Our approach provides a general measure of acute toxicity loading of insecticides on US agricultural land and surrounding areas, assuming insects are exposed to pesticides released to the environment through direct contact with contaminated surfaces, water, or food or through ingestion of contaminated food or water. Different insects will have different exposures depending on their habitat, behaviors, and food sources; however, across years, exposures for different types of insects will be comparable. However, as noted previously, this analysis does not include actual or estimated exposure doses, nor does it factor in timing and mode of pesticide application. Therefore, the AITL method would best be described as a screening analysis that can identify or predict potential environmental impacts.
Honey bee lethality is the measure of toxicity used to assess AITL. This analysis was developed for both contact toxicity (AITLc) and oral toxicity (AITLo). The AITLC calculation provides the number of toxicity loading units (TLU) applied to a crop for each pesticide by dividing the mass of chemical applied (in μg) by the honey bee contact LD50 (in μg/bee) (the first term inEq 1 below) to give the number of honey bee LD50’s released to the environment. This value is then modified by the half-life of the chemical (in days), assuming exposure continues as long as the chemical is present, with degradation governed by the half-life of the chemical and the dose expressed as the area under the curve of concentration versus time (second term in Eq 1 ). Because the AITL values obtained are on the order of 1012–1018, a scaling factor of 10−15 is included to scale the values for plotting the results. The same method of calculation is applied for AITLo (Eq 2 ).
Toxic degradates are known for some pesticide active ingredients. However, because environmental half-lives were not available for most of these compounds they were not included in the analysis. Those degradates with known toxicity (e.g., malaoxon, the degradate of malathion) might contribute to overall acute toxicity, although we determined that most known degradates would contribute only a negligible amount to the overall toxicity loading of the parent compound. The one exception as noted previously is clothianidin, which is a metabolite of thiamethoxam; our analysis accounts for this conversion in the environment because it contributes a measurable level of toxicity relative to the parent compound.
We estimated pesticide loading on agricultural land and surrounding areas as the area under the curve of degradation/dissipation of pesticides over time, assuming typical first-order kinetics, as recommended by US EPA in its guidance [38 ]. While degradation rates vary depending on a number of factors, the first-order assumption is widely used for estimating pesticide concentrations in the environment over time, and this appears to be an appropriate assumption for the neonicotinoid insecticides [39 (link), 40 (link)]. An example theoretical degradation curve for imidacloprid, with a half-life of 174 days, is shown inFig 3 . In this example, on Day Zero (application day), the available dose is 150 honey bee LD50s. On Day One, 149 honey bee LD50s still remain, with the potential for concomitant toxic effects to insects. On Day 174, 75 honey bee LD50s remain in the environment. Ninety-seven percent of the imidacloprid is degraded at five half-lives (870 days or 2.4 years). The total integrated environmental toxicity loading level over time can be calculated as the area under the curve. Therefore, we define AITL as the area under the curve in number of honey bee LD50-days, representing the total exposure potential for arthropods (both terrestrial and aquatic) over the degradation period.
For pesticides used as seed treatments, our analysis assumes that insect exposure from contact with treated crops would include dust drift to field-side plants during seed planting (which can be considerable) resulting in both contact and oral exposure, and oral exposure from consuming pollen, nectar, guttation droplets, or plant tissue from the treated crop [12 (link)]. In addition, application of the seeds to soil would result in exposure of the soil entomofauna and migration to waterways would result in exposures for aquatic insects. This is a simplifying assumption, which may or may not overestimate actual insecticide doses received by honey bees and other beneficial insects from seed treatments, depending on the specific circumstances. Based on a “residue per unit dose” estimation, it appears that seeding results in higher contamination of insects than an equivalent spray application but, due to the lower per hectare (or acre) rates of application for seed treatments, a comparable level of contamination in non-target arthropods can be expected [41 ]. Because the AITL is intended to be used as a screening level assessment for comparative and surveillance purposes, the inclusion of seed treatment applications is a reasonable approach. Further refinement of this method or other analyses would be required before making policy or regulatory decisions based on seed insecticide treatments alone.
Honey bee lethality is the measure of toxicity used to assess AITL. This analysis was developed for both contact toxicity (AITLc) and oral toxicity (AITLo). The AITLC calculation provides the number of toxicity loading units (TLU) applied to a crop for each pesticide by dividing the mass of chemical applied (in μg) by the honey bee contact LD50 (in μg/bee) (the first term in
Toxic degradates are known for some pesticide active ingredients. However, because environmental half-lives were not available for most of these compounds they were not included in the analysis. Those degradates with known toxicity (e.g., malaoxon, the degradate of malathion) might contribute to overall acute toxicity, although we determined that most known degradates would contribute only a negligible amount to the overall toxicity loading of the parent compound. The one exception as noted previously is clothianidin, which is a metabolite of thiamethoxam; our analysis accounts for this conversion in the environment because it contributes a measurable level of toxicity relative to the parent compound.
We estimated pesticide loading on agricultural land and surrounding areas as the area under the curve of degradation/dissipation of pesticides over time, assuming typical first-order kinetics, as recommended by US EPA in its guidance [38 ]. While degradation rates vary depending on a number of factors, the first-order assumption is widely used for estimating pesticide concentrations in the environment over time, and this appears to be an appropriate assumption for the neonicotinoid insecticides [39 (link), 40 (link)]. An example theoretical degradation curve for imidacloprid, with a half-life of 174 days, is shown in
For pesticides used as seed treatments, our analysis assumes that insect exposure from contact with treated crops would include dust drift to field-side plants during seed planting (which can be considerable) resulting in both contact and oral exposure, and oral exposure from consuming pollen, nectar, guttation droplets, or plant tissue from the treated crop [12 (link)]. In addition, application of the seeds to soil would result in exposure of the soil entomofauna and migration to waterways would result in exposures for aquatic insects. This is a simplifying assumption, which may or may not overestimate actual insecticide doses received by honey bees and other beneficial insects from seed treatments, depending on the specific circumstances. Based on a “residue per unit dose” estimation, it appears that seeding results in higher contamination of insects than an equivalent spray application but, due to the lower per hectare (or acre) rates of application for seed treatments, a comparable level of contamination in non-target arthropods can be expected [41 ]. Because the AITL is intended to be used as a screening level assessment for comparative and surveillance purposes, the inclusion of seed treatment applications is a reasonable approach. Further refinement of this method or other analyses would be required before making policy or regulatory decisions based on seed insecticide treatments alone.