Example 1
This example demonstrates the use of cresols as generic solvents for processing various kinds of carbon nanotubes, and further demonstrates that they can also be easily removed afterwards by washing or evaporation. Most strikingly, cresols can process carbon nanotubes over a very broad range of concentrations, reaching the level of tens of weight percent. As the concentration of carbon nanotubes increases, a continuous transition of four distinctive states—namely dilute dispersions, thick pastes, freestanding gels, and viscoelastic doughs—is observed, all of which are readily usable by a wide array of material processing techniques.
The results of the studies described in this Example demonstrate that powders of both SWCNTs and MWCNTs can be well dispersed in m-cresol after sonication or grinding without the need for any surface functionalization. As verified by SEM images, initially the nanotubes were heavily agglomerated and entangled in the powders, but they became well separated after casting from the corresponding m-cresol dispersions. These results indicate that the interaction between m-cresol and the surface of the carbon nanotubes must be sufficiently strong to allow the agglomerated nanotubes to disperse. 1H-NMR spectroscopy was employed to probe the nature of such interaction. As shown in FIG. 1, in the presence of SWCNTs and MWCNTs, the phenolic hydroxyl proton peak shifted upfield by 0.10 ppm, while other proton peaks remained unchanged. This shift was a result of increased electron density on the phenolic hydroxyl proton, indicating charge-transfer interaction with the nanotubes.
Sonicating or grinding carbon nanotubes in m-cresol does not induce chemical changes to either the solvent or the nanotubes. This is illustrated with SWCNTs due to their higher spectroscopic sensitivity to structural changes. The FTIR spectra in FIG. 2 show that m-cresol itself does not degrade after ultrasonication with or without SWCNTs. As a relatively weak acid, m-cresol does not induce permanent chemical changes to the nanotube surface and can be removed by evaporation or washing. The Raman spectra of the pristine SWCNTs and a dried SWCNT film cast from m-cresol dispersion do not show obvious differences (FIG. 3), suggesting that the pristine SWCNTs are not damaged during processing. The absence of new bands between 400 to 1000 cm−1, where m-cresol shows strong Raman signals, indicates that m-cresol have been successfully removed.
Among the three isomers of cresols, m-cresol is a liquid at room temperature; therefore, it is used for most of the experiments in this Example. While o-cresol and p-cresol are solid at room temperature, they can also process carbon nanotubes at a molten state or when blended with m-cresol at room temperature. This indicates that even the unrefined, crude grade of cresols, which is a liquid mixture of the three isomers, can be directly used for industrial scale processing of carbon nanotubes. Indeed, UV-Vis-NIR spectra of SWCNTs dispersed in a ternary isomer mixture of cresol show characteristic bands of well dispersed nanotubes, which is confirmed by transmission electron microscopy (TEM) studies. Industrial grade cresols often contain phenolic impurities, and it is found that adding an additional 10 wt. % of phenol into the ternary mixture would not negatively affect the stability of the nanotube dispersions. The impurity tolerance and ease of removal make cresols the ideal type of non-reactive solvents for the solution processing of carbon nanotubes. In the sections below, cresol solvents are demonstrated to render carbon nanotubes with polymer-like rheological and viscoelastic properties and processability, making them immediately usable by already available material processing techniques to create desirable structures, form factors, and composites.
Four States of MWCNTs in m-Cresol.
