The largest database of trusted experimental protocols

Glucosides

Glucosides are a class of organic compounds composed of a sugar (glucose) moiety bound to another functional group.
These versatile molecules are found widely in nature, playing diverse roles in plants, animals, and microorganisms.
Glucosides exhibit a broad range of biological activities, including antimicrobial, anti-inflammatory, and antioxidant properties, making them valuable in pharmaceutical and nutraceutical applications.
Reseraching glucosides can provide insights into their structue-function relationships and optimal methods for extraction, purification, and analysis.
PubCompare.ai offers an AI-driven platform to enhance the reproducibility and accuracy of glucoside research, helping scientists locate the best protocols from literature, preprints, and patents, and identify the most effective methods and products.
Experince seamless glucoside research with PubCompare.ai - your one-stop-shop for optimizing this important class of natural products.

Most cited protocols related to «Glucosides»

Cytokinins (zeatin, Z, and zeatin riboside, ZR), indole-3-acetic acid (IAA), and abscisic acid (ABA) were extracted and purified according to the method of Dobrev and Kaminek (2002) (link). One gram of fresh plant material (leaf or root) was homogenized in liquid nitrogen and placed in 5 ml of cold (–20 °C) extraction mixture of methanol/water/formic acid (15/4/1 by vol., pH 2.5). After overnight extraction at –20 °C solids were separated by centrifugation (20 000 g, 15 min) and re-extracted for 30 min in an additional 5 ml of the same extraction solution. Pooled supernatants were passed through a Sep-Pak Plus †C18 cartridge (SepPak Plus, Waters, USA) to remove interfering lipids and plant pigments and evaporated to dryness. The residue was dissolved in 5 ml of 1 M formic acid and loaded on an Oasis MCX mixed mode (cation-exchange and reverse phase) column (150 mg, Waters, USA) preconditioned with 5 ml of methanol followed by 5 ml of 1 M formic acid. To separate different CK forms (nucleotides, bases, ribosides, and glucosides) from IAA and ABA, the column was washed and eluted stepwise with different appropriate solutions indicated in Dobrev and Kaminek (2002) (link). ABA and IAA were analysed in the same fraction. After each solvent was passed through the columns, they were purged briefly with air. Solvents were evaporated at 40 °C under vacuum. Samples then dissolved in a water/acetonitrile/formic acid (94.9:5:0.1 by vol.) mixture for HPLC/MS analysis. Analyses were carried out on a HPLC/MS system consisting of an Agilent 1100 Series HPLC (Agilent Technologies, Santa Clara, CA, USA) equipped with a μ-well plate autosampler and a capillary pump, and connected to an Agilent Ion Trap XCT Plus mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) using an electrospray (ESI) interface. Prior to injection, 100 μl of each fraction extracted from tissues or a similar volume of xylem sap were filtered through 13 mm diameter Millex filters with 0.22 μm pore size nylon membrane (Millipore, Bedford, MA, USA). 8 μl of each sample, dissolved in mobile phase A, was injected onto a Zorbax SB-C18 HPLC column (5 μm, 150×0.5 mm, Agilent Technologies, Santa Clara, CA, USA), maintained at 40 °C, and eluted at a flow rate of 10 μl min−1. Mobile phase A, consisting of water/acetonitrile/formic acid (94.9:5:0.1 by vol.), and mobile phase B, consisting of water/acetonitrile/formic acid (10:89.9:0.1 by vol.), were used for the chromatographic separation. The elution programme maintained 100% A for 5 min, then a linear gradient from 0% to 6% B in 10 min, followed by another linear gradient from 6% to 100% B in 5 min, and finally 100% B maintained for another 5 min. The column was equilibrated with the starting composition of the mobile phase for 30 min before each analytical run. The UV chromatogram was recorded at 280 nm with a DAD module (Agilent Technologies, Santa Clara, CA, USA). The mass spectrometer was operated in the positive mode with a capillary spray voltage of 3500 V, and a scan speed of 22 000 m/z s−1 from 50–500 m/z. The nebulizer gas (He) pressure was set to 30 psi, whereas the drying gas was set to a flow of 6.0 l min−1 at a temperature of 350 °C. Mass spectra were obtained using the DataAnalysis program for LC/MSD Trap Version 3.2 (Bruker Daltonik GmbH, Germany). For quantification of Z, ZR, ABA, and IAA, calibration curves were constructed for each component analysed (0.05, 0.075, 0.1, 0.2, and 0.5 mg l−1) and corrected for 0.1 mg l−1 internal standards: [2H5]trans-zeatin, [2H5]trans-zeatin riboside, [2H6]cis,trans-abscisic acid (Olchemin Ltd, Olomouc, Czech Republic), and [13C6]indole-3-acetic acid (Cambridge Isotope Laboratories Inc., Andover, MA, USA). Recovery percentages ranged between 92% and 95%.
