The largest database of trusted experimental protocols

Ethylenes

Ethylenes are a class of unsaturated hydrocarbons with the general formula C2H4.
They are widely used in industrial and biological processes, serving as precursors for a variety of chemicals and playing a crucial role in plant physiology as a natural growth hormone.
Ethylenes exhibit unique properties, including their high reactivity and ability to undergo various chemical reactions.
This MeSH term provides a concise overview of the key characteristics and applications of this important group of compounds, which are of significant interest in fields such as organic chemistry, biochemistrry, and plant science.
PubCompare.ai can help optimize your ethylene research by providing AI-driven protocol comparisons to locate the most accurate and reproducible protocols from literature, preprints, and patents, improving your research effficency and confidence.

Most cited protocols related to «Ethylenes»

Cytokinins (zeatin, Z, and zeatin riboside, ZR), indole-3-acetic acid (IAA), and abscisic acid (ABA) were extracted and purified according to the method of Dobrev and Kaminek (2002) (link). One gram of fresh plant material (leaf or root) was homogenized in liquid nitrogen and placed in 5 ml of cold (–20 °C) extraction mixture of methanol/water/formic acid (15/4/1 by vol., pH 2.5). After overnight extraction at –20 °C solids were separated by centrifugation (20 000 g, 15 min) and re-extracted for 30 min in an additional 5 ml of the same extraction solution. Pooled supernatants were passed through a Sep-Pak Plus †C18 cartridge (SepPak Plus, Waters, USA) to remove interfering lipids and plant pigments and evaporated to dryness. The residue was dissolved in 5 ml of 1 M formic acid and loaded on an Oasis MCX mixed mode (cation-exchange and reverse phase) column (150 mg, Waters, USA) preconditioned with 5 ml of methanol followed by 5 ml of 1 M formic acid. To separate different CK forms (nucleotides, bases, ribosides, and glucosides) from IAA and ABA, the column was washed and eluted stepwise with different appropriate solutions indicated in Dobrev and Kaminek (2002) (link). ABA and IAA were analysed in the same fraction. After each solvent was passed through the columns, they were purged briefly with air. Solvents were evaporated at 40 °C under vacuum. Samples then dissolved in a water/acetonitrile/formic acid (94.9:5:0.1 by vol.) mixture for HPLC/MS analysis. Analyses were carried out on a HPLC/MS system consisting of an Agilent 1100 Series HPLC (Agilent Technologies, Santa Clara, CA, USA) equipped with a μ-well plate autosampler and a capillary pump, and connected to an Agilent Ion Trap XCT Plus mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) using an electrospray (ESI) interface. Prior to injection, 100 μl of each fraction extracted from tissues or a similar volume of xylem sap were filtered through 13 mm diameter Millex filters with 0.22 μm pore size nylon membrane (Millipore, Bedford, MA, USA). 8 μl of each sample, dissolved in mobile phase A, was injected onto a Zorbax SB-C18 HPLC column (5 μm, 150×0.5 mm, Agilent Technologies, Santa Clara, CA, USA), maintained at 40 °C, and eluted at a flow rate of 10 μl min−1. Mobile phase A, consisting of water/acetonitrile/formic acid (94.9:5:0.1 by vol.), and mobile phase B, consisting of water/acetonitrile/formic acid (10:89.9:0.1 by vol.), were used for the chromatographic separation. The elution programme maintained 100% A for 5 min, then a linear gradient from 0% to 6% B in 10 min, followed by another linear gradient from 6% to 100% B in 5 min, and finally 100% B maintained for another 5 min. The column was equilibrated with the starting composition of the mobile phase for 30 min before each analytical run. The UV chromatogram was recorded at 280 nm with a DAD module (Agilent Technologies, Santa Clara, CA, USA). The mass spectrometer was operated in the positive mode with a capillary spray voltage of 3500 V, and a scan speed of 22 000 m/z s−1 from 50–500 m/z. The nebulizer gas (He) pressure was set to 30 psi, whereas the drying gas was set to a flow of 6.0 l min−1 at a temperature of 350 °C. Mass spectra were obtained using the DataAnalysis program for LC/MSD Trap Version 3.2 (Bruker Daltonik GmbH, Germany). For quantification of Z, ZR, ABA, and IAA, calibration curves were constructed for each component analysed (0.05, 0.075, 0.1, 0.2, and 0.5 mg l−1) and corrected for 0.1 mg l−1 internal standards: [2H5]trans-zeatin, [2H5]trans-zeatin riboside, [2H6]cis,trans-abscisic acid (Olchemin Ltd, Olomouc, Czech Republic), and [13C6]indole-3-acetic acid (Cambridge Isotope Laboratories Inc., Andover, MA, USA). Recovery percentages ranged between 92% and 95%.
ACC (1-aminocyclopropane-1-carboxylic acid) was determined after conversion into ethylene by gas chromatography using an activated alumina column and a FID detector (Konik, Barcelona, Spain). ACC was extracted with 80% (v/v) ethanol and assayed by degradation with alkaline hypochlorite in the presence of 5 mM HgCl2 (Casas et al., 1989 ). A preliminary purification step was performed by passing the extract through a Dowex 50W-X8, 50–100 mesh, H+-form resin and later recovered with 0.1 N NH4OH. The conversion efficiency of ACC into ethylene was calculated separately by using a replicate sample containing 2.5 nmol of ACC as an internal standard and used for the correction of data.
Publication 2008
1-aminocyclopropane-1-carboxylic acid Abscisic Acid acetonitrile Capillaries Centrifugation Chaperone-Mediated Autophagy Chromatography cis-acid Cold Temperature CREB3L1 protein, human Cytokinins DNA Replication Dowex Ethanol Ethylenes formic acid Gas Chromatography Glucosides High-Performance Liquid Chromatographies Hypochlorite indoleacetic acid Isotopes Lipids Mass Spectrometry Mercuric Chloride Methanol Nebulizers Nitrogen Nucleotides Nylons Oxide, Aluminum Pigmentation Plant Leaves Plant Roots Plants Pressure Radionuclide Imaging Resins, Plant Sep-Pak C18 Solvents Strains Tissue, Membrane Tissues Vacuum Xylem Zeatin zeatin riboside