m-cresol alone can disperse and process carbon nanotubes up to tens of weight percent. Since MWCNTs are the more common type of mass-produced carbon nanotubes and are much more affordable and available, they were chosen as the model material for most of the work in the following sections unless otherwise mentioned. Dilute dispersions were typically made by sonication and could remain stable for at least many months. The other higher concentration states were typically made by grinding. Transitions between the four states were accompanied by threshold-like changes in their electrical, rheological, and viscoelastic properties. For example, the transition from a dilute dispersion to a thick paste was accompanied by the onset of electrical conductivity around 3 mg/ml (FIG. 4), which can be attributed to the formation of a percolated nanotube network, establishing a continuous electrically conductive pathway throughout the volume. At higher concentrations, increased density of the MWCNTs network resulted in significant changes in rheological and viscoelastic properties. For example, the transition from a thick paste to a self-standing gel was marked by an inability to free flow around 40-50 mg/ml, after which the viscosity increased significantly (FIG. 5). At concentrations above 100 mg/ml, a viscoelastic, kneadable playdough-like material was obtained, which was highly cohesive and exhibited resistance to compression, as characterized by a rapidly increased compression modulus (FIG. 6).
The continuous transition between these four highly processable, polymer solution-like states indicates that the nanotubes were dispersed and outstretched in m-cresol, forming a cohesive network that densifies at increasing concentrations. If the nanotubes were still agglomerated as in their powders, the corresponding high concentration products would not be cohesive due to segregated domains of agglomerated nanotubes, resulting in poor processability (see schematic illustrations in FIG. 7). These four states were observed for all the carbon nanotubes tested (e.g., unfunctionalized single walled or multiwalled tubes of various sizes). As demonstrated by the examples below, m-cresol indeed offers unprecedented versatility for processing carbon nanotubes for existing and new applications.
Dilute Dispersion and LB Assembly.
The m-cresol dispersion can be directly applied to LB assembly for making monolayer thin films. Successful LB monolayer assembly requires high quality nanotube dispersions without other surface-active materials to disrupt their packing on the water surface, which is challenging for additive-based carbon nanotube dispersions. Since m-cresol can gradually dissolve in water, it dissipated into the sub-phase after spreading the nanotubes on the water surface, leaving clean nanotubes on the water surface. The water-supported monolayers could be further densified by closing two barriers, yielding a positive surface pressure (FIG. 8), which could then be transferred to a substrate by dip-coating. FIG. 9 is a low magnification SEM overview of a MWCNT film on a glass slide collected at a surface pressure of 30 mN/m, which is continuous, uniform, and cohesive. Since many of the starting MWCNTs were curled, twisted, or even kinked, and could not lay flat, the near-monolayer thickness of the film (FIG. 10) also confirmed that the heavily agglomerated MWCNTs in the starting powders indeed had been well separated in m-cresol. Strong van der Waals attraction at the tube-tube junctions contributed to the continuity and cohesiveness of the MWCNT monolayer.
Transferring the nanotube monolayer onto soft plastic substrates such as poly(ethylene terephthalate) formed a flexible transparent conductor. Sheet resistance and optical transparency of the nanotube coating could be fine-tuned further by precisely controlling the number of deposited layers as well as the packing density within each monolayer (FIG. 11). For example, a sheet resistance of 90 kΩ/sq was obtained at 72% of optical transparency. Using m-cresol as a processing medium did not damage the surface of the nanotubes nor leave hard-to-remove residues and resulted in satisfying conductivity of the LB films without the need for extensive further annealing steps. Similarly, LB assembly of SWCNT monolayers was achieved.
Thick Paste, Blade Coating, and Screen-Printing.
Increasing the loading of MWCNTs up to 40 mg/ml resulted in a more viscous paste, which exhibited relatively high viscosity and shear thinning behavior (FIG. 12), with yield stress in the range of 1 to 10 Pa (FIG. 13), making it suitable for use by brushing or painting. In order to make a continuous film using these techniques, the paste should be sufficiently cohesive so that the coating does not break up under the shear during spreading or crack by the capillary action during drying. Therefore, the nanotubes should be interconnected throughout the paste without extensively segregated domains (FIG. 7). The paste was applied by blade coating. The oven-dried coating on glass was continuous and free of cracks over the entire area. SEM images show that it was made of an interwoven, continuous, and high-density network of nanotubes (FIG. 14). Similar to blade coating, industrial screen-printing can directly use the MWCNT paste to generate functional patterns. Blade coating is commonly used to make electrodes for energy storage devices from slurries, which often use carbon nanotubes as a conductive binder for active materials. Highly cohesive, additive-free pastes with well-dispersed nanotubes are readily compatible with these slurry processing techniques and could directly benefit this large scale application of carbon nanotubes.
