DAPI
It is commonly used in fluorescence microscopy and flow cytometry to visualize and quantify cellular nuclei.
DAPI emits blue fluorescence when bound to DNA, allowing for the detection and analysis of DNA content and distribution within cells.
Researchers utilize DAPI staining to study chromatin structure, cell cycle dynamics, and DNA damage respnse, among other applications.
The PubCompare.ai platform provides AI-driven tools to optimize and compare DAPI protocols from literature, preprints, and patents, enhancing reproducibility and research accuracy in DAPI-based studies.
Most cited protocols related to «DAPI»
For intracellular injections, brains were coronally sectioned at 200 µm on a Vibratome (Leica, Nussloch, Germany). The sections were then incubated in 4,6-diamidino-2-phenylindole (DAPI; Sigma, St. Louis, MO, USA), a fluorescent nucleic acid stain, for 5 minutes, mounted on nitrocellulose filter paper and immersed in PBS. Using DAPI as a staining guide, individual layer II/III pyramidal neurons of the frontal cortex were loaded with 5% Lucifer Yellow (Molecular Probes, Eugene, OR, USA) in distilled water under a DC current of 3–8 nA for 10 minutes, or until the dye had filled distal processes and no further loading was observed [45] (link), [49] (link). Tissue slices were then mounted and coverslipped in Permafluor. Dendritic segment and spine imaging was performed using a Zeiss 410 confocal laser scanning microscope (Zeiss, Thornwood, NY, USA) using a 488 nm excitation wavelength, using a 1.4 N.A. Plan-Apochromat 100× objective with a working distance of 170 µm and a 5× digital zoom. After gain and offset settings were optimized, segments were digitally imaged at 0.1 µm increments, along the optical axis. The confocal stacks were then deconvolved with AutoDeblur (MediaCybernetics, Bethesda, MD, USA).
Supporting Information is available online (
Most recents protocols related to «DAPI»
Example 8
Cell adhesion was also evaluated by means of in vitro scratch wound-healing assay. HDPSCs cells were analyzed by difference in staining with phalloidin (cell nucleus) and DAPI to visualize actin cytoskeleton.
Cell adhesion results showed excellent interaction and adhesion between neighboring cells in the presence of bioceramic composition. The Bioceramic composition sealer (CB5) and Bioceramic composition repair (CB6), showed a gradual increase in growth over time, an extended morphology and a high content of F-Actin (cell microfilamen), reaching confluence after 72 hours of culture.
The analysis of cell proliferation (via cell viability study), apoptosis, cell adhesion and morphology (via cell adhesion study) and migration (via cell migration study) showed very positive results, indicating that the proposed bioceramic composition induces the odonto/osteogenic mineralization and differentiation process in the presence of tooth-specific human stem cells (hDPSCs pulp). While a market resin sealer was also used in the comparative studies, however, all results were not satisfactory for this product.
Example 7
To perform PLA with PDX samples, the glioblastoma patient derived FFPE samples were used (provided by Samsung Seoul hospital in Seoul, Korea). After FFPE sample were de-paraffinized and performed heat induced antigen retrieval for 15 minutes at 100° C. Slides were blocked with blocking solution provided by Duolink and incubated with rabbit anti-CXCR4 (1:200, Thermoscientific, PA3305), mouse anti-ADRB2 (1:200, Santacruz, Sc-271322), at 37° C. for 1 h in a humidifying chamber. The other process was same as described above (PLA with PDC).
In the
Example 4
To determine where 2F2-grafted “humanized” antibodies and antibody variants are delivered upon internalization into the cell, colocalization studies of the anti-CD79b antibodies internalized into B-cell lines may be assessed in Ramos cell lines. LAMP-1 is a marker for late endosomes and lysosomes (Kleijmeer et al., Journal of Cell Biology, 139(3): 639-649 (1997); Hunziker et al., Bioessays, 18:379-389 (1996); Mellman et al., Annu. Rev. Dev. Biology, 12:575-625 (1996)), including MHC class II compartments (MIICs), which is a late endosome/lysosome-like compartment. HLA-DM is a marker for MIICs.
Ramos cells are incubated for 3 hours at 37° C. with 1 μg/ml 2F2-grafted “humanized” antibodies and antibody variants, FcR block (Miltenyi) and 25 μg/ml Alexa647-Transferrin (Molecular Probes) in complete carbonate-free medium (Gibco) with the presence of 10 μg/ml leupeptin (Roche) and 5 μM pepstatin (Roche) to inhibit lysosomal degradation. Cells are then washed twice, fixed with 3% paraformaldehyde (Electron Microscopy Sciences) for 20 minutes at room temperature, quenched with 50 mM NH4Cl (Sigma), permeabilized with 0.4% Saponin/2% FBS/1% BSA for 20 minutes and then incubated with 1 μg/ml Cy3 anti-mouse (Jackson Immunoresearch) for 20 minutes. The reaction is then blocked for 20 minutes with mouse IgG (Molecular Probes), followed by a 30 minute incubation with Image-iT FX Signal Enhancer (Molecular Probes). Cells are finally incubated with Zenon Alexa488-labeled mouse anti-LAMP1 (BD Pharmingen), a marker for both lysosomes and MIIC (a lysosome-like compartment that is part of the MHC class II pathway), for 20 minutes, and post-fixed with 3% PFA. Cells are resuspended in 20 μl saponin buffer and allowed to adhere to poly-lysine (Sigma) coated slides prior to mounting a coverglass with DAPI-containing VectaShield (Vector Laboratories). For immunofluorescence of the MIIC or lysosomes, cells are fixed, permeabilized and enhanced as above, then co-stained with Zenon labeled Alexa555-HLA-DM (BD Pharmingen) and Alexa488-Lamp1 in the presence of excess mouse IgG as per the manufacturer's instructions (Molecular Probes).