Reversed phase columns were prepared in-house. Briefly, a 75–360 μm inner-outer diameter bare-fused silica capillary, with a laser pulled electrospray tip, was packed with 1.7 μm diameter, 130 Å pore size, Bridged Ethylene Hybrid C18 particles (Waters) to a final length of 35 cm. The column was installed on a nanoAcquity UPLC (Waters) using a stainless steel ultra-high pressure union formatted for 360 μm outer diameter columns (IDEX) and heated to 60 °C for all runs. Mobile phase buffer A was composed of water, 0.2% formic acid, and 5% DMSO. Mobile phase B was composed of acetonitrile, 0.2% formic acid, and 5% DMSO. Samples were loaded onto the column for 12 min at 0.35 μl/min. Mobile phase B increases to 4% in the first 0.1 min then to 12% B at 32 min, 22% B at 60 min, and 30% B at 70 min, followed by a 5 min wash at 70% B and a 20 min re-equilibration at 0%B.
Eluting peptide cations were converted to gas-phase ions by electrospray ionization and analyzed on a Thermo Orbitrap Fusion (Q-OT-qIT, Thermo). Survey scans of peptide precursors from 300 to 1500 m/z were performed at 60K resolution (at 200 m/z) with a 5 × 105 ion count target. Tandem MS was performed by isolation at 0.7 Th with the quadrupole, HCD fragmentation with normalized collision energy of 30, and rapid scan MS analysis in the ion trap. The MS2 ion count target was set to 104 and the max injection time was 35 ms. Only those precursors with charge state 2–6 were sampled for MS2. The dynamic exclusion duration was set to 45 s with a 10 ppm tolerance around the selected precursor and its isotopes. Monoisotopic precursor selection was turned on. The instrument was run in top speed mode with 5 s cycles, meaning the instrument would continuously perform MS2 events until the list of nonexcluded precursors diminishes to zero or 5 s, whichever is shorter. Elite runs were performed with Survey scans of peptide precursors from 300 to 1500 m/z 60K resolution (at 200 m/z) with a 1 × 106 ion count target. Tandem MS was performed by isolation at 1.8 Th with the ion-trap, CAD fragmentation with normalized collision energy of 35, and rapid scan MS analysis in the ion trap. The data dependent top 20 precursors were selected for MS2. MS2 ion count target was set to 5 × 103 and the max injection time was 125 ms. Only those precursors with charge state +2 or higher were sampled for MS2. The dynamic exclusion duration was set to 40 s with a 10 ppm tolerance around the selected precursor and its isotopes. Monoisotopic precursor selection was turned on.
Publication 2013
acetonitrile Buffers Capillaries Cations Ethylenes formic acid Hybrids Immune Tolerance isolation Isotopes Peptides Pressure Radionuclide Imaging Silicon Dioxide Stainless Steel Sulfoxide, Dimethyl Z 300
Details for plant growth and ethylene-response assay, gene expression analysis, protein fractionation, membrane-based Y2H assay, Co-IP and BiFC assays, and ubiquitination analysis are described in SI Appendix, SI Materials and Methods. The primers used in this study are listed in SI Appendix, Table S1.
Publication 2018
Biological Assay Ethylenes Fractionation, Chemical Gene Expression Profiling Oligonucleotide Primers Plant Development Proteins Tissue, Membrane Ubiquitination
The whole flower was separated into five distinct parts: sepals, petals, stamens, gynoecia, and a receptacle. To measure the ethylene production, petals of each individual flower were collected and placed in a 200 ml airtight container; the other four tissues were placed separately in a 25 ml container. Our results indicated that sepals, petals, stamens, and receptacles did not produce wound ethylene in the first 1.5 h of incubation and gynoecia did not produce wound ethylene in the first 50 min (data not shown). Thus, to avoid the contamination of wound-induced ethylene, the containers were capped and incubated at 25 °C for 1 h for sepals, petals, stamens, and receptacles, and 40 min for gynoecia. Then 2 ml sample of head space gas was withdrawn using a gas-tight hypodermic syringe, and injected into a gas chromatograph (GC 17A, Shimadzu, Kyoto, Japan) for ethylene concentration measurement. The gas chromatograph was equipped with a flame ionization detector and an activated alumina column. Ten flowers were used for independent measurements and the average values are presented.
Publication 2008
Ethylenes Flame Ionization Flowers Gas Chromatography Head Hypodermic Syringes Oxide, Aluminum Tissues Wounds
The primers of ScChi-1301F/ScChi-1301R in Table 1 were used to construct the overexpression vector pCAMBIA 1301-ScChi to analyze its defense response. Agrobacterium strain EHA105 carrying the recombinant vector was grown overnight in LB liquid medium containing 50 μg/mL kanamycin and 35 μg/mL rifampicin at 28 °C. Culture cells were collected and resuspended in MS liquid medium containing 200 μM acetosyringone at OD600 = 0.8. Then, cells were infiltrated into eight-leaf stage-old N. benthamiana leaves [51 (link),52 (link)]. For comparison, the Agrobacterium strain containing the pCAMBIA 1301 vector alone was also transiently expressed in N. benthamiana leaves. One of the materials were incubated at 24 °C for 24 h (16 h light/8 h darkness) and used for the RT-qPCR analysis of the expression of ScChi (ScChi-QF/ScChi-QR) and several immunity associated marker genes, including the hypersensitive response (HR) marker genes, NtHSR201, NtHSR203 and NtHSR515, the SA-related gene, NtNPR1, the JA-associated genes, NtPR-1a/c, NtPR2 and NtPR3, and the ethylene synthesis-dependent genes, NtEFE26 and NtAccdeaminase (Table 1), in N. benthamiana. NtEF1-α (Table 1) was used to normalize the transcript levels. Other materials were incubated at 24 °C for 2 days and applied to the following tests of the histochemical assay and ion conductivity determination. All of the treatments were carried out in three replicates.
Full text: Click here
Publication 2014
acetosyringone Agrobacterium Biological Assay Cell Culture Techniques Cells Cloning Vectors Darkness Electric Conductivity Ethylenes Genes Hypersensitivity Kanamycin Light Oligonucleotide Primers Response, Immune Rifampin Strains Synthetic Genes

Most recents protocols related to «Ethylenes»

Example 5

Three tobacco lines, FC401 wild type (Wt); FC40-M207 mutant line fourth generation (M4) and FC401-M544 mutant line fourth generation (M4) were used for candidate gene screening. Low anatabine traits were confirmed for the two tobacco mutant lines (M207 and M544) in root and leaf before screening (see FIG. 3).