MWCNT Pastes for Polymer Composites.
Polymer nanocomposite is another area that uses a very large scale of carbon nanotubes. The paste state offers a number of potential advantages for manufacturing. To start, the paste can be easily mixed with powders of polymers, which is one of the most common forms of industrial polymers. Moreover, m-cresol itself is a solvent for many commodity polymers such as PMMA, nylons, polyethyelene terephthalate, polystyrene, and phenolic resins, which helps the blending process. Using the paste also drastically reduces the amount of solvent needed for manufacturing and greatly shortens the baking time needed for solvent removal. A proof-of-concept experiment was conducted in which PMMA powders were directly mixed with the paste by mortar and pestle. The product was rolled into a flexible and highly plastic sheet, which sustained over 800% of tensile strain. Upon thermal curing at 150° C., the sheet hardened due to partial removal of m-cresol. At 1 wt. % loading of MWCNTs in PMMA, the Young's modulus of the composite (1.46 GPa) increased by 24% in comparison to a similarly processed PMMA sheet (1.17 GPa). SEM observation confirmed that the MWCNTs had been finely dispersed in the PMMA matrix. Such a soft-hard transition is critical for industrial forming techniques, which turn materials into desirable geometries and form factors. The additive-free carbon nanotube pastes in cresols can be useful for accelerating the development and manufacturing of polymer nanocomposites.
Gel and 3D Printing.
Above 40 mg/ml, the MWCNT network in m-cresol was sufficiently dense to hinder free flow, leading to a freestanding gel. As the nanotube concentration increased, the gel became more solid-like with an increased storage modulus (FIG. 15). The loss modulus increased more slowly than the storage modulus, rendering the gel a sufficient level of liquid character for an extrusion type of processing (FIG. 16). Therefore, the MWCNT gel could deform and reconnect easily. A MWCNT gel was extruded to form self-supporting fibers through a 0.5 mm diameter needle. Since the gel was cohesive, extrusion could be continuously operated even with finer needles (e.g., 0.1 mm diameter). This again reflects that the nanotubes were uniformly dispersed by m-cresol and outstretched like polymers in the gel, rendering it suitable rheological properties for continuous, unhindered extrusion. This gel was immediately usable for programmed and automated printing. As a proof-of-concept, a cup-shaped structure was 3D printed from the gel. The base of the cup was made of two criss-cross layers of close-packed fibers, and the side was made of vertically stacked rings. After drying, the cup structure shrank slightly isotopically but maintained its shape, resulting in a stiff solid object that could be further handled.
MWCNT Dough.
The last state of MWCNTs/m-cresol composition was a viscoelastic dough (>100 mg/ml), which could be kneaded or rolled without fracture. In contrast to a gel, when kneaded on paper, the dough did not leave any stain mark. This was due to the strong attraction between the nanotubes in the densely woven 3D network, which prevented them from leaving residues on the paper. Since the nanotube/m-cresol dough was highly kneadable and stain-free, it must be highly cohesive and free of mechanically weak boundaries between segregated grains of carbon nanotubes. As with a bread dough, the MWCNT dough could be cut into pieces and rejoined when pressed together or molded into arbitrary shapes without altering its viscoelastic properties. A thick film was cold-rolled from the dough, which was still soft and plastic, and could be reshaped using a mold. The MWCNTs doughs could be hardened to fix their shapes after heating at above 200° C. to remove the m-cresol. The hardened structures could then be returned to the soft dough state by absorbing m-cresol. This playdough-like processability is useful for the fabrication of arbitrarily shaped 3D solids of neat carbon nanotubes for a range of electronic, thermal, and energy applications.
