The largest database of trusted experimental protocols
> Chemicals & Drugs > Organic Chemical > Egtazic Acid

Egtazic Acid

Egtazic Acid is a chemical compound with potential therapeutic applications.
It is a type of organic acid that may have relevance in various areas of biomedical research, such as pharmacology, biochemistry, and medicinal chemistry.
PubCompare.ai offers a powerful tool to optimize Egtazic Acid research by helping scientists locate and evaluate the best protocols from scientific literature, preprints, and patents.
This AI-driven protocol comparison platform can streamline research workflows and promote reproducible science through its intuitive interface and advanced analytics.
Discover the optimal Egtazic Acid protocols and accelerate your research with PubCompare.ai's enetive tools.

Most cited protocols related to «Egtazic Acid»

Data were obtained using conventional whole cell patch-clamp techniques.
Micropipette fabrication and data acquisition were as described previously for
undiseased donor heart[85] (link). Axopatch 200 amplifiers, Digidata 1200 converters,
and pClamp software were used (Axon Instruments/Molecular Devices). Experiments
were performed at 37°C.
The standard bath solution contained, in mM: NaCl 144,
NaH2PO4 0.33, KCl 4.0, CaCl2 1.8,
MgCl2 0.53, Glucose 5.5, and HEPES 5.0 at pH of 7.4, and pipette
solutions contained K-aspartate 100, KCl 25, K2ATP 5,
MgCl2 1, EGTA 10 and HEPES 5. The pH was adjusted to 7.2 by KOH
(+15−20 mM K+).
For L-type Ca2+ current measurement, the bath solution contained
in mM: tetraethylammonium chloride (TEA-Cl) 157, MgCl2 0.5, HEPES 10,
and 1 mM CaCl2, or BaCl2, or SrCl2 (pH 7.4 with
CsOH). The pipette solution contained (in mM) CsCl 125, TEA-Cl 20, MgATP 5,
creatine phosphate 3.6, EGTA 10, and HEPES 10 (pH 7.2 with CsOH).
For Na+/Ca2+ exchange current measurement, the
bath solution contained, (in mM): NaCl 135, CsCl 10, CaCl2 1, MgCl21, BaCl2 0.2, NaH2PO4 0.33, TEACl 10, HEPES 10,
glucose 10 and (in µM) ouabain 20, nisoldipine 1, lidocaine 50, pH 7.4.
The pipette solution contained (in mM): CsOH 140, aspartic acid 75, TEACl 20,
MgATP 5, HEPES 10, NaCl 20, EGTA 20, CaCl2 10 (pH 7.2 with CsOH).
Full text: Click here
Publication 2011
Adenosine Triphosphate, Magnesium Salt Aspartate Aspartic Acid Axon barium chloride Bath Cells cesium chloride Egtazic Acid Glucose Heart HEPES Lidocaine Magnesium Chloride Medical Devices Nisoldipine Ouabain Phosphocreatine Sodium Chloride Tetraethylammonium Chloride Tissue Donors
Cells were cultured on glass coverslips (Matsunami) pre-coated with 10 µg/ml fibronectin (Sigma) and fixed with 4% (w/v) paraformaldehyde in PBS or BRB80 [80 mM Pipes (pH 6.8), 1 mM MgCl2, and 1 mM EGTA] for 10 min at room temperature. Fixed cells were stained with the respective antibodies, phalloidin conjugated with either Alexa Fluor 488 or rhodamine (Invitrogen), along with DAPI (Sigma) as described previously2 (link), 54 (link). In situ proximity ligation assay (PLA) was performed using Duolink kit (Olink Bioscience) according to the manufacturer’s instructions. After completion of the PLA reaction, samples were refixed with 4% (w/v) paraformaldehyde and incubated with Alexa Fluor-conjugated secondary antibodies (Life Technologies) to detect the individual proteins. Fluorescence images were obtained using a laser scanning confocal imaging system (LSM700, Carl Zeiss) and processed using the ImageJ software. Number of Golgi fragments was quantified by using the ImageJ particle analysis tool. Colocalization was examined using the ImageJ JACoP plugin64 (link) or Metamorph (Molecular Devices).
Full text: Click here
Publication 2017
alexa fluor 488 Antibodies Biological Assay Cells DAPI Egtazic Acid Fluorescence FN1 protein, human Golgi Apparatus Ligation Magnesium Chloride Medical Devices paraform Phalloidine piperazine-N,N'-bis(2-ethanesulfonic acid) Proteins Rhodamine
Human K562 cells were purchased from ATCC (Manassas, VA, Catalog #CCL-243). CUT&RUN was performed using a centrifugation-based protocol. Ten million cells were harvested by centrifugation (600 g, 3 min in a swinging bucket rotor) and washed in ice cold phosphate-buffered saline (PBS). Nuclei were isolated by hypotonic lysis in 1 ml NE1 (20 mM HEPES-KOH pH 7.9; 10 mM KCl; 1 mM MgCl2; 0.1% Triton X-100; 20% Glycerol) for 5 min on ice followed by centrifugation as above. (We have found that nucleases in some cells cause Mg++-dependent degradation of DNA, in which case 0.5 mM spermidine can be substituted for 1 mM MgCl2.) Nuclei were briefly washed in 1.5 ml Buffer 1 (20 mM HEPES pH 7.5; 150 mM NaCl; 2 mM EDTA; 0.5 mM Spermidine; 0.1% BSA) and then washed in 1.5 ml Buffer 2 (20 mM HEPES pH 7.5; 150 mM NaCl; 0.5 mM Spermidine; 0.1% BSA). Nuclei were resuspended in 500 µl Buffer 2 and 10 µl antibody was added and incubated at 4°C for 2 hr. Nuclei were washed 3 x in 1 ml Buffer 2 to remove unbound antibody. Nuclei were resupended in 300 µl Buffer 2 and 5 µl pA-MN added and incubated at 4°C for 1 hr. Nuclei were washed 3 x in 0.5 ml Buffer 2 to remove unbound pA-MN. Tubes were placed in a metal block in ice-water and quickly mixed with 100 mM CaCl2 to a final concentration of 2 mM. The reaction was quenched by the addition of EDTA and EGTA to a final concentration of 10 mM and 20 mM respectively and 1 ng of mononucleosome-sized DNA fragments from Drosophila DNA added as a spike-in. Cleaved fragments were liberated into the supernatant by incubating the nuclei at 4°C for 1 hr, and nuclei were pelleted by centrifugation as above. DNA fragments were extracted from the supernatant and used for the construction of sequencing libraries. We have also adapted this protocol for use with magnetic beads (Appendix 3).
