Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Example 7
A reaction vessel equipped with a reflux condenser and a stirrer was charged with a diisocyanate compound, an end-capping agent, a solvent (THF), and a carbodiimidization catalyst shown in Table 1 at a ratio shown in Table 1, and the mixture was stirred under a nitrogen flow at 70° C. for 3 hours.
Then, it was confirmed by IR spectrum measurement that an absorption peak attributed to an isocyanate group at a wavelength of about 2270 cm−1 almost disappeared, and a THF solution of a carbodiimide compound of n=6 was obtained. Then, the THF was volatilized, followed by drying, to obtain a carbodiimide compound P7.
Example 8
In synthetic Example 8, a carbodiimide compound P8 of n=6 was obtained in the same manner as in Synthetic Example 7 except that a diisocyanate compound, an end-capping agent, a solvent, and a carbodiimidization catalyst shown in Table 1 were blended at a ratio shown in Table 1.
Example 9
In synthetic Example 9, a carbodiimide compound P9 of n=6 was obtained in the same manner as in Synthetic Example 7 except that a diisocyanate compound, an end-capping agent, a solvent, and a carbodiimidization catalyst shown in Table 1 were blended at a ratio shown in Table 1.
Example 10
A reaction vessel equipped with a reflux condenser and a stirrer was charged with a diisocyanate compound and a carbodiimidization catalyst shown in Table 1 at a ratio shown in Table 1, and the mixture was stirred under a nitrogen flow at 185° C. for 24 hours to obtain isocyanate-terminated poly-4,4′-dicyclohexylmethane carbodiimide.
The measured ratio of NCO was 3.78%, and n was 9.
Then, the isocyanate-terminated poly-4,4′-dicyclohexylmethane carbodiimide was heated to 150° C., and 14.2 parts by mass of an end-capping agent shown in Table 1 was added thereto, followed by stirring for 3 hours. Then, it was confirmed by IR spectrum measurement that an absorption peak attributed to an isocyanate group at a wavelength of about 2270 cm−1 almost disappeared, and a carbodiimide compound P10 of n=9 was obtained.
Example 7
t-TUCB (245 mg, 0.56 mmol), benzyl alcohol (200 uL, 1.93 mmol), 1-ethyl-3-dimethylaminopropyl)carbodiimide (EDCI, 148 mg, 0.95 mmol), 4-dimethylaminopyridine (DMAP, 5 mg, 0.04 mmol) and trimethylamine (Et3N, 63 mg, 0.62 mmol) were dissolved in THF and stirred overnight. The product was extracted twice with a saturated solution of NaHCO3 and once with 1 M HCl. The product was dried over MgSO4, evaporated and purified by flash chromatography with 100% EtOAc. The final product was recrystallized in EtOAc (34 mg, 0.06 mmol, 11%). MP=186.9-189.6° C. (188.1° C.) 1H NMR (400 MHz, DMSO-d6) δ 8.47 (s, 1H), 7.87 (d, J=8.9 Hz, 2H), 7.47-7.26 (m, 6H), 7.16 (d, J=8.8 Hz, 2H), 7.02 (d, J=8.9 Hz, 1H), 6.15 (d, J=7.9 Hz, 1H), 5.26 (s, 2H), 4.41 (s, 1H), 3.47 (s, 1H), 1.99 (s, 2H), 1.88 (s, 2H), 1.45 (q, J=11.1, 10.3 Hz, 2H), 1.32 (q, J=11.2 Hz, 2H).
Example 148
To a stirred solution of (R)-2-oxo-3-phenyloxazolidine-5-carboxylic acid (100 mg, 482.67 μmol) in dichloromethane (2 mL) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (111 mg, 579 μmol), HOBt (78 mg, 579 μmol), triethylamine (146 mg, 1.45 mmol, 200 μL) and 3-(4-ethoxy-3-methoxyphenyl)-5-(piperidin-4-yl)-1,2,4-oxadiazole hydrochloride (164 mg, 482.67 μmol). The reaction mixture was stirred at 25° C. for 12 h and then concentrated under reduced pressure. The residue was purified by prep-HPLC (column: Boston Green ODS 150×30 5 μm; mobile phase: [water (10 mM ammonium carbonate)-acetonitrile]; B%: 45%-75%, 11.5 min) to give (R)-5-(4-(3-(4-ethoxy-3-methoxyphenyl)-1,2,4-oxadiazol-5-yl)piperidine-1-carbonyl)-3-phenyloxazolidin-2-one (139 mg, 280 μmol, 58%) as a pale yellow solid. 1H NMR (400 MHz, CHLOROFORM-d) δ 7.67 (d, J=8.3 Hz, 1H), 7.59-7.55 (m, 3H), 7.40 (t, J=7.7 Hz, 2H), 7.17 (t, J=6.9 Hz, 1H), 6.95 (dd, J=1.1, 8.6 Hz, 1H), 5.25 (ddd, J=3.1, 6.2, 9.1 Hz, 1H), 4.81 (dd, J=6.8, 8.6 Hz, 1H), 4.58 (br d, J=14.0 Hz, 0.5H), 4.37-4.21 (m, 1H), 4.17 (q, J=7.0 Hz, 2H), 4.07 (dt, J=2.6, 9.0 Hz, 1.5H), 3.96 (d, J=2.2 Hz, 3H), 3.59 (ddd, J=3.3, 10.3, 14.0 Hz, 0.5H), 3.41-3.17 (m, 2H), 3.09-3.00 (m, 0.5H), 2.34-1.95 (m, 4H), 1.54-1.47 (m, 3H); LCMS (ESI) m/z: [M+H]+=493.3.