Materials and Methods
Materials.
Carbon nanotube powders of various types, sources, and levels of purities from three vendors were tested, and all dispersed well in m-cresol and its liquid mixtures with other isomers. These include: (1) CoMoCAT® MWCNTs (98% carbon content), CoMoCat® SWCNTs (90% carbon content, 90% semi-conducting), and double-walled carbon nanotubes (90% carbon content, made by chemical vapor deposition (CVD)) were obtained from Sigma-Aldrich; (2) SWCNTs (P2, 90% purity) and carboxylic functionalized SWCNTs (P3, 90% purity) were made by arc-discharge and obtained from Carbon Solution Inc.; (3) Graphitized MWCNTs (TNGM2, 99.9% purity, approximate lengths of 50 μm), low density SWCNTs (TNSR, 95% purity, approximate lengths of 5-30 μm, 0.027 g/cm3), high density SWCNTs (TNST, 95% purity, 0.14 g/cm3), short SWCNTs (TNSSR, 95% purity, approximate lengths of 1-3 μm), and short MWCNTs (TNSM2, 95% purity, approximate lengths of 0.5-2 μm) were all made by CVD and obtained from TimesNano.
P2 SWCNTs and MWCNTs (CoMoCat®) were used for demonstrating LB assembly. The results of the pastes, gels, and doughs were demonstrated with CoMoCat® MWCNTs as the model material, although other types of MWCNTs work as well.
Other chemicals were purchased from Sigma-Aldrich and used as received, including m-cresol (99%), o-cresol (99%), p-cresol (98%), toluene (99.9%), phenol (>99%), DMF (99.8%), NMP (anhydrous, 99.5%), PMMA (200,000 Mw), and methyltrichlorosilane (99%). A ternary isomer mixture of cresol (>99 wt. %, 1:1:1 ratio) was purchased from Fisher Scientific and used as received.
LB Assembly and Transparent Conductive Thin Films.
Powders of MWCNTs or SWCNTs were first mixed with m-cresol using a mortar and pestle, then sonicated in pulse mode (2 s on/2 s off cycles for a total of 1 hour) using a Qsonica Q125 sonicator rated at 125 W, equipped with a ¼ inch standard tapered tip at 90% power. After sonication, the dispersion was subject to exhaustive high-speed centrifugation at 11000 rpm for 1 hour using an Eppendorf 5804 desktop centrifuge. The supernatant was recovered and used. Samples for making transparent conductors were first purified by a non-oxidative route, including washing in 3M HCl at 65° C. for 4 hours, followed by baking in a muffled furnace at 250° C. for 1 hour.
All parts of the LB system (Nima Technology) were thoroughly cleaned with acetone before use. Using a glass syringe, 1 ml of m-cresol dispersion (SWCNT or MWCNT) was carefully spread onto the air-water interface. A tensiometer with a Wilhelmy plate was used to monitor the surface pressure while closing the barriers. At surface pressures of around 40 mN/m for SWCNTs and 30 mN/m for MWCNTs, monolayer films were dip-coated onto a substrate (typically glass slides) with a pull speed of 2 mm/min. The obtained LB films were annealed at 150° C. for 30 min before subsequent LB deposition to produce multi-layered films.
Blade-Coating and Screen Printing.
The MWCNTs paste in m-cresol (100 mg/ml) was made by direct mixing using a mortar and pestle, then diluted to 40 mg/ml, and hand ground further to yield a spreadable thick paste. Glass slides were first silanized with 5 wt. % methyltrichlorosilane in toluene for 10 minutes, and then washed thoroughly using toluene followed by acetone. Two strips of Kapton tapes were attached to the sides of the silanized glass slide as spacers to control the thickness of the coating. About 0.3 ml of MWCNT paste was deposited onto the shallow trough created by the Kapton tapes. A razor blade was used to drag the paste to coat the slide. The coating was left to dry at 150° C. for 2 hours. Control experiments were done using NMP instead of m-cresol as the solvent at the same nanotube concentration. Screen-printing was done on paper through a mask using a paste of 10 mg/ml.