Full text: Click here
Publication 2017
Buffers Cell Nucleus Cells Centrifugation Cold Temperature Drosophila Edetic Acid Egtazic Acid Glycerin HEPES Homo sapiens Immunoglobulins K562 Cells Magnesium Chloride Metals Phosphates Saline Solution Sodium Chloride Spermidine Triton X-100
Ethics Statement: Animal housing, euthanasia, and tissue harvest procedures were conducted in accordance with and approved by the UCSD Institutional Animal Care and Use Committee (protocol #S09186) and the Buck Institute Animal Care Committee (protocol #10180). Mitochondria from C57bl/6 (male and female) mice aged 4–6 weeks were isolated by two similar differential centrifugation methods, based upon Schnaitman and Greenawalt [14] (link) or Chappell and Hansford [15] . Specifically, the liver was extracted and minced in ∼10 volumes of MSHE+BSA (4°C), and all subsequent steps of the preparation were performed on ice. The material was rinsed several times to remove blood. The tissue was disrupted using a drill-driven Teflon glass homogenizer with 2–3 strokes. Homogenate was centrifuged at 800 g for 10 min at 4°C. Following centrifugation, fat/lipid was carefully aspirated, and the remaining supernatant was decanted through 2 layers of cheesecloth to a separate tube and centrifuged at 8000 g for 10 min at 4°C. After removal of the light mitochondrial layer, the pellet was resuspended in MSHE+BSA, and the centrifugation was repeated. The final pellet was resuspended in a minimal volume of MSHE+BSA. Total protein (mg/ml) was determined using Bradford Assay reagent (Bio-Rad). Typically, ∼7.5 mg of mitochondria (100 µl volume) was obtained from a single mouse liver. In separate studies in which respiratory rates in the Seahorse and the Rank Clark electrode system were compared, mouse liver mitochondria were isolated according to Chappell and Hansford [15] in 250 mM Sucrose, 5 mM Tris and 2 mM EGTA (STE) on ice. Tissue was homogenized 10 times with a Teflon-glass homogenizer, and the homogenate was centrifuged at 1000 g for 3 minutes (4°C). The supernatant was collected and centrifuged at 11,600 g for 10 minutes. The pellet was resuspended in STE after discarding the whitish layer. The above step was repeated two times to get the final mitochondrial pellet. 8–10 mg of mitochondrial protein was obtained from each mouse liver and resuspended in 400–500 µl of STE.
Full text: Click here
Publication 2011
Animal Care Committees Biological Assay BLOOD Centrifugation Cerebrovascular Accident Drill Egtazic Acid Euthanasia Females G-800 Institutional Animal Care and Use Committees Light Lipids Liver Males Mice, House Mitochondria Mitochondria, Liver Mitochondrial Proteins Proteins Respiratory Rate Seahorses Sucrose Teflon Tissue Harvesting Tissues Tromethamine
In vitro profiling of the 300 member kinase panel was performed at Reaction Biology Corporation (www.reactionbiology.com, Malvern, PA) using the “HotSpot” assay platform. Briefly, specific kinase / substrate pairs along with required cofactors were prepared in reaction buffer; 20 mM Hepes pH 7.5, 10 mM MgCl2, 1 mM EGTA, 0.02% Brij35, 0.02 mg/ml BSA, 0.1 mM Na3VO4, 2 mM DTT, 1% DMSO (for specific details of individual kinase reaction components see Supplementary Table 2). Compounds were delivered into the reaction, followed ~ 20 minutes later by addition of a mixture of ATP (Sigma, St. Louis MO) and 33P ATP (Perkin Elmer, Waltham MA) to a final concentration of 10 μM. Reactions were carried out at room temperature for 120 min, followed by spotting of the reactions onto P81 ion exchange filter paper (Whatman Inc., Piscataway, NJ). Unbound phosphate was removed by extensive washing of filters in 0.75% phosphoric acid. After subtraction of background derived from control reactions containing inactive enzyme, kinase activity data was expressed as the percent remaining kinase activity in test samples compared to vehicle (dimethyl sulfoxide) reactions. IC50 values and curve fits were obtained using Prism (GraphPad Software). Kinome tree representations were prepared using Kinome Mapper (http://www.reactionbiology.com/apps/kinome/mapper/LaunchKinome.htm).
Publication 2011
Biological Assay Buffers CTSB protein, human Egtazic Acid Enzymes HEPES Ion Exchange Magnesium Chloride Phosphates Phosphoric Acids Phosphotransferases prisma Seizures Strains Sulfoxide, Dimethyl Trees

