BRET experiments were conducted as previously described [36 (link)]. 20 µg of the transfected cells (100 µl) were distributed in duplicates into a black 96-well plate with black bottom for fluorescence and a white 96-well plate with white bottom for bioluminescence measurements. Signals were detected by a Mithras LB 940 fluorimeter calculating the integration for bioluminescence using filters for 440–500 nm (485 nm maximum emission of bioluminescence), and for fluorescence with a filter for 510–590 nm (530 nm maximum emission of EYFP). To confirm equal expression of Rluc and increasing expression of EYFP, for each sample bioluminescence and fluorescence was measured before starting the experiment. EYFP fluorescence was defined as the fluorescence of the sample minus the fluorescence of cells expressing only Rluc-tagged receptors. For BRET, 5 µM coelenterazine-H (PJK, Kleinblittersdorf, Germany) was added to the samples and measurements were performed after 1 min (net BRET determination) and after 10 min (Rluc luminescence quantification). Net BRET was defined as the bioluminescence of the sample minus the bioluminescence of cells expressing only Rluc-tagged receptors. BRET signals were determined by calculating the ratio of the light emitted by EYFP over the light emitted by the Rluc A. milliBRET unit (mBU) is the BRET ratio × 1000. Curves were fitted using nonlinear regression. Displacement studies were performed in triplicates at a constant BRET ratio, around the BRET50 of the A2BAR-Rluc/A2AAR-YFP pair, and increasing amounts of the A2BAR. For testing the effects of compounds on heteromerization of A2AAR and A2BAR the agonists adenosine (100 µM), NECA (100 µM), CGS-21680 (A2AR, 10 µM), BAY60-6583 (A2BR, 10 µM), and the antagonist PSB-603 (A2BR, 500 nM) were added for 60 min to cells which expressed A2BAR-Rluc and A2AAR-YFP, around the BRET50 value. The final DMSO concentration in these experiments was 2.5 % and experiments were performed in triplicates.
Full text: Click here