Polymer Composite.
To make the MWCNT/PMMA nanocomposite, a MWCNTs/m-cresol paste (40 mg/ml) was ground directly with powders of PMMA (200,000 Mw) using a mortar and pestle for 10 minutes. The composite was then flattened by cold rolling, and it turned flexible and rubbery after being air-dried. Curing at 150° C. for 2 hours significantly hardened the piece and fixed its shape.
3D Printing.
The MWCNTs/m-cresol gel was made by direct mixing using a mortar and pestle at a concentration of 120 mg/ml. The resulting mixture was diluted to 80 mg/ml and ground further. The gel was loaded into a syringe and manually extruded from needles with diameters of 0.1 and 0.5 mm, which could be fitted onto a 3D printer (Hyrel 30M). The printed 3D structure could be removed from the glass substrate after being air-dried for 12 hours and could be further hardened by baking to remove m-cresol.
MWCNTs Dough.
The MWCNT/m-cresol dough was made by direct mixing using a mortar and pestle at a concentration of 300 mg/ml or higher. The mixture was then diluted to 150 mg/ml and ground further to yield a dough-like material, which was kneaded to the shape of a ball. Kneading or rolling a nanotube dough does not stain the substrate, while doing so with a gel or paste would result in significant staining. A kneaded dough was sandwiched between two stainless steel foils and cold rolled to a film with a final thickness of 200 μm, which could be cut into various shapes with a razor blade or cookie cutters.
Characterization.
Dispersions of carbon materials in m-cresol were drop-casted onto silicon wafers and dried at 200-250° C., before SEM (FEI Nova 600 system) and atomic force microscopy (AFM) (Park Systems XE-100, tapping mode). UV/vis spectra were taken with an Agilent 8453 UV/Vis spectrometer. NIR spectra were taken using a Perkin Elmer LAMBDA 1050 spectrometer. TEM images were taken with a JEOL ARM300F GrandARM transmission electron microscope. Drop cast SWCNTs were air dried and rinsed with water and ethanol before Raman spectroscopy measurement (WITec Alpha 300, 532 nm excitation). FTIR spectra were recorded on a PerkinElmer Instrument spectrometer (Spectrum Spotlight 300). 1H-NMR spectra were acquired on a 400 MHz Agilent DD MR-400 NMR system. The samples were prepared by adding 100 μl of SWCNT or MWCNT dispersions in m-cresol in 1 ml of CDCl3. The nanotubes were found to be stably dispersed during the entire duration of the NMR experiments. The transparency of the LB films was measured using an Agilent 8453 UV/Vis spectrometer. The sheet resistance of the films was obtained using an in-line four-point probe equipped with a Keithley 2400 source meter. Viscoelastic and rheological properties were measured using an Anton Paar MCR 502 rheometer using a cone-on-plate configuration. The cone had a 25 mm diameter with a 5° gap angle. Viscosity versus concentration measurements were measured with a rotation speed of 1°/s. Yield-stresses were obtained using a Herschel-Bulkley regression included in the Anton Paar software package. Shear-thinning viscosities were measured with a linear ramping shear rate between 0.01 to 100 rad/s. Storage and loss moduli were measured simultaneously using the same rheometer setup at an amplitude of 1%. Tensile and compression tests were done on a Bose electroforce 5500 tester. The composite films were cut into dog bone shapes and pulled at a rate of 0.05 mm/s until failure. Only the results from samples that failed in the middle were considered. Gel and dough samples for compression tests were first molded into cylindrical shapes and carefully transferred to the tester. Compression was done at 0.005 mm/s until the sample ruptured. The slope of the first linear region of the stress-strain curve was taken as the compression modulus.