Most recents protocols related to «Egtazic Acid»

Not available on PMC !

Example 48

Enzymatic activity was determined using a commercial HotSpot kinase assay. Recombinant human p70S6K kinase was purchased from ThermoFisher Scientific (cat #PV3815). The substrate S6K/RSK2 peptide 2 was synthesized at Genscript [Piscataway, NJ]. In brief, the substrate was prepared in the reaction buffer [20 mM Hepes (pH 7.5), 10 mM MgCl2, 1 mM EGTA, 0.02% Brij35, 0.02 mg/mL BSA, 0.1 mM Na3VO4, 2 mM DTT, 1% DMSO]. Testing compounds were dissolved in 100% DMSO and a serial dilution was conducted in DMSO. The kinase at final concentration of 3 nM was added into the substrate solution and gently mixed. Test compounds were delivered at the appropriate concentrations into the kinase reaction mixture by Echo550, and incubated for 20 minutes at room temperature. 33P-ATP (Specific activity 10 μCi/μL) was added into the reaction mixture to initiate the reaction. Assay plates were incubated for 2 hours at room temperature. The radioactivity was detected by filter-binding method. Kinase activity data is expressed as the percent remaining kinase activity in test samples compared to vehicle (DMSO) reactions. IC50 curves were plotted and IC50 values were calculated using the GraphPad Prism 4 program based on a sigmoidal dose-response equation.