RNA was extracted from root tissues of wild type (Wt) FC401, M207 and M544 with RNeasy Plus Mini kit from Quiagen Inc. following the manufacturer's protocol. cDNA libraries were prepared from the RNAs using In-Fusion® SMARTer® Directional cDNA Library Construction Kit from Clontech Inc. cDNA libraries were diluted to 100 ng/μl and used as the template for candidate gene PCR screening.

PCR amplifications were performed in 50 μl final volumes that contained 50-100 ng of template DNA (i.e., the cDNA library) and 0.2 μM of primers (Fisher Scientific) using the Platinum® Taq DNA Polymerase High Fidelity kit (Life Technology Inc.). Thermocycling conditions included a 5 min incubation at 94° C.; followed by 34 cycles of 30 seconds at 94° C., 30 seconds at 58° C., 1 min 30 seconds at 68° C.; with a final reaction step of 68° C. for 7 mins. The PCR products were evaluated by agarose gel electrophoresis, and desired bands were gel purified and sequenced using an ABI 3730 DNA Analyzer (ABI).

51 candidate genes (listed in Table 4) were cloned from F401, Wt, M207 and M544 lines, and sequenced for single nucleotide polymorphism (SNP) detection.

TABLE 4
Listing of Candidate Genes for Screening
Quinolinate Synthase A-1Pathogenesis related protein 1
Allene oxide synthaseAllene oxide cyclase
ET861088.1 Methyl esteraseFH733463.1 TGACG-sequence specific transcription factor
FH129193.1 Aquaporin-TransportFH297656.1 Universal stress protein
Universal stress protein Tabacum sequenceFH077657.1 Scarecrow-like protein
FH864888.1 EIN3-binding F-box proteinFH029529.1 4,5 DOPA dioxygenase
FI010668.1 Ethylene-responsive transcription EB430189 Carboxylesterase
factor
DW001704 Glutathione S transferaseEB683763 Bifunctional inhibitor/lipid transfer protein/seed
storage 2S albumin
DW002318 Serine/threonine protein kinaseDW004086 Superoxide dismutase
DW001733 Lipid transfer protein DIRIDW001944 Protein phosphatase 2C
DW002033EB683763 Bifunctional inhibitor/lipid transfer protein/seed
storage 2S albumin
DW002318 Serine/threonine protein kinaseDW002576 Glycosyl hydrolase of unknown function DUF1680
EB683279EB683763
EB683951FG141784 (FAD Oxidoreductase)
BBLa-Tabacum sequencesBBLb
BBLeBBLd
PdrlPdr2
Pdr3Pdr5a
Pdr5bNtMATEl
NtMATE2NtMATE3
WRKY8EIG-I24
WRKY3WRKY9
EIG-E17AJ748263.1 QPT2 quinolinate phosphoribosyltransferase
AJ748262.1 QPT1

Full text: Click here
Patent 2024
Albumins allene oxide cyclase allene oxide synthase Amino Acid Sequence anatabine Carboxylesterase cDNA Library Dioxygenases Dopa Electrophoresis, Agar Gel Esterases Ethylenes Genes Glutathione S-Transferase Heat Shock Proteins Histocompatibility Testing Hydrolase lipid transfer protein Neoplasm Metastasis Nicotiana Nicotinate-nucleotide pyrophosphorylase (carboxylating) NOS1 protein, human Oligonucleotide Primers Oxidoreductase pathogenesis Plant Leaves Plant Roots Platinum Protein-Serine-Threonine Kinases Protein-Threonine Phosphatase Protein Kinases protein methylesterase Protein Phosphatase Protein Phosphatase 2C Proteins Quinolinate RNA Single Nucleotide Polymorphism Superoxide Dismutase Synapsin I Taq Polymerase Transcription, Genetic Transcription Factor Transfer Factor Water Channel

Example 1

<Step (A): Synthesis of porous particle having glycidyl group>

27.8 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 11.3 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were dissolved in 58.7 g of diethyl succinate as a diluent, and nitrogen gas was bubbled for 30 minutes to provide an oil phase.

Next, separately from the oil phase, 10.0 g of PVA-224 (manufactured by Kuraray Co., Ltd., polyvinyl alcohol having a degree of saponification of 87.0% to 89.0%) as a dispersion stabilizer and 10.0 g of sodium chloride as a salting-out agent were dissolved in 480 g of ion exchanged water to provide an aqueous phase.

The aqueous phase and the oil phase were placed in a separable flask and dispersed at a rotation speed of 430 rpm for 20 minutes using a stirring rod equipped with a half-moon stirring blade, then the inside of the reactor was purged with nitrogen, and the reaction was carried out at 60° C. for 16 hours.

After that, the resulting polymer was transferred onto a glass filter and thoroughly washed with hot water at about 50 to 80° C., denatured alcohol, and water in the order presented to obtain 100.4 g of a porous particle (carrier al).

The amount of glycidyl methacrylate used was 79.8 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 20.2 mol % based on the total amount of the monomers.

<Step (B): Introduction reaction of alkylene group>

98 g of the carrier α1 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether. After cleaning, the carrier α1 was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g (920 mol % based on glycidyl methacrylate) of 1,4-butanediol were placed in the separable flask, and stirring and dispersion were carried out.

After that, 1.5 ml of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours.

The mixture was cooled, then the porous particle (carrier β1) bonded to a diol compound including an alkylene group in the structure thereof was collected by filtration and then washed with 1 L of ion exchanged water to obtain 152 g of a carrier β1.

The progress of the reaction was confirmed by the following procedure.