Accordingly, colocalization of 2F2-grafted “humanized” antibodies or antibody variants with MIIC or lysosomes of B-cell lines as assessed by immunofluorescence may indicate the molecules as excellent agents for therapy of tumors in mammals, including B-cell associated cancers, such as lymphomas (i.e. Non-Hodgkin's Lymphoma), leukemias (i.e. chronic lymphocytic leukemia), and other cancers of hematopoietic cells.
Example 2
Materials and Methods
PNA alone (1 nmole) (MW=9984.39; 29 nucleotides in length), or PNA complexed with 3E10 (0.75 mg), was mixed at room temperature for 5 minutes. 200,000 K562 cells were then added to the suspension of 3E10, or PNA alone, in serum free media. Additional serum free media was added to a final volume of 500 ul. Following incubation with cells at 37° C. for 24 hrs, the cells were centrifuged and washed three times with PBS prior to analysis by flow cytometry.
20,000 U2OS cells were seeded in 8-well chamber slides and allowed to adhere for 24 hours. Cells were subsequently treated with PNA alone (1 nmole), or PNA complexed with 3E10 (10 uM). Following incubation at 37° C. for 24 hrs, PNA or PNA mixed with 3E10 was washed with PBS prior to fixation and nuclear staining PNA uptake was subsequently quantified by flow cytometry and imaged using fluorescent microscopy. The PNA was labeled by attachment to the fluorescent dye, tetramethylrhodamine (TAMRA).
Results
The results are illustrated in flow cytometry dot plots (
The results show increased uptake of PNA when mixed with 3E10.
Fluorescent microscopy showed co-localization of nuclear DNA (DAPI in blue) and PNA (Tamra in red) evident by the production of a distinct pink hue.
Example 2
Experiments to determine expression levels of checkpoint inhibitors: PD-1 and LAG-3 on cells in the experiments described below used the following appropriately fluorescent labeled commercial antibodies (phycoerythrin-cyanine7 (PE-Cy7)-conjugated anti-CD4 [clone SK3] or fluorescein isothiocyanate (FITC)-conjugated anti-CD4 [clone RPA-T4], phycoerythrin (PE)-conjugated anti-LAG-3 [clone 3DS223H], phycoerythrin (PE)-conjugated anti-PD-1 [clone EH12.2H7] or allophycocyanin (APC)-conjugated (eBiosciences, or BioLegend)) and the appropriate isotype controls. All antibodies were used at the manufacturer's recommended concentrations. Cell staining was performed in FACS buffer (10% FCS in PBS) on ice for 30 minutes in the dark for the addition of primary antibodies. After two washes, cells were either stained with the appropriate secondary reagent on ice for 30 minutes in the dark or immediately analyzed on a flow cytometer. To exclude dead cells, all samples were co-stained with a viability dye: 7-Aminoactinomycin D (7-AAD) (BD Biosceinces, or BioLegend) or 4′,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) (Life Technologies). All samples were analyzed on either a FACS Calibur or Fortessa Flow Cytometer (BD Biosciences) and analyzed using FlowJo Software (TreeStar, Ashland, Oreg.).
Top products related to «DAPI»
More about "DAPI"
It binds strongly to adenine-thymine (A-T) rich regions in DNA, allowing for the visualization and quantification of cellular nuclei.
DAPI emits a distinctive blue fluorescence when bound to DNA, making it a valuable tool for studying chromatin structure, cell cycle dynamics, and DNA damage response.
Researchers often employ DAPI staining in conjunction with other fluorescent markers, such as Alexa Fluor 488, to achieve multicolor labeling and in-depth analysis of cellular components.
The addition of Triton X-100, a detergent, can enhance the permeability of cell membranes, facilitating the penetration of DAPI and other fluorescent probes.
Bovine serum albumin (BSA) is commonly used as a blocking agent to reduce non-specific binding and improve the signal-to-noise ratio.
Fluorescence microscopy is the primary technique used to visualize and analyze DAPI-stained samples.
Paraformaldehyde is a common fixative used to preserve cellular structures prior to DAPI staining.
The ProLong Gold antifade reagent can be used to mount DAPI-stained samples, protecting the fluorescent signal from photobleaching and enhancing the durability of the preparations.
The PubCompare.ai platform provides AI-driven tools to optimize and compare DAPI protocols from literature, preprints, and patents, empowering researchers to enhance the reproducibility and accuracy of their DAPI-based studies.
By leveraging the power of artificial intelligence, researchers can effortlessly locate and compare DAPI protocols, identify the most effective methods, and streamline their experimental workflows.