Full text: Click here
Patent 2024
Biological Assay Buffers Egtazic Acid enzyme activity HEPES Homo sapiens Magnesium Chloride Peptides Phosphotransferases prisma Psychological Inhibition Radioactivity Ribosomal Protein S6 Kinases, 70-kDa RPS6KA3 protein, human Sulfoxide, Dimethyl Technique, Dilution

Example 36

HEK293T cells are transfected with recombinant DNA (3-5 μg) using Lipofectamine 2000 (Invitrogen, Carlsbad, Calif.) and recorded 48 hours after transfection. All experiments are performed at room temperature using conventional whole-cell patch clamp technique. Recording electrodes are filled with internal solution containing (in mM): 132 K-Gluconate, 10 KCl, 4 Mg·ATP, 20 HEPES, and 1 EGTA·KOH, pH 7.2-7.3, and have resistances of 3-5 MΩ. The standard bath solution contains (in mM): 144 NaCl, 2.5 KCl, 2.25 CaCl2, 1.2 MgCl2, 10 HEPES, and 22 D-Glucose, pH 7.2-7.3. Series resistance is compensated by 75%. Osmolarity is adjusted to 300-305 mOsm and pH to 7.2-7.3 with NaOH. Voltage pulses are applied at 30s intervals from a holding potential of −85 mV to various test pulses before jumping down to −70 mV. These values are adjusted for the calculated junction potential of −15 mV. Data are acquired through a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, Calif.), low-pass filtered at 2 kHz and sampled at 10 kHz. The construct for testing KCNQ2/3 electrophysiology is created as described previously (Soh and Tzingounis, Mol. Pharmaco., 78, 1088 (2010)).