A part of the dry porous particle into which an alkylene group had been introduced was mixed with potassium bromide, and the resulting mixture was pelletized by applying a pressure and then measured using FT-IR (trade name: Nicolet (registered trademark) iS10, manufactured by Thermo Fisher Scientific Inc.) to check the height of an absorbance peak at 908 cm−1 due to the glycidyl group in the infrared absorption spectrum.

As a result, no absorbance peak at 908 cm−1 was observed by FT-IR.

<Step (C): Introduction Reaction of Glycidyl Group>

150 g of the carrier β1 was weighed onto a glass filter and thoroughly cleaned with dimethylsulfoxide.

After cleaning, the carrier β1 was placed in a separable flask, 262.5 g of dimethyl sulfoxide and 150 g of epichlorohydrin were added, the resulting mixture was stirred at room temperature, 37.5 ml of a 30% sodium hydroxide aqueous solution (manufactured by KANTO CHEMICAL CO., INC.) was further added, and the resulting mixture was heated to 30° C. and stirred for 6 hours.

After completion of the reaction, the obtained product was transferred onto a glass filter and thoroughly washed with water, acetone, and water in the order presented to obtain 172 g of a porous particle into which a glycidyl group had been introduced (carrier γ1).

The introduction density of the glycidyl group in the obtained carrier γ1 was measured by the following procedure.

5.0 g of the carrier γ1 was sampled, and the dry mass thereof was measured and as a result, found to be 1.47 g. Next, the same amount of the carrier γ1 was weighed into a separable flask and dispersed in 40 g of water, 16 mL of diethylamine was added while stirring at room temperature, and the resulting mixture was heated to 50° C. and stirred for 4 hours. After completion of the reaction, the reaction product was transferred onto a glass filter and thoroughly washed with water to obtain a porous particle A into which diethylamine had been introduced.

The obtained porous particle A was transferred into a beaker and dispersed in 150 mL of a 0.5 mol/L potassium chloride aqueous solution, and titration was carried out using 0.1 mol/L hydrochloric acid with the point at which the pH reached 4.0 as the neutralization point.

From this, the amount of diethylamine introduced into the porous particle A into which diethylamine had been introduced was calculated, and the density of the glycidyl group of the carrier γ1 was calculated from the following expression.

As a result, the density of the glycidyl group was 880 μmol/g.
Density(μmol/g) of glycidyl group={0.1×volume(μL) of hydrochloric acid at neutralization point/dry mass(g) of porous particle into which glycidyl group has been introduced}<Step (D): Introduction Reaction of Polyol>

150 g of the carrier γ1, 600 mL of water, and 1000 g (13000 mol % based on glycidyl group) of D-sorbitol (log P=−2.20, manufactured by KANTO CHEMICAL CO., INC.) were placed in a 3 L separable flask and stirred to form a dispersion.

After that, 10 g of potassium hydroxide was added, the temperature was raised to 60° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 15 hours.

The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 152 g of a porous particle into which polyol had been introduced (carrier 61).

The obtained carrier 61 was classified into 16 to 37 μm using a sieve to obtain 140.5 g of a packing material 1.

<Evaluation of Alkali Resistance>

The alkali resistance was evaluated by calculating the amount of a carboxy group produced by hydrolysis of sodium hydroxide according to the following procedure.

First, 4 g of the packing material was dispersed in 150 mL of a 0.5 mol/L potassium chloride aqueous solution, and titration was carried out using 0.1 mol/L sodium hydroxide aqueous solution with the point at which the pH reached 7.0 as the neutralization point. From this, the amount of a carboxy group before hydrolysis included in the packing material was calculated from the following expression.
Amount(μmol/mL) of carboxy group=0.1×volume(μL) of sodium hydroxide aqueous solution at the time of neutralization/apparent volume (mL) of packing material

Here, the apparent volume of the packing material is the volume of the packing material phase measured after preparing a slurry liquid by dispersing 4 g of the packing material in water, transferring the slurry liquid to a graduated cylinder, and then allowing the same to stand for a sufficient time.

Subsequently, 4 g of the packing material was weighed into a separable flask, 20 mL of a 5 mol/L sodium hydroxide aqueous solution was added, and the resulting mixture was treated at 50° C. for 20 hours while stirring at 200 rpm. The mixture was cooled, then the packing material was collected by filtration, then washed with a 0.1 mol/L HCl aqueous solution and water in the order presented, and the amount of a carboxy group contained in the obtained packing material was calculated by the same method as above. From the difference between the amount of a carboxy group before and that after the reaction with the 5 mol/L sodium hydroxide aqueous solution, the amount of a carboxy group produced by the reaction with the 5 mol/L sodium hydroxide aqueous solution was calculated. As a result, the amount of a carboxy group produced was 21 μmol/mL.

If the amount of a carboxy group produced is 40 μmol/mL or less, the alkali resistance is considered to be high.

<Evaluation of Non-Specific Adsorption>

The obtained packing material was packed into a stainless steel column (manufactured by Sugiyama Shoji Co., Ltd.) having an inner diameter of 8 mm and a length of 300 mm by a balanced slurry method. Using the obtained column, a non-specific adsorption test was carried out by the method shown below.

The column packed with the packing material was connected to a Shimadzu Corporation HPLC system (liquid feed pump (trade name: LC-10AT, manufactured by Shimadzu Corporation), autosampler (trade name: SIL-10AF, manufactured by Shimadzu Corporation), and photodiode array detector (trade name: SPD-M10A, manufactured by Shimadzu Corporation)), and a 50 mmol/L sodium phosphate buffer aqueous solution as a mobile phase was passed at a flow rate of 0.6 mL/min.

Using the same sodium phosphate aqueous solution as the mobile phase as a solvent, their respective sample solutions of 0.7 mg/mL thyroglobulin (Mw of 6.7×105), 0.6 mg/mL γ-globulin (Mw of 1.6×105), 0.96 mg/mL BSA (Mw of 6.65×104), 0.7 mg/mL ribonuclease (Mw of 1.3×104), 0.4 mg/mL aprotinin (Mw of 6.5×103), and 0.02 mg/mL uridine (Mw of 244) (all manufactured by Merck Sigma-Aldrich) are prepared, and 10 μL of each is injected from the autosampler.