ACC (1-aminocyclopropane-1-carboxylic acid) was determined after conversion into ethylene by gas chromatography using an activated alumina column and a FID detector (Konik, Barcelona, Spain). ACC was extracted with 80% (v/v) ethanol and assayed by degradation with alkaline hypochlorite in the presence of 5 mM HgCl2 (Casas et al., 1989 ). A preliminary purification step was performed by passing the extract through a Dowex 50W-X8, 50–100 mesh, H+-form resin and later recovered with 0.1 N NH4OH. The conversion efficiency of ACC into ethylene was calculated separately by using a replicate sample containing 2.5 nmol of ACC as an internal standard and used for the correction of data.
Publication 2008
1-aminocyclopropane-1-carboxylic acid Abscisic Acid acetonitrile Capillaries Centrifugation Chaperone-Mediated Autophagy Chromatography cis-acid Cold Temperature CREB3L1 protein, human Cytokinins DNA Replication Dowex Ethanol Ethylenes formic acid Gas Chromatography Glucosides High-Performance Liquid Chromatographies Hypochlorite indoleacetic acid Isotopes Lipids Mass Spectrometry Mercuric Chloride Methanol Nebulizers Nitrogen Nucleotides Nylons Oxide, Aluminum Pigmentation Plant Leaves Plant Roots Plants Pressure Radionuclide Imaging Resins, Plant Sep-Pak C18 Solvents Strains Tissue, Membrane Tissues Vacuum Xylem Zeatin zeatin riboside
Berry skins were freeze-dried (Cold Trap 7385020, Labconco, Kansas City, MO, United States). Dried tissues were ground with a tissue lyser (MM400, Retsch, Germany). Fifty mg of the powder were extracted with methanol: water: 7 M hydrochloric acid (70:29:1, V:V:V) to determine flavonol concentration and profile. Extracts were filtered (0.45 μm, Thermo Fisher Scientific, San Jose, CA, United States) and analyzed using reversed-phase high performance liquid chromatography (HPLC) coupled to a diode array detector (DAD). The HPLC system was an Agilent 1260 series (Agilent, Santa Clara, CA, United States) with a reversed-phase C18 column LiChrospher® 100, 250 mm × 4 mm with a 5 μm particle size and a 4 mm guard column of the same material. Anthocyanins may interfere significantly with the quantification of flavonols. Anthocyanin removal through solid phase extraction using a cationic exchange resin (e.g., Dowex 50X4-400, Acros Organics, Fair Lawn, NJ, United States) has been proposed for the determination of flavonols (Hilbert et al., 2015 (link)). However, the determination of flavonols is also possible avoiding co-elution between anthocyanins and flavonols (Downey and Rochfort, 2008 (link)). As Downey and Rochfort (2008) (link) method was not possible to implement directly on our HPLC system, the method was fine-tunned for our instruments. Flow was set to 0.5 ml per minute and temperature was set to 25°C. Two mobile phases were designed to always maintain the following proportions (V/V) of acetonitrile, 0–8 min 8%, at 25 min 12.2%, at 35 min 16.9%, at 70 min 35.7%, 70–75 min 65%, and 80–90 min 8%. This acetonitrile gradient and different isocratic concentrations of formic acid (HCOOH) from 1.8 to 10% were tested by adjusting the gradients and concentrations of two mobile phases (aqueous HCOOH and HCOOH in acetonitrile) as in Supplementary Information 3. A concentration 5% of HCOOH was the only one, avoiding coelution and allowing the simultaneous quantification (Figure 2 and Supplementary Information 4). The remaining volume up to 100% was achieved with purified water. For our HPLC system and column, a 5% HCOOH helped to avoid co-elution, separation of individual flavonols and a high degree of peak sharpness in both anthocyanins and flavonols.
For the identification of flavonols, standards of myricetin-3-O-glucoside, quercetin-3-O-galactoside, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, kaempferol-3-O-glucoside, isorhamnetin-3-O-glucoside and syringetin-3-O-glucoside (Extrasynthese, Genay, France) were used. Flavonols were quantified determining the peak area of the absorbance at 365 nm. Quercetin-3-O-glucoside was used as a quantitative standard for all the flavonols. It must be noted that each individual anthocyanin and flavonol have a different molar relative response factors (e.g., absorbance per M unit) and even though calculating a response factors for each flavonol would have been possible using commercial standards, this is not the standard practice in the literature and would make comparisons of flavonol profiles harder.
Full text: Click here
Publication 2019
A-factor (Streptomyces) acetonitrile Anthocyanins Berries Cation Exchange Resins Chromatography, Reversed-Phase Liquid Cold Temperature Dowex factor A Flavonols formic acid Freezing Glucosides High-Performance Liquid Chromatographies Hydrochloric acid hyperoside isorhamnetin 3-O-glucoside kaempferol-3-O-glucoside Methanol Molar myricetin Powder quercetin 3'-O-glucoside quercetin 3-O-glucuronide Skin Solid Phase Extraction syringetin Tissues