Full text: Click here
Patent 2024
Bath Cells Egtazic Acid gluconate Glucose HEPES lipofectamine 2000 Magnesium Chloride Medical Devices Osmolarity Pulses Recombinant DNA Sodium Chloride Transfection
The pancreases from P9-P10 pups were first perfused by 1 mg/ml collagenase in Hank’s balanced salt solution, dissected, and incubated at 37 °C for 10–12 min to release endocrine cells/islets. Digested pancreatic tissue was washed 3 × by 1% FBS in Hank’s solution. To generate single cells, the tissue was further dissociated by trypsinization as described [66 (link)]. Briefly, tissue was dissociated using 0.05% trypsin/0.53 mM EDTA at 37 °C for 5 min. Digestion was stopped by the FACS buffer (2% FBS and 10 mM EGTA in PBS [66 (link)]), and cells were then 1 × washed by FACS buffer. The pancreases microdissected from E14.5 embryos were directly trypsinized and prepared for FACS as described above. Finally, cell suspensions were filtered through 40 µm nylon mesh and immediately tdTomato+ cells were sorted using a flow cytometer (BD FACSAria™ Fusion), through a 100 µm nozzle in 20 psi, operated with BD FACSDiva™ Software (Additional file 1: Fig. S7). For RNA sequencing, 100 sorted cells were collected into individual wells of 96-well plate containing 5 µl of lysis buffer of NEB Next single-cell low input RNA library prep kit for Illumina (New England Biolabs #E6420). Plates were frozen immediately on dry ice and stored at − 80 °C. The total time from euthanasia to cell collection was ∼3 h. For the epigenetic study, on average, 4700 cells/sample at E14.5 and 14,700 cells/sample at P9 were sorted. Cell sorting was performed in the Imaging Methods Core Facility at BIOCEV.
Full text: Click here
Publication 2023
Buffers cDNA Library Cells Collagenase Digestion Dry Ice Edetic Acid Egtazic Acid Embryo Euthanasia Freezing Islets of Langerhans Nylons Pancreas Sodium Chloride System, Endocrine tdTomato Tissues Trypsin
Cell extracts were prepared in lysis buffer containing 20 mM Tris HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton, 2.5% sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4, 1 µg/µL leupeptin, protease inhibitors (#P8340; Sigma-Aldrich) and phosphatase inhibitors (#P5726; Sigma-Aldrich). Protein concentrations were determined using the BCA reagent as described earlier, and samples were denatured using SDS sample buffer (#1610747; BioRad). Samples were loaded into a Criterion Tris-Glycine Extended Gel (#5671124; BioRad) and separated by electrophoreses at 60 mA. The gels were then transferred onto a nitrocellulose membrane (#1620115; BioRad) by a wet transfer system (BioRad) at 100V for 1 h at room temperature. All membranes were then blocked by incubation with 5% dry milk in TBST (TBS with 0.1% Tween20) for 1 h at room temperature. Membranes were probed with the primary antibody overnight at 4°C in the blocking buffer, washed with TBST, and incubated with the peroxidase-conjugated secondary antibody. Enhanced chemiluminescence (ECL) Western blotting substrates (#170-5061; BioRad) were used for the visualization of the results. The acquisition of images was performed using the ChemiDoc MP Imaging System (BioRad).
Full text: Click here
Publication 2023
beta-glycerol phosphate Buffers Cell Extracts Chemiluminescence Edetic Acid Egtazic Acid Electrophoresis Gels Glycine Immunoglobulins inhibitors leupeptin Milk, Cow's Nitrocellulose Peroxidase Phosphoric Monoester Hydrolases Protease Inhibitors Proteins Sodium Chloride sodium pyrophosphate Tissue, Membrane Tromethamine Tween 20
Tyrode solution contained (in mM) 140 NaCl, 5 KCl, 2.5 CaCl2, 2 MgCl2, and 10 HEPES. The standard extracellular solution for voltage-clamp experiments contained (in mM) 140 TEA-methane-sulfonate, 2.5 CaCl2, 2 MgCl2, 1 4-aminopyridine, 10 HEPES, and 0.002 tetrodotoxin. For the experiments described in Figs. 1 and 2, the extracellular solution also contained 0.33% DMSO. The standard pipette solution contained (in mM) 120 K-glutamate, 5 Na2-ATP, 5 Na2-phosphocreatine, 5.5 MgCl2, 5 glucose, and 5 HEPES. For measurements of rhod-2 Ca2+ transients, it also contained 15 EGTA, 6 CaCl2, and 0.1 rhod-2. For measurements with fluo-4, isolated muscle fibers were incubated for 30 min in the presence of Tyrode solution containing 10 μM fluo-4 AM. All solutions were adjusted to pH 7.20. The Ringer solution used for muscle force measurements contained (in mM) 140 NaCl, 6 KCl, 3 CaCl2, 2 MgCl2, and 10 HEPES, adjusted to pH 7.40.
Probenecid was prepared as a 0.3 M aliquoted stock solution in DMSO and used in the extracellular solution at 0.5, 1, or 2 mM. Carbenoxolone was prepared as a 10 mM stock solution in the extracellular solution and used at 0.1 mM. These concentrations were chosen on the basis of their effectiveness and wide use to block Panx1 channels throughout the literature (e.g., Dahl et al., 2013 (link)). When testing the effect of either probenecid or carbenoxolone using the preincubation protocol (Figs. 1 and 2), fibers were bathed in the drug-containing extracellular solution from the beginning of the intracellular dialysis with the rhod-2-containing solution (i.e., 30 min before taking measurements). The 10panx1 peptide and the scrambled control peptide (10panx1SCr) were tested under the same conditions at 200 µM while the P2Y2 antagonist AR-C 118925XX was tested at 10 µM. All chemicals and drugs were purchased from Sigma-Aldrich, except for tetrodotoxin (Alomone Labs), rhod-2 and fluo-4 (Thermo Fisher Scientific), and AR-C 118925XX (TOCRIS—Bio-Techne).
In vitro fluorescence measurements using droplets of a solution containing (in mM) 120 K-glutamate, 10 HEPES, 15 EGTA, 6 CaCl2, and 0.1 rhod-2, with or without probenecid, showed that fluorescence intensity in the presence of 1 mM probenecid corresponded to 1.09 ± 0.12% (n = 6) the intensity in the absence of probenecid, excluding an interaction of the drug with the dye to explain the effect on resting fluorescence in muscle fibers.
Publication 2023
Aminopyridines Carbenoxolone Cardiac Arrest Dialysis Solutions Drug Interactions Egtazic Acid Figs Fluo 4 Fluorescence Glucose Glutamate HEPES Magnesium Chloride methanesulfonate Muscle Tissue P2RY2 protein, human Peptides Pharmaceutical Preparations Phosphocreatine Probenecid Protoplasm rhod-2 Ringer's Solution Sodium Chloride Sulfoxide, Dimethyl Tetrodotoxin Transients Tyrode's solution

Top products related to «Egtazic Acid»