The elution time of each observed using the photodiode array detector at a wavelength of 280 nm was compared to confirm that there was no contradiction between the order of elution volume and the order of molecular weight size.

As a result, the elution volumes of the samples from the column packed with the packing material 1 were 8.713 mL, 9.691 mL, 9.743 mL, 10.396 mL, 11.053 mL, and 11.645 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced. When there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof, there was no non-specific adsorption, which is indicated as 0 in Table 1, and when there was a contradiction therebetween, non-specific adsorption was induced, which is thus indicated as X.

The porous particle (carrier al) obtained in the same manner as in Example 1 was subjected to the step D of Example 1.

<Step (D): Introduction Reaction of Polyol>

98 g of carrier al, 600 mL of water, and 1000 g (3050 mol % based on glycidyl group) of D-sorbitol (manufactured by KANTO CHEMICAL CO., INC.) were placed in a 3 L separable flask and stirred to form a dispersion.

After that, 10 g of potassium hydroxide was added, the temperature was raised to 60° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 15 hours.

The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 130 g of a porous particle into which a polyol had been introduced (carrier δ7).

The carrier δ7 was classified into 16 to 37 μm using a sieve to obtain 115 g of a packing material 7.

The alkali resistance of the obtained packing material 7 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced in the packing material 7 was 120.3 μmol/mL, resulting in poor alkali resistance.

Further, the non-specific adsorption of the obtained packing material 7 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.606 mL, 9.769 mL, 9.9567 mL, 10.703 mL, 11.470 mL, and 12.112 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

Example 2

A porous particle (carrier al) was obtained in the same manner as in Example 1, and then a packing material 2 was obtained as follows.

98 g of the carrier α1 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether.

After cleaning, the porous particle was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g (580 mol % based on the glycidyl group) of 1,4-cyclohexanedimethanol were placed in the separable flask, and stirring and dispersion were carried out.

After that, 1.5 ml of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours.

The mixture was cooled, then the resulting porous particle (carrier $2) bonded to a diol compound including an alkylene group in the structure thereof was collected by filtration and then washed with 1 L of ion exchanged water to obtain 165 g of a carrier 32.

The progress of the reaction was confirmed by the following procedure.

A part of the dry porous particle into which an alkylene group had been introduced was mixed with potassium bromide, and the resulting mixture was pelletized by applying a pressure and then measured using FT-IR (trade name: Nicolet (registered trademark) iS10, manufactured by Thermo Fisher Scientific Inc.) to check the height of a absorbance peak at 908 cm−1 due to the glycidyl group in the infrared absorption spectrum.

As a result, no absorbance peak at 908 cm−1 was observed by FT-IR.

<Step (C): Introduction Reaction of Glycidyl Group>

150 g of the carrier $2 was weighed onto a glass filter and thoroughly cleaned with dimethylsulfoxide. After cleaning, the carrier $2 was placed in a separable flask, 262.5 g of dimethyl sulfoxide and 150 g of epichlorohydrin were added, the resulting mixture was stirred at room temperature, 37.5 ml of a 30% sodium hydroxide aqueous solution (manufactured by KANTO CHEMICAL CO., INC.) was further added, and the resulting mixture was heated to 30° C. and stirred for 6 hours. After completion of the reaction, the porous particle was transferred onto a glass filter and thoroughly washed with water, acetone, and water in the order presented to obtain 180 g of a porous particle into which a glycidyl group had been introduced (carrier γ2).

The introduction density of the glycidyl group in the obtained carrier γ2 was measured in the same manner as in Example 1. As a result, the density of the glycidyl group was 900 μmol/g.

<Step (D): Introduction Reaction of Polyol>

150 g of the carrier γ2 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether. After cleaning, the carrier γ2 was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g (5760 mol % based on the glycidyl group) of ethylene glycol (log P=−1.36) were placed in the separable flask, and stirring and dispersion were carried out. After that, 1.5 mL of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours. The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 152 g of a polyol-introduced porous particle (carrier δ2). The carrier δ2 was classified into 16 to 37 μm using a sieve to obtain 140.5 g of a packing material 2.

The alkali resistance of the obtained packing material 2 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 15.2 μmol/mL, and it was confirmed that the packing material 2 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 2 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.814 mL, 9.635 mL, 9.778 mL, 10.37 mL, 10.898 mL, and 12.347 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 8 was obtained in the same manner as in Example 1 except that 150 g of ethylene glycol was used instead of 1,4-butanediol as an alkylene group-introducing agent.

The alkali resistance of the obtained packing material 8 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced in the packing material 8 was 108.4 μmol/mL, resulting in poor alkali resistance.

Further, the non-specific adsorption of the obtained packing material 8 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 9.708 mL, 9.8946 mL, 10.6452 mL, 11.5374 mL, and 12.1656 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

Example 3

A carrier γ2 was obtained in the same manner as in Example 2.

150 g of the obtained carrier γ2 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether.

After cleaning, the porous particle was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g of polyethylene glycol #200 (manufactured by KANTO CHEMICAL CO., INC., average molecular weight of 190 to 210, log P is unclear, but the close compound tetraethylene glycol (Mw of 194) has a log P of −2.02) (1790 mol % based on glycidyl group) were placed in the separable flask, and stirring and dispersion were carried out.

After that, 1.5 mL of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours.

The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 152 g of a porous particle into which a polyol had been introduced (carrier 63).

The carrier δ3 was classified into 16 to 37 μm using a sieve to obtain 140.5 g of a packing material 3.

The alkali resistance of the obtained packing material 3 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 16.1 μmol/mL, and it was confirmed that the packing material 3 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 3 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.517 mL, 9.241 mL, 9.47 mL, 10.034 mL, 10.484 mL, and 11.927 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 9 was obtained in the same manner as in Example 2 except that no glycidyl group was introduced and no polyol was introduced. That is, the carrier $2 obtained in the step (B) of Example 2 was used as the packing material 9.

