width of 11.7 nanometers with a width distribution of 13%.

Full text: Click here
Patent 2024
1-octadecene Acetate acetyl acetonate ARID1A protein, human Atmosphere Blood Vessel Centrifugation Cobalt Isopropyl Alcohol Manganese Metals Molar n-hexane Nitrogen Oleic Acid Solvents Toluene

Top products related to «AT 10»

Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in United States, Switzerland, Germany, China, United Kingdom, France, Canada, Japan, Italy, Australia, Austria, Sweden, Spain, Cameroon, India, Macao, Belgium, Israel
Protease inhibitor cocktail is a laboratory reagent used to inhibit the activity of proteases, which are enzymes that break down proteins. It is commonly used in protein extraction and purification procedures to prevent protein degradation.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, China, United Kingdom, Italy, Japan, Sao Tome and Principe, France, Canada, Macao, Switzerland, Spain, Australia, Israel, Hungary, Ireland, Denmark, Brazil, Poland, India, Mexico, Senegal, Netherlands, Singapore
The Protease Inhibitor Cocktail is a laboratory product designed to inhibit the activity of proteases, which are enzymes that can degrade proteins. It is a combination of various chemical compounds that work to prevent the breakdown of proteins in biological samples, allowing for more accurate analysis and preservation of protein integrity.
Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Italy, Switzerland, Australia, Spain, Belgium, Denmark, Singapore, India, Netherlands, Sweden, New Zealand, Portugal, Poland, Israel, Lithuania, Hong Kong, Argentina, Ireland, Austria, Czechia, Cameroon, Taiwan, Province of China, Morocco
Lipofectamine 2000 is a cationic lipid-based transfection reagent designed for efficient and reliable delivery of nucleic acids, such as plasmid DNA and small interfering RNA (siRNA), into a wide range of eukaryotic cell types. It facilitates the formation of complexes between the nucleic acid and the lipid components, which can then be introduced into cells to enable gene expression or gene silencing studies.
Sourced in United States, Germany, China, United Kingdom, Morocco, Ireland, France, Italy, Japan, Canada, Spain, Switzerland, New Zealand, India, Hong Kong, Sao Tome and Principe, Sweden, Netherlands, Australia, Belgium, Austria
PVDF membranes are a type of laboratory equipment used for a variety of applications. They are made from polyvinylidene fluoride (PVDF), a durable and chemically resistant material. PVDF membranes are known for their high mechanical strength, thermal stability, and resistance to a wide range of chemicals. They are commonly used in various filtration, separation, and analysis processes in scientific and research settings.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.

More about "AT 10"

Discover the power of PubCompare.ai to boost your AT10 (also known as Adenylate Translocase 10 or ANT10) research accuracy.
This crucial molecule plays a critical role in regulating cellular processes, signal transduction, transcriptional regulation, and metabolic control, making it an important target for researchers studying a range of disease states.
Our AI-driven protocol optimization can help you effortlessly locate the best protocols from literature, pre-prints, and patents.
Leveraging AI-powered comparisons, we enable you to identify the optimal protocols and products for your research needs, including the use of TRIzol reagent, FBS (Fetal Bovine Serum), RNeasy Mini Kit, TRIzol, Protease inhibitor cocktail, DMEM (Dulbecco's Modified Eagle Medium), Lipofectamine 2000, and PVDF (Polyvinylidene Fluoride) membranes.
Experience seamless protocol optimization and take your AT10 studies to new heights.
With a growing body of literature exploring its structure, function, and potential therapeutic applications, AT10 research has become a focus of extensive investigation.
By utilizing the power of PubCompare.ai, you can streamline your research process and maximize the accuracy of your findings, even with the occasional typo along the way.