Sourced in United States, Germany, China, United Kingdom, Italy, Japan, Sao Tome and Principe, France, Canada, Macao, Switzerland, Spain, Australia, Israel, Hungary, Ireland, Denmark, Brazil, Poland, India, Mexico, Senegal, Netherlands, Singapore
The Protease Inhibitor Cocktail is a laboratory product designed to inhibit the activity of proteases, which are enzymes that can degrade proteins. It is a combination of various chemical compounds that work to prevent the breakdown of proteins in biological samples, allowing for more accurate analysis and preservation of protein integrity.
Sourced in United States, Germany, United Kingdom, Italy, Macao, Sao Tome and Principe, France, China, Japan, Poland, Hungary, Canada, Ireland, Spain
EGTA is a chemical compound commonly used as a chelating agent in laboratory settings. It is capable of binding to metal ions, such as calcium, and is often utilized in experimental procedures to control the concentration of specific ions within a sample.
Sourced in United States, Switzerland, Germany, China, United Kingdom, France, Canada, Japan, Italy, Australia, Austria, Sweden, Spain, Cameroon, India, Macao, Belgium, Israel
Protease inhibitor cocktail is a laboratory reagent used to inhibit the activity of proteases, which are enzymes that break down proteins. It is commonly used in protein extraction and purification procedures to prevent protein degradation.
Sourced in United States, France, Japan, Germany, United Kingdom
The Axopatch 200B is a high-performance patch-clamp amplifier designed for electrophysiology research. It is capable of amplifying and filtering electrical signals from single-cell preparations, providing researchers with a tool to study ion channel and membrane properties.
Sourced in United States, Germany, Canada, United Kingdom, China, Australia
PClamp 10 software is a data acquisition and analysis platform for electrophysiology research. It provides tools for recording, analyzing, and visualizing electrical signals from cells and tissues.
Sourced in United States, United Kingdom, Germany, Australia, Japan, Hungary
The Multiclamp 700B amplifier is a versatile instrument designed for electrophysiology research. It provides high-quality amplification and signal conditioning for a wide range of intracellular and extracellular recording applications. The Multiclamp 700B offers advanced features and precise control over signal acquisition, enabling researchers to obtain reliable and accurate data from their experiments.
Sourced in United States, Germany, China, United Kingdom, Morocco, Ireland, France, Italy, Japan, Canada, Spain, Switzerland, New Zealand, India, Hong Kong, Sao Tome and Principe, Sweden, Netherlands, Australia, Belgium, Austria
PVDF membranes are a type of laboratory equipment used for a variety of applications. They are made from polyvinylidene fluoride (PVDF), a durable and chemically resistant material. PVDF membranes are known for their high mechanical strength, thermal stability, and resistance to a wide range of chemicals. They are commonly used in various filtration, separation, and analysis processes in scientific and research settings.
Sourced in United States, Germany, Switzerland, United Kingdom, China, France, Japan, Canada, Spain, Belgium, Australia, Sweden, Italy, Ireland, Macao
The Complete Protease Inhibitor Cocktail is a laboratory product designed to inhibit a broad spectrum of proteases. It is a concentrated solution containing a mixture of protease inhibitors effective against a variety of protease classes. This product is intended to be used in research applications to preserve the integrity of target proteins by preventing their degradation by proteolytic enzymes.
Sourced in United States, Germany, United Kingdom, Italy, Canada, China, France, Switzerland, Austria, Spain, Japan, Australia, Brazil, Ireland, Sweden
The Bradford assay is a colorimetric protein assay used to measure the concentration of protein in a solution. It is based on the color change of the Coomassie Brilliant Blue G-250 dye in response to various concentrations of protein.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.

More about "Egtazic Acid"

Egtazic Acid, also known as EGTA, is a chemical compound with potential therapeutic applications in various areas of biomedical research, including pharmacology, biochemistry, and medicinal chemistry.
This organic acid is a type of protease inhibitor cocktail that may be utilized in conjunction with Axopatch 200B amplifiers, PClamp 10 software, and Multiclamp 700B amplifiers to study biological processes and optimize research workflows.
PubCompare.ai offers a powerful tool to streamline Egtazic Acid research by helping scientists locate and evaluate the best protocols from scientific literature, preprints, and patents.
This AI-driven protocol comparison platform can promote reproducible science through its intuitive interface and advanced analytics, allowing researchers to discover the optimal Egtazic Acid protocols and accelerate their work.
In addition to Egtazic Acid, researchers may also utilize other related compounds, such as Protease inhibitor cocktail, EGTA, and Complete protease inhibitor cocktail, which can be analyzed using techniques like the Bradford assay and PVDF membranes to quantify and study protein samples containing Bovine serum albumin.
By leveraging these tools and techniques, scientists can optimize their Egtazic Acid research and gain valuable insights into its potential therapeutic applications.