The non-specific adsorption of the obtained packing material 9 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.590 mL, 10.316 mL, 9.603 mL, 10.484 mL, 13.863 mL, and 12.861 mL, and it was confirmed that there was a contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that non-specific adsorption was induced. Because of this, the alkali resistance was not evaluated.

Example 4

A packing material 4 was obtained in the same manner as in Example 3 except that 33.2 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 5.9 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 90.0 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 10.0 mol % based on the total amount of the monomers.

The alkali resistance of the obtained packing material 4 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 11.5 μmol/mL, and it was confirmed that the packing material 4 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 4 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 7.52 mL, 8.214 mL, 8.451 mL, 9.062 mL, 9.511 mL, and 11.915 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 10 was obtained in the same manner as in Example 1 except that 150 g (480 mol % based on glycidyl methacrylate) of 1,10-decanediol was used instead of 1,4-butanediol as an alkylene group-introducing agent.

The non-specific adsorption of the obtained packing material 10 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 9.991 mL, 10.15 mL, 10.063 mL, 10.691 mL, 12.172 mL, and 11.531 mL, and it was confirmed that there was a contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that non-specific adsorption was induced. Because of this, the alkali resistance was not evaluated.

Example 5

A packing material 5 was obtained in the same manner as in Example 3 except that 21.5 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 17.6 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase.

The amount of glycidyl methacrylate used was 66.2 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 33.8 mol % based on the total amount of the monomers.

The alkali resistance of the obtained packing material 5 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 18.3 μmol/mL, and it was confirmed that the packing material 5 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 5 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.692 mL, 9.434 mL, 9.625 mL, 10.236 mL, 10.759 mL, and 12.457 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 11 was obtained in the same manner as in Example 3 except that 13.7 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 25.4 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 46.4 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 53.6 mol % based on the total amount of the monomers.

The non-specific adsorption of the obtained packing material 11 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.872 mL, 10.131 mL, 9.82 mL, 10.422 mL, 12.782 mL, and 12.553 mL, and it was confirmed that there was a contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that non-specific adsorption was induced. Because of this, the alkali resistance was not evaluated.

It was confirmed that the exclusion limit molecular weights of the packing materials obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were all 1,000,000 or more.

Example 6

A packing material 6 was obtained in the same manner as in Example 3 except that 33.2 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 5.9 g of ethylene glycol dimethacrylate (trade name: NK Ester 1G, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 29.3 g of butyl acetate, 29.3 g of chlorobenzene, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 88.7 mol % based on the total amount of the monomers, and the amount of ethylene glycol dimethacrylate used was 11.3 mol % based on the total amount of the monomers.

The alkali resistance of the obtained packing material 6 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 12.5 μmol/mL, and it was confirmed that the packing material 6 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 6 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 9.613 mL, 10.427 mL, 10.444 mL, 11.066 mL, 11.582 mL, and 12.575 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 12 was obtained in the same manner as in Example 3 except that 37.1 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 2.0 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 96.7 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 3.3 mol % based on the total amount of the monomers.

Packing into a stainless steel column using the obtained packing material 12 was attempted. However, the back pressure was high, making liquid feeding difficult, and this made it impossible to carry out the packing. Because of this, neither of the evaluations was able to be carried out.

Results of the above Examples and Comparative Examples are shown in Table 1.

From the above results, by adopting the configuration of the present invention, a packing material having suppressed non-specific adsorption and high alkali resistance can be obtained.

When no hydrophobic portion is provided or when the alkylene chain is short, the alkali resistance is low as shown in Comparative Examples 1 and 2. In addition, it was found that when the alkylene chain is too long or when no hydrophilic portion is provided, the hydrophobicity is strong, and non-specific adsorption is induced as shown in Comparative Examples 3 and 4. In addition, in Comparative Example 5 having many repeating units derived from a polyfunctional monomer, it was found that non-specific adsorption was induced, and in Comparative Example 6 having fewer repeating units derived from a polyfunctional monomer, it was found that the back pressure applied to the apparatus was high, making column packing difficult.

TABLE 1
Amount of
carboxy
Degree ofgroup
PolyfunctionalcrosslinkingNon-specificproduced
Monomer[mol %]Alkylene groupPolyoladsorption5)[μmol/mL]
Ex. 1GDMA1)20.2Butylene groupSorbitol21
Ex. 2GDMA20.2Cyclohexane-1,4-dimethyleneEG3)15.2
group
Ex. 3GDMA20.2Cyclohexane-1,4-dimethylenePEG2004)16.1
group
Ex. 4GDMA10Cyclohexane-1,4-dimethylenePEG20011.5
group
Ex. 5GDMA33.8Cyclohexane-1,4-dimethylenePEG20018.3
group
Ex. 6EDMA2)11.3Cyclohexane-1,4-dimethylenePEG20012.5
group
Comp.GDMA20.2Sorbitol120.3
Ex. 1
Comp.GDMA20.2Ethylene groupEG108.4
Ex. 2
Comp.GDMA20.2Cyclohexane-1,4-dimethyleneX
Ex. 3group
Comp.GDMA20.2Decanylene groupSorbitolX
Ex. 4
Comp.GDMA53.6Cyclohexane-1,4-dimethylenePEG200X
Ex. 5group
Comp.GDMA3.3Cyclohexane-1,4-dimethylenePEG200Unmeasurable
Ex. 6group
1)GDMA: Glycerin-1,3-dimethacrylate
2)EDMA: Ethylene glycol dimethacrylate
3)EG: Ethylene glycol
4)PEG200: Polyethylene glycol #200
5)◯: No non-specific adsorption, X: Non-specific adsorption

Full text: Click here
Patent 2024
A 300 Acetone Adsorption Alkalies Anabolism Aprotinin boron trifluoride Buffers butyl acetate butylene Butylene Glycols chlorobenzene COMP protocol Cyclohexane cyclohexanedimethanol diethylamine diethyl succinate diglyme Epichlorohydrin Esters Ethanol ethylene dimethacrylate Ethylenes Ethyl Ether Filtration G 130 gamma-Globulin Gel Chromatography Glycerin glycidyl methacrylate Glycol, Ethylene High-Performance Liquid Chromatographies Hydrochloric acid Hydrolysis Nitrogen Polyethylene Glycols Polymers polyol Polyvinyl Alcohol potassium bromide Potassium Chloride potassium hydroxide Pressure Ribonucleases Sodium Hydroxide sodium phosphate Solvents Sorbitol Stainless Steel Sulfoxide, Dimethyl tetraethylene glycol Thyroglobulin Titrimetry Uridine
Not available on PMC !