The collection of crystal (X-ray) structure of the enzymes [PDB: 3RX3 (aldose reductase), 3W37 (α-glucosidase), and 1DHK (α-amylase)] were from the RSCB Protein Data Bank (https://www.rcsb.org/ accessed on 12 December 2020). The UCSF Chimera software V1.14 was used in the preparation of the enzymes in readiness for docking [40 (link)], PubChem (https://pubchem.ncbi.nlm.nih.gov/ accessed on 15 December 2020) was used to retrieve the structures of the chromatogram-identified phenolic compounds (sinapic acid, cacticin, hyperoside, 1,3-dicaffeoxyl quinic acid, procyanidin, rutin, epicatechin, isorhamnetin-3-O-rutinoside, chlorogenic acid, myricetin and luteolin-7-O-beta-d-glucoside) and standards (acarbose and ranirestat) and optimization of their three-dimensional structures executed using Avogadro software as previously reported [41 (link)]. The optimized compounds (ligands) and the enzymes were subsequently subjected to molecular docking.
The docking of the prepared phenolic compounds and standards into binding pockets of the enzymes (α-amylase, α-glucosidase, and aldose reductase) was by Autodock Vina Plugin on Chimera V1.14. Judging by the docking scores, complexes identified to have the best pose for each compound were ranked, selected and further analyzed through 100 ns molecular dynamics simulation (MDS).
The MDS was achieved as recently reported [28 (link)], using the GPU (force fields) version obtainable in AMBER package, where the description of the system by FF18SB variant of the AMBER force field was carried out [42 (link)]. With the aid of Restrained Electrostatic Potential (RESP) and the General Amber Force Field (GAFF) methods of the ANTECHAMBER assisted with information on atomic partial charges for the compounds. Hydrogen atoms and Na+ and Cl- counter ions (to neutralize the system) were made possible with Leap module of AMBER 18. The residues were numbered 1–336, 913, and 496, respectively, for aldose reductase, α-glucosidase and α-amylase. The system in each case was then lowered implicitly within an orthorhombic box of TIP3P water molecules such that all atoms were within 8Å of any box edge. MDS total time carried-out were 100 ns. For each simulation, hydrogens atoms were constricted using the SHAKE algorithm. The step size of each simulation was 2 fs, and an SPFP precision model was used. The simulations align with the isobaric-isothermal ensemble (NPT), having randomized seeding, Berendsen barostat maintains 1 bar constant pressure, 2 ps pressure-coupling constant, 300 K temperature and Langevin thermostat with a collision frequency of 1.0 ps [43 (link)].
Using PTRAJ, the systems were subsequently saved, and each trajectory analyzed every 1 ps, and the RoG, RMSF, and RMSD were analyzed with CPPTRAJ module (AMBER 18 suit).
Molecular Mechanics/GB Surface Area method (MM/GBSA) was adopted to assess the free binding energy while comparison of the systems binding affinity followed afterwards [44 (link)]. Binding free energy was averaged over 100,000 snapshots extracted from the 100 ns trajectory. The ΔG for each system (enzyme, complex and phenolics) was estimated as earlier reported [45 (link)].
Full text: Click here
Publication 2021
Acarbose AKR1B1 protein, human alpha Glucosidase Amber Amylase Chimera Chlorogenic Acid Electrostatics Enzymes Epicatechin Glucosides Hydrogen hyperoside Ions isorhamnetin 3-O-rutinoside Ligands Luteolin Mechanics myricetin Pressure procyanidin Quinic Acid Radiography ranirestat Rutin sinapinic acid Tremor
In this study, most of the chemicals, reagents, and standards were analytical grade and purchased from Sigma-Aldrich (Castle Hill, NSW, Australia). Gallic acid, L-ascorbic acid, vanillin, hexahydrate aluminium chloride, Folin-Ciocalteu’s phenol reagent, sodium phosphate, iron(III) chloride hexahydrate (Fe[III]Cl3.6H2O), hydrated sodium acetate, hydrochloric acid, sodium carbonate anhydrous, ammonium molybdate, quercetin, catechin, 2,2′-diphenyl-1-picrylhy-drazyl (DPPH), 2,4,6tripyridyl-s-triazine (TPTZ), and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were purchased from the Sigma-Aldrich (Castle Hill, NSW, Australia) for the estimation of polyphenols and antioxidant potential. Sulfuric acid (H2SO4) with 98% purity was purchased from RCI Labscan (Rongmuang, Thailand). HPLC standards including gallic acid, p-hydroxybenzoic acid, caftaric acid, caffeic acid, protocatechuic acid, sinapinic acid, chlorogenic acid, syringic acid, ferulic acid, coumaric acid, catechin, quercetin, quercetin-3-galactoside, diosmin, quercetin-3-glucuronide, epicatechin gallate, quercetin-3-glucoside, kaempferol and kaempferol-3-glucoside were produced by Sigma-Aldrich (Castle Hill, NSW, Australia) for quantification proposes. HPLC and LC-MS grade reagents including methanol, ethanol, acetonitrile, formic acid, and glacial acetic acid were purchased from Thermo Fisher Scientific Inc. (Scoresby, VIC, Australia). To perform various in vitro bioactivities and antioxidant assays, 96 well-plates were bought from the Thermo Fisher Scientific (VIC, Australia). Additionally, HPLC vials (1 mL) were procured from the Agilent technologies (VIC, Australia).