Example 1

The photocatalytic oxidation of ethylene gas to CO2 and H2O was performed in a closed loop, 100 L test environment comprising a photocatalytic reactor system of Type 3, an ultrasonic humidifier, a humidity controller, and a photoionization detector. The photocatalytic reactor system is similar to that depicted in FIG. 3 and consists of a 2.7 W, 365 nm LED mounted on a heat sink and suspended above the photocatalyst. The LED was operated at full power. The photocatalyst was housed in a conical reactor and held in place by stainless steel meshes above and below the reactor. Fluidization was provided by a variable speed axial fan mounted 2″ from the bottom of the photocatalyst, and all the air was directed through the photocatalytic reactor system using a tube. The relative humidity of the system was maintained at 60%. No additional water was added after the initial relative humidity level was reached. A 10 ppm ethylene cylinder, balanced with air, was used to introduce a charge of contaminated air into the system until the total ethylene level reached 6 ppm, at which point the LED source was switched on. The level of ethylene was continuously monitored using a PID detector for the course of 300 minutes. The resulting decrease in the ethylene level with time is shown in FIG. 10.

Full text: Click here
Patent 2024
A 300 ARID1A protein, human Ethylenes Humidity Stainless Steel Ultrasonics
Ticks were acquired from the Oklahoma State Tick Rearing Facility (OSU) (Stillwater, OK, USA). Equal numbers of each sex and species (I. scapularis and A. americanum) were obtained. For each lot of I. scapularis and A. americanum and prior to shipment to the study site, OSU screened a subsample of ticks (n = 10) for pathogens using standardized PCR assays. Ixodes scapularis were screened for B. burgdorferi and Anaplasma phagocytophilum. Amblyomma americanum were screened for the presence of Ehrlichia chaffeensis, Francisella tularensis and Rickettsia rickettsii. All PCR-screened ticks were negative for the above pathogens. Once ticks arrived at the study site, they were housed in an industry-standard desiccator with the relative humidity maintained at > 90% until enclosed in a feeding capsule for attachment to deer.
The feeding capsules utilized in this study were specifically designed for holding blood-feeding I. scapularis and A. americanum. Feeding capsules allow for the containment and localization of ticks and aid in facilitating blood-feeding [40 (link)]. The traditional stockinet sleeve method for feeding ticks on cattle [41 (link)–43 ] was determined to be inadequate for white-tailed deer. We instead developed a feeding capsule for deer application, which was in part based upon feeding capsules for ticks (referred to hereafter as tick feeding capsules) previously designed for tick-feeding on rabbits and sheep [44 ]. To make each capsule, sheets of ethylene–vinyl acetate foam were cut into three square pieces. Each square had a different outside area, allowing for flexibility (base, approx. 12 × 12 cm; middle, approx. 9 × 9 cm; top, approx. 7 × 7 cm), and had a combined depth of approximately 18 mm. The center of each square was cut away, creating an opening. The inner surface areas of the base and middle piece openings were each approximately 7 × 7 cm; the top piece had a smaller opening (approx. 1.5 × 1.5 cm) through which the ticks were to be inserted, which decreased the probability that ticks would escape through the top of the capsule (Additional file 3: Figure S2).
Deer were anesthetized using an intramuscular injection of telazol and xylazine at dosages of approximately 3 mg/kg and approximately 2.5 mg/kg, respectively. Once fully anesthetized, deer were weighed to the nearest 0.1 kg using a certified balance. Prior to blood collection and capsule attachment, large patches of fur on the neck were trimmed using electric horse clippers (Wahl®; Wahl Clipper Corp., Sterling, IL, USA). Prior to capsule attachment, 10 ml of blood was collected from the jugular vein of each deer using a 20-gauge needle. The blood from each individual deer was immediately placed into a vacutainer containing EDTA and was centrifuged for 10 min at 7000 revolutions/min. The plasma was transferred to 1.5-ml centrifuge tubes, which were then stored at − 20 °C until analysis.
Two identical tick feeding capsules were attached to opposing sides of the neck of each deer using a liberal amount of fabric glue (Tear Mender, St. Louis, MO, USA). Each capsule was held firmly in place for > 3 min to allow it to adhere to the skin and fur. For each deer, 20 I. scapularis mating pairs were placed within one capsule, and 20 A. americanum mating pairs were placed within the second capsule. Prior to tick attachment, 20 ticks (all same species and sex) were placed into a modified 5-ml syringe. Ticks were chilled in ice for approximately 5–10 min to slow movement. The 20 mating pairs were then carefully plunged into the capsules and a fine mesh lid was applied and reinforced with duct tape. Representative photos and video of the tick attachment process are presented in Fig. 2 and Additional file 4: Video S1, respectively. The capsules were further secured to deer by wrapping the neck with a veterinary bandage (3 M Company, St. Paul, MN, USA).

Tick capsule attachment and tick attachment. a Female ticks being plunged into capsule, b plunger being removed prior to mesh lid being secured, c completed, secured capsule being checked to ensure all corners are adhered to the neck, d closeup of completed capsule containing 20 Ixodes scapularis mating pairs

After completion of capsule and tick attachment, deer were given tolazine via intramuscular injection at a dose of 4 mg/kg to reverse the effects of the anesthetic. Deer were then housed in individual pens, observed closely until they were mobile and moving normally and monitored routinely for the remainder of the day.
Full text: Click here
Publication 2023
Amblyomma americanum Anaplasma phagocytophilum Anesthetic Effect ARID1A protein, human Bandage Biological Assay BLOOD Capsule Cattle Deer Edetic Acid Ehrlichia chaffeensis Electricity Equus caballus Ethylenes Females Francisella tularensis Humidity Intramuscular Injection Ixodes scapularis Jugular Vein Movement Neck Needles Odocoileus virginianus Oryctolagus cuniculus pathogenesis Plasma Rickettsia rickettsii Sheep Skin Syringes Tears Telazol Ticks vinyl acetate Xylazine
Seeds of ETH3 and control were collected at the fruit mature stage of ‘Huashuo’. The soluble sugar content was determined using anthrone colorimetry (Liu et al., 2015 (link)). The contents of sucrose and reducing sugars were evaluated using the 3,5-dinitrosalicylic acid method (Yang et al., 2017 (link)). Endogenous ethylene content was evaluated by the ACC content (Hu et al., 2021 (link)). The grinded samples of 0.5 g were homogenized in phosphate-buffered saline, and then centrifuged at for 20 min (4°C, 12000 rpm). These supernatants were used to measure the ACC contents. The ACC contents of the seed and shell were measured according to the Plant 1-aminocyclopropane carboxylic acid ACC kit (Shanghai Jingkang Bioengineering, Co., Ltd., Shanghai, China) instructions (Hu et al., 2021 (link)). The OD450 value was determined using a microplate reader (BioTek, Winooski, Vermont, USA).
Ten leaves from one tree were randomly selected to measure the chlorophyll content for each biological replicate. Leaves of ethephon treatment and control were cut into filaments. The filaments of 0.2 g were immersed in an acetone–ethanol mixture (2:1, v/v) for 24 h (4°C, darkness). The samples were shaken several times during the experiment. The absorbance indexes at 663 and 645 nm of the solution were assessed by a spectrophotometer (UV-1100, Mapada, China). The chlorophyll a and chlorophyll b contents were calculated, referring to the method of Zhang et al. (Zhang et al., 2021 (link)).
Full text: Click here
Publication 2023
1-aminocyclopropane-1-carboxylic acid Acetone Acids anthrone Biopharmaceuticals Carbohydrates Chlorophyll Chlorophyll A chlorophyll b Colorimetry Cytoskeletal Filaments Darkness DNA Replication Ethanol ethephon Ethylenes Fruit Phosphates Plants Saline Solution Sucrose Sugars Trees

Top products related to «Ethylenes»

Sourced in Japan, United States, Germany, United Kingdom, China, Netherlands
The GC-2014 is a gas chromatograph designed for laboratory use. It is capable of analyzing a wide range of volatile and semi-volatile organic compounds. The GC-2014 features a programmable temperature control system, a choice of detectors, and advanced data analysis software.
Sourced in Japan, United States, Germany, China, Italy
The GC-2010 is a gas chromatograph manufactured by Shimadzu. It is a analytical instrument used for the separation, identification, and quantification of chemical compounds in a complex mixture. The GC-2010 utilizes a heated column filled with a stationary phase to separate the components of a sample based on their boiling points and interactions with the stationary phase.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.
Sourced in Japan, Italy, Australia, United States
The GC-17A is a gas chromatograph manufactured by Shimadzu. It is designed for the separation and analysis of complex organic compounds in a variety of samples. The GC-17A utilizes a flame ionization detector (FID) to quantify the separated compounds.
Sourced in Japan
The GC-8A is a gas chromatograph manufactured by Shimadzu. It is designed to separate and analyze a variety of gaseous and volatile samples. The GC-8A utilizes a carrier gas to transport the sample through a separation column where the components are separated based on their boiling points and interactions with the stationary phase.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.
Sourced in United States
The Click-iT Nascent RNA Capture Kit is a tool designed for the labeling and identification of newly synthesized RNA in cells. The kit utilizes a modified nucleoside analog, which is incorporated into the RNA during transcription, enabling the subsequent capture and isolation of the labeled RNA for further analysis.
Bridged Ethylene Hybrid C18 particles are a type of stationary phase used in liquid chromatography. They consist of a silica substrate with a covalently bonded C18 alkyl chain, which provides hydrophobic interaction for the separation of analytes. The bridged ethylene hybrid structure enhances the stability and mechanical strength of the particles.
Sourced in United States, Germany, United Kingdom
The Hewlett-Packard 5890 Series II is a gas chromatograph designed for the analysis of a wide range of chemical compounds. It features a temperature-programmable oven, multiple detectors, and advanced data processing capabilities. The core function of this instrument is the separation and identification of complex mixtures of volatile and semi-volatile organic compounds.

More about "Ethylenes"

Ethylene, also known as ethene, is a crucial unsaturated hydrocarbon with the chemical formula C₂H₄.
This versatile compound plays a pivotal role in a wide range of industrial and biological processes.
Ethylene serves as a vital precursor for the synthesis of numerous chemicals, from plastics and solvents to pharmaceuticals and agricultural products.
Additionally, it functions as a natural growth hormone in plants, regulating crucial physiological processes such as fruit ripening, flower development, and stress response.
Ethylene's unique properties, including its high reactivity and ability to undergo diverse chemical reactions, make it an invaluable resource in the fields of organic chemistry, biochemistry, and plant science.
Researchers can optimize their ethylene-related studies by utilizing AI-driven protocol comparisons from platforms like PubCompare.ai.
This powerful tool helps scientists locate the most accurate and reproducible protocols from literature, preprints, and patents, enhancing research efficiency and confidence.
Synonyms and related terms for ethylene include olefin, alkene, and C₂H₄.
Abbreviations commonly used in the context of ethylene research include GC (gas chromatography), DMSO (dimethyl sulfoxide), FBS (fetal bovine serum), and BSA (bovine serum albumin).
Key subtopics encompass the synthesis, reactivity, and applications of ethylene, as well as its role in plant physiology and the techniques used to study it, such as the Click-iT Nascent RNA Capture Kit and the use of Bridged Ethylene Hybrid C18 particles in chromatography.
By incorporating this comprehensive information, researchers can optimize their ethylene-related studies and unlock new insights in the fields of organic chemistry, biochemistry, and plant science.
PubCompare.ai's AI-driven protocol comparisons can be a valuable tool in this endeavor, helping to streamline the research process and improve the accuracy and reproducibility of experimental findings.