Full text: Click here
Publication 2020
2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid 4-hydroxybenzoic acid Acetic Acid acetonitrile Aluminum Chloride ammonium molybdate Antioxidants Ascorbic Acid Biological Assay caffeic acid caftaric acid Catechin Chlorides Chlorogenic Acid Coumaric Acids Diosmin diphenyl epicatechin-3-gallate Ethanol ferulic acid folin formic acid Gallic Acid Glucosides High-Performance Liquid Chromatographies Hydrochloric acid hyperoside Iron isoquercetin kaempferol Methanol Phenol Polyphenols protocatechuic acid Quercetin quercetin 3-O-glucuronide sinapinic acid Sodium Acetate sodium carbonate sodium phosphate Sulfonic Acids Sulfuric Acids syringic acid Triazines vanillin
S. eubayanus IMK816 (SemalT1Δ) was constructed by transforming CBS 12357T by electroporation (Gorter de Vries et al., 2017 (link)) with 200 ng of pUDP062 and 1 μg of 120 bp repair fragment obtained by mixing an equimolar amount of primers 11850 and 11851 (Table S5) (Mans et al., 2015 (link)) (Figure 1). As control, the same transformation was performed without including the repair DNA fragment. Transformants were selected on SMAceG plates. Strain IMK817 (SemalT2Δ SemalT4Δ) and IMK818 (SemalT3Δ) were constructed in the same way. The SeMALT2/T4 deletion was constructed by co-transforming pUDP063 and a repair DNA fragment formed by primers 11328 and 11329, while the SeMALT3 deletion involved pUDP064 and a repair DNA formed by primers 11330 and 11331 (Table S5). Deletion of SeMALT1, SeMALT2/T4, and SeMALT3 was verified by diagnostic PCR, using primers pairs 11671/11672, 11673/11674, and 11675/11676 (Table S5), respectively (Figure 1C). Prior to storing at −80°C, transformants were successively streaked on SMAceG and YPD plates. The genotype was verified after each plating round with the primers pairs mentioned above.
S. cerevisiae IMZ616 [mal1Δ mal2Δ mal3Δ mph2Δ mph3Δ suc2Δ ima1Δ ima2Δ ima3Δ ima4Δ ima5Δ pUDC156 (Spcas9 URA3 ARS4 CEN6)], which cannot grow on α-glucosides (Marques et al., 2018 (link)) was used as a host to test the functionality of individual S. eubayanus (putative) maltose transporter genes. S. cerevisiae IMX1253 was constructed by integrating the S. cerevisiae maltase gene ScMAL12 and the SeMALT1 transporter gene at the ScSGA1 locus of strain IMZ616 (Figure 2). The ScSGA1 gene encodes an intracellular sporulation-specific glucoamylase (Yamashita and Fukui, 1985 (link)) that is not expressed during vegetative growth (Knijnenburg et al., 2009 (link)). This integration site was shown suitable for expression of single or multiple genes as previously demonstrated in Mans et al. (2015 (link)), Kuijpers et al. (2016 (link)), Verhoeven et al. (2017 (link)), and Bracher et al. (2018 (link)) The fragment containing ScMAL12 was PCR amplified using Phusion High-Fidelity DNA polymerase (Thermo FisherScientific) from pUDE044 (Basso et al., 2011 (link)) with primers 9596 and 9355, which included a 5′ extension homologous to the upstream region of the S. cerevisiae SGA1 locus and an extension homologous to the co-transformed transporter fragment, respectively. The DNA fragment carrying the S. eubayanus SeMALT1 maltose symporter was PCR amplified from pUD479 using primers 9036 and 9039, which included a 5′ extension homologous to the co-transformed transporter fragment and an extension homologous to the downstream region of the S. cerevisiae SGA1 locus, respectively. To facilitate integration in strain IMZ616, the two PCR fragments were co-transformed with plasmid pUDR119, which expressed a gRNA targeting ScSGA1 (spacer sequence: 5′-ATTGACCACTGGAATTCTTC-3′) (van Rossum et al., 2016 (link)) (Figure 2A). The plasmid and repair fragments were transformed using the LiAc protocol (Gietz and Schiestl, 2007 (link)) and transformed cells were plated on SMAceG. Correct integration was verified by diagnostic PCR with primers pairs 4226/5043 and 942/4224 (Figure 2, Table S5). Strains S. cerevisiae IMX1254, IMX1255, and IMX1365 were constructed following the same principle, but instead of using pUD479 to generate the transporter fragment, pUD480 pUD481 and pUD445 were used to PCR amplify SeMALT2/T4, SeMALT3, and ScAGT1 respectively. Correct integration was verified by diagnostic PCR with primers pairs 4226/5043 and 942/4224 (Figure 2, Table S5). All PCR-amplified gene sequences were Sanger sequenced (Baseclear, Leiden, The Netherlands).
Full text: Click here
Publication 2018
Cells Deletion Mutation Diagnosis DNA-Directed DNA Polymerase Electroporation Genes Genetic Loci Genotype Glucan 1,4-alpha-Glucosidase Glucosides Homo sapiens MAL62 protein, S cerevisiae Maltose Membrane Transport Proteins Multiple Birth Offspring Oligonucleotide Primers Plasmids Protoplasm Saccharomyces cerevisiae Strains Symporters

Most recents protocols related to «Glucosides»

Example 1

The present example described the preparation of an HMG glucoside for use in a flavor composition through the hydrolysis of cocoa bean liquor made from West African cocoa beans.

Reagents: A solution of 4N HCl was prepared by adding 100 mL 34-37% HCl in a 250 mL volumetric flask and filling it with water. A solution of 4N NaOH was prepared by dissolving 80 g NaOH pellets in 500 mL of water in a volumetric flask.

Method: Cocoa liquor was run through a sieve and 30.09 g of fine powder was weighed into a 500 mL 3-neck round-bottom flask. The liquor was dissolved in 4N HCl (200 mL) and a stir bar was added to the flask. The sample was stirred at room temperature until the liquor was fully dispersed and flowed freely. A condenser was affixed to the flask and held at 8° C. A digital thermometer was pierced through a rubber stopper to measure the temperature of the solution. The third neck was plugged with a rubber stopper. The flask was wrapped in aluminum foil and heated to approximately 106° C. using a heating mantle. The sample was refluxed for 4.5 hours and left to cool to room temperature. The sample was transferred to a 1 L beaker and neutralized to pH 7 with 4N NaOH using a digital pH meter (pH 6.98 @29° C.). The sample was divided equally into 4 250 mL centrifuge tubes and centrifuged for 10 minutes @ 4500 rpm. The supernatant was filtered under vacuum through a Buchner funnel. The filtrate was then transferred to 2 32 oz plastic containers and lyophilized (yield 52.50 g).

1. Hydrolysis of Cocoa Powder

    • Preparation: A solution of 4N HCl was prepared by adding 100 mL 34-37% HCl in a 250 mL volumetric flask and filling it to the line with water. A solution of 4N NaOH was prepared by dissolving 80 g NaOH pellets in 500 mL of water in a volumetric flask.
    • Procedure: Cocoa liquor made from Theobroma cacao cocoa beans was run through a sieve and 30.09 g of fine powder was weighed into a 500 mL 3-neck round-bottom flask. The liquor was dissolved in 4N HCl (200 mL) and a stir bar was added to the flask. The sample was stirred at room temperature until the liquor was fully dispersed and flowed freely. A condenser was affixed to the flask and held at 8° C. A digital thermometer was pierced through a rubber stopper to measure the temperature of the solution. The third neck was plugged with a rubber stopper. The flask was wrapped in aluminum foil and heated to approximately 106° C. using a heating mantle. The sample was refluxed for 4.5 hours and left to cool to room temperature. The sample was transferred to a 1 L beaker and neutralized to pH 7 with 4N NaOH using a digital pH meter (pH 6.98 @ 29° C.). The sample was divided equally into 4 250 mL centrifuge tubes and centrifuged for 10 minutes @ 4500 rpm. The supernatant was filtered under vacuum through a Buchner funnel. The filtrate was then transferred to 2 32 oz plastic containers and lyophilized.

2. Ethanol Extraction of Hydrolyzed Cocoa Powder

    • The hydrolyzed cocoa powder was extracted with ethanol to remove a bulk of the salts generated during neutralization. Hydrolyzed cocoa powder (50.36 g) was divided equally into 2 500 mL centrifuge tubes. Ethanol (200 mL) was added slowly to each tube as to not disturb the sample. The samples were shaken for 15 minutes on an autoshaker and then centrifuged for 10 minutes @4500 rpm. The supernatant was decanted into a 1000 mL round-bottom flask. The residue was scraped off the bottom of the tubes and redissolved in ethanol (200 mL each). The samples were shaken for 15 minutes on an autoshaker and then centrifuged for 10 minutes @ 4500 rpm. The supernatant was combined with the previous supernatant and evaporated under reduced pressure to remove all organic solvent. The remaining solids were redissolved in approximately 100 mL deionized water and lyophilized.

3. SPE (Solid Phase Extraction) Fractionation of HCP (Hydrolysed Cocoa Powder) Ethanol Extract

    • The extract previously obtained was further fractionated to exhaustively remove the salts and hydrophilic molecules. HCP ethanol extract was transferred to 14 glass vials (approximately 0.5 g each, 20 mL volume) and dissolved in DI water (10 mL). The samples were shaken until dissolved (approximately 1 minute). The samples were filtered through a syringe and PTFE filter to remove particulates as necessary. A solid phase extraction (SPE) cartridge (20 g/60 mL, C18 stationary phase) was conditioned sequentially with DI water (100 mL), methanol (100 mL), and DI water (100 mL). The sample (10 mL) was then loaded onto cartridge and washed with DI water (100 mL) and extracted with methanol (100 mL). The cartridge was reconditioned and the remaining 13 samples were washed and extracted as previously described. The organic solutions were combined and rotary evaporated under reduced pressure. The residue was redissolved in DI water and lyophilized using a Labconco freeze dryer. The sample was separated by high-performance liquid chromatography (HPLC) to narrow down the taste-active molecules of interest.

1. Liquid/Solid Extraction of Liquor

    • Cocoa Liquor made from cocoa beans sourced from Papua New Guinea (PNG liquor) (600 g) was frozen in liquid nitrogen and ground into a fine powder with a laboratory mill. The powder was divided equally into six plastic centrifuge tubes (500 mL volume). Each sample (100 g PNG liquor) was extracted with diethyl ether (200 mL) for 15 minutes using an autoshaker to remove the fat. After centrifugation (10 min, 4500 rpm), the supernatant was discarded. The extraction process was repeated three more times for a total of four times. The remaining defatted liquor was left to air dry in a fume hood overnight. Defatted liquor (200 g) was divided equally between four plastic centrifuge bottles (250 mL volume). To each sample (50 g defatted PNG liquor), 150 mL 70:30 acetone:water was added. The bottles were placed on an autoshaker for 15 minutes. Each sample was centrifuged (5 min, 3500 rpm) and then the supernatant was vacuum filtered using Whatman 540 filter paper and a Buchner funnel. The residue was freed from the bottom of the bottles by hand and additional 70:30 acetone:water (100 mL) was added to each sample. The samples were shaken for 15 minutes using an auto-shaker. After centrifugation (10 min, 4500 rpm), the supernatant was vacuum filtered again using the same procedure described above. The supernatants from each extraction were combined (˜800 mL) and the residue was discarded. The supernatant was rotary evaporated under reduced pressure and the remaining aqueous solution (˜250 mL) was transferred into a separatory funnel (1000 mL volume). The aqueous solution was washed with Dichloromethane (3×300 mL) to remove any xanthines. The dichloromethane layer was discarded, then the aqueous solution was washed sequentially with n-butyl acetate (3×300 mL), ethyl acetate (3×300 mL), and methyl acetate (3×300 mL) to remove procyanidins. The organic layers were discarded and the aqueous solution (F7) was rotary evaporated under reduced pressure to remove any remaining solvent. The remaining water solution was lyophilized using a Labconco freeze dryer (100×103 mbar, −40° C.). Sensory analysis was performed and the savory attribute was found to be in F7.

2. Solid Phase Extraction (SPE)

    • For removal of any residual salts, treated PNG liquor powder (F7) was transferred to 14 glass vials (20 mL volume, approximately 0.5 g sample in each vial) and dissolved in DI water (10 mL). The samples were shaken until dissolved (approximately 1 minute). A solid phase extraction (SPE) cartridge (20 g/60 mL, C18 stationary phase) was conditioned sequentially with DI water (100 mL), methanol (100 mL), and DI water (100 mL). The vacuum was broken and the sample (10 mL) was then loaded onto cartridge. The vacuum was resumed and the sample was washed with DI water (100 mL). The receptacle flask was changed and the sample was extracted with methanol (100 mL). The cartridge was reconditioned and the remaining 13 samples were washed and extracted as previously described. The organic solutions were combined and rotary evaporated under reduced pressure. The residue was redissolved in DI water and lyophilized using a Labconco freeze dryer (100×103 mbar, −40° C.). Sensory analysis confirmed the presence of the savory attribute in the organic fraction.

Full text: Click here
Patent 2024
Acetone Aluminum Amniotic Fluid ARID1A protein, human butyl acetate Cacao Centrifugation Cocoa Powder Dietary Fiber Ethanol ethyl acetate Ethyl Ether Flavor Enhancers Fractionation, Chemical Freezing Glucosides High-Performance Liquid Chromatographies HMGB Proteins Hydrolysis Methanol methyl acetate Methylene Chloride Neck Nitrogen Pellets, Drug Polytetrafluoroethylene Powder Pressure Procyanidins Rubber Salts Savory Solid Phase Extraction Solvents Syringes Taste Thermometers Vacuum West African People Xanthines
Not available on PMC !

Example 7

FIG. 90 is a table summarizing embodiments of films of the present disclosure. Sodium ascorbyl phosphate, magnesium ascorbyl phosphate and ascorbic acid glucoside could be cast in films with varying appearance. Sodium ascorbyl phosphate films were opaque and white with a textured top surface similar to plastic. Magnesium ascorbyl phosphate films were clear and cloudy with a textured top surface similar to plastic. Ascorbic acid-2-glucoside films were most similar to L-ascorbic acid films although slightly less pliable and slightly textured. All films were soluble with an insoluble border. In an embodiment, a film with an insoluble border can be made completely spreadable by punching a shape from the region contained within the soluble section.

Full text: Click here
Patent 2024
Ascorbic Acid ascorbic acid 2-O-glucoside CD3EAP protein, human derivatives Glucosides magnesium ascorbyl phosphate sodium ascorbyl phosphate
NMR experiments for the compounds were performed in acetone-d6 or MeOH-d4. NMR spectra were acquired on a Bruker Biospin (Billerica, MA) Avance 360 MHz instrument with a room-temperature probe or an Avance 500 MHz spectrometer equipped with a 5 mm Triple Resonance Inverse (TCI) 1H/13C/15N cryoprobe with inverse geometry (proton coils closest to the sample). The central acetone or MeOH solvent peaks were used as the internal reference (δC 29.8 and δH 2.04 ppm for acetone; δC 49.0 and δH 3.30 ppm for MeOH). Typical standard Bruker implementations of the traditional suite of one-dimensional (1D; 1H and 13C) and two-dimensional (2D) NMR experiments [multiplicity-edited 13C, Distortionless Enhancement by Polarization Transfer (DEPT-135), homonuclear COrrelation SpectroscopY (COSY), Heteronuclear Single-Quantum Coherence (HSQC), and Heteronuclear Multiple-Bond Correlation (HMBC)] were used to elucidate/validate the structures. A small exponential multiplication line-broadening value (0.1 Hz) and zero-filling to a processed spectrum size (SI) of 256 K datapoints were applied to see the clear splitting of A3, A5, and Aα peaks from the DDC moiety, as well as the glucoside 1′ peak.
Publication 2023
Acetone Glucosides Protons Solvents Spectrum Analysis Vibration
XL was provided by Xinjiang Tianshan Lotus Pharmaceutical Co., Ltd. It was dissolved in Dulbecco's Modified Eagle Medium (DMEM) for the experiments. The cell culture reagents and enzyme-linked immunosorbent assay (ELISA) kits were purchased from the Invitrogen Corporation (Thermo Fisher Scientific, Carlsbad, CA, USA). Lipopolysaccharide (LPS), complete Freund's adjuvant (CFA), and carrageenan were acquired from Sigma–Aldrich (St Louis, MO, USA). p-p65, p65, and β-tubulin were purchased from Cell Signaling Technology (Beverly, MA, USA). Total glucosides of paeony (TGWP) and diclofenac sodium (DS) were purchased as positive drugs, respectively.
Based on the conversion of data from the adult therapeutic dose to the dose administered to rats, we determined the doses administered for the positive drugs TGWP and DS as 100 mg/kg and 10 mg/kg. The specific conversion process is as follows: the adult daily dose of TGWP and DS is 1.2 g/70 kg and 110 mg/kg, and the rat dose is 6.17 times higher than the adult dose. Therefore, the rat doses of TGWP and DS are approximately 100 mg/kg and 10 mg/kg.
Full text: Click here
Publication 2023
Adult Carrageenan Cell Culture Techniques Diclofenac Sodium Eagle Enzyme-Linked Immunosorbent Assay Freund's Adjuvant Glucosides Lipopolysaccharides Lotus Peony Pharmaceutical Preparations Therapeutics Tubulin
External standards of caffeic acid, neochlorogenic acid, catechin, procyanidin B2, quercetin-3-galactoside, m-coumaric acid, p-coumaric acid, and quercitrin (quercetin 3-rhamnoside) were purchased from Sigma- Aldrich, Inc. (St. Louis, MO, USA). Chlorogenic acid was purchased from MP medicals, France, and kaempferol-3-glucoside was obtained from the HWI group (Rheinzaberner, Germany). Analytical grade methanol, sodium fluoride (NaF), and formic acid (> 95%) were purchased from Merck® (Bengaluru, India). HPLC-grade water was obtained from a Milli-Q System with a resistivity of 18.2 mΩ (Millipore, Billerica, MA, USA).
Calibration standards were prepared by an appropriate dilution of stock solutions with 50% methanol. Nine different concentrations of each compound within 0.01—200 µg/mL for all the compounds were prepared to generate calibration curves. Standard curves were generated using linear regression (R2 of each standard curve was > 0.99).
Full text: Click here
Publication 2023
3-coumaric acid 5'-O-caffeoylquinic acid caffeic acid Catechin Chlorogenic Acid formic acid Glucosides High-Performance Liquid Chromatographies hyperoside kaempferol Methanol procyanidin B2 Quercetin quercitrin Technique, Dilution trans-3-(4'-hydroxyphenyl)-2-propenoic acid

Top products related to «Glucosides»

Sourced in United States, Germany, Italy, Spain, France, India, China, Poland, Australia, United Kingdom, Sao Tome and Principe, Brazil, Chile, Ireland, Canada, Singapore, Switzerland, Malaysia, Portugal, Mexico, Hungary, New Zealand, Belgium, Czechia, Macao, Hong Kong, Sweden, Argentina, Cameroon, Japan, Slovakia, Serbia
Gallic acid is a naturally occurring organic compound that can be used as a laboratory reagent. It is a white to light tan crystalline solid with the chemical formula C6H2(OH)3COOH. Gallic acid is commonly used in various analytical and research applications.
Sourced in Germany, United States, Italy, United Kingdom, France, Spain, China, Poland, India, Switzerland, Sao Tome and Principe, Belgium, Australia, Canada, Ireland, Macao, Hungary, Czechia, Netherlands, Portugal, Brazil, Singapore, Austria, Mexico, Chile, Sweden, Bulgaria, Denmark, Malaysia, Norway, New Zealand, Japan, Romania, Finland, Indonesia
Formic acid is a colorless, pungent-smelling liquid chemical compound. It is the simplest carboxylic acid, with the chemical formula HCOOH. Formic acid is widely used in various industrial and laboratory applications.
Sourced in United States, Germany, Italy, India, Spain, United Kingdom, France, Poland, China, Sao Tome and Principe, Australia, Brazil, Macao, Switzerland, Canada, Chile, Japan, Singapore, Ireland, Mexico, Portugal, Sweden, Malaysia, Hungary
Quercetin is a natural compound found in various plants, including fruits and vegetables. It is a type of flavonoid with antioxidant properties. Quercetin is often used as a reference standard in analytical procedures and research applications.
Sourced in Germany, United States, Italy, India, United Kingdom, China, France, Poland, Spain, Switzerland, Australia, Canada, Sao Tome and Principe, Brazil, Ireland, Japan, Belgium, Portugal, Singapore, Macao, Malaysia, Czechia, Mexico, Indonesia, Chile, Denmark, Sweden, Bulgaria, Netherlands, Finland, Hungary, Austria, Israel, Norway, Egypt, Argentina, Greece, Kenya, Thailand, Pakistan
Methanol is a clear, colorless, and flammable liquid that is widely used in various industrial and laboratory applications. It serves as a solvent, fuel, and chemical intermediate. Methanol has a simple chemical formula of CH3OH and a boiling point of 64.7°C. It is a versatile compound that is widely used in the production of other chemicals, as well as in the fuel industry.
Sourced in Germany, United States, Italy, India, China, United Kingdom, France, Poland, Spain, Switzerland, Australia, Canada, Brazil, Sao Tome and Principe, Ireland, Belgium, Macao, Japan, Singapore, Mexico, Austria, Czechia, Bulgaria, Hungary, Egypt, Denmark, Chile, Malaysia, Israel, Croatia, Portugal, New Zealand, Romania, Norway, Sweden, Indonesia
Acetonitrile is a colorless, volatile, flammable liquid. It is a commonly used solvent in various analytical and chemical applications, including liquid chromatography, gas chromatography, and other laboratory procedures. Acetonitrile is known for its high polarity and ability to dissolve a wide range of organic compounds.
Sourced in United States, Germany, Italy, France, Australia, India, Spain, United Kingdom, China, Poland, Sao Tome and Principe, Japan, Portugal, Canada, Switzerland, Brazil, Malaysia, Singapore, Macao, Belgium, Ireland, Mexico, Hungary
Catechin is a natural polyphenolic compound found in various plants, including green tea. It functions as an antioxidant, with the ability to scavenge free radicals and protect cells from oxidative stress.
Sourced in United States, Germany, Italy, France, Poland, Spain, China, United Kingdom, Australia, Sao Tome and Principe, Switzerland, India, Ireland, Canada, Macao, Brazil, Austria, Mexico, Czechia, Portugal
Caffeic acid is a phenolic compound commonly found in various plants. It serves as a laboratory standard for the identification and quantification of similar phenolic compounds using analytical techniques such as high-performance liquid chromatography (HPLC) and spectrophotometry.
Sourced in United States, Germany, Italy, France, China, Spain, United Kingdom, Australia, Switzerland, Belgium, Sao Tome and Principe, India, New Zealand
Epicatechin is a natural compound found in various plants and is commonly used in laboratory settings. It serves as a standard reference material for analytical and research purposes. Epicatechin exhibits antioxidant properties and is often employed in the evaluation of antioxidant activity and the development of analytical methods.
Sourced in United States, Germany, Italy, Poland, France, China, United Kingdom, Spain, Switzerland, India, Sao Tome and Principe, Australia, Ireland, Macao, Mexico, Brazil, Canada, Czechia, Japan
Chlorogenic acid is a compound found in various plants, including coffee beans. It is a type of polyphenol and is commonly used in laboratory settings for research purposes.
Sourced in United States, Germany, Italy, Spain, France, China, Poland, United Kingdom, Sao Tome and Principe, Switzerland, Canada, Ireland, India, Australia, Japan, Macao, Portugal
P-coumaric acid is a naturally occurring phenolic compound that can be utilized as a reference standard or an analytical reagent in various laboratory settings. It is a white to off-white crystalline solid that is soluble in organic solvents. P-coumaric acid is commonly used as a standard in analytical techniques, such as high-performance liquid chromatography (HPLC) and spectrophotometric measurements, to quantify and characterize similar compounds in sample matrices.

More about "Glucosides"

Glucopyranosides, Glycosides, Glycoconjugates, Phytochemicals, Secondary Metabolites, Biologically Active Compounds, Natural Products, Antioxidants, Anti-inflammatory Agents, Antimicrobials, Phenolic Compounds, Flavonoids, Tannins, Saponins, Terpenoids, Alkaloids, Stilbenes, Lignans, Coumarins, Isoflavones, Anthocyanins, Carotenoids, Gallic Acid, Formic Acid, Quercetin, Methanol, Acetonitrile, Catechin, Caffeic Acid, Epicatechin, Chlorogenic Acid, p-Coumaric Acid.
Glucosides are a versatile class of organic compounds composed of a sugar (glucose) moiety bound to another functional group.
These naturally occurring molecules play diverse roles in plants, animals, and microorganisms, exhibiting a broad range of beneficial biological activities, including antimicrobial, anti-inflammatory, and antioxidant properties.
Researching the structure-function relationships and optimal extraction, purification, and analysis methods of glucosides can provide valuable insights for pharmaceutical, nutraceutical, and other applications.
PubCompare.ai offers an AI-driven platform to enhance the reproducibility and accuracy of glucoside research, helping scientists locate the best protocols from literature, preprints, and patents, and identify the most effective methods and products.
Experience seamlaess glucoside research with PubCompare.ai - your one-stop-shop for optimizing this important class of natural products.