The largest database of trusted experimental protocols

Graphite

Graphite is a naturally occurring form of carbon that is soft, black, and conducts electricity.
It is commonly used in pencils, lubricants, and as a refractory material.
Graphite has a unique crystal structure that allows for the easy transfer of electrons, making it a valuable material in electronic devices and energy storage applications.
Researchers can use PubCompare.ai's AI-driven platform to effortlessly locate protocols related to graphite from the literature, pre-prints, and patents, and leverage comparisons to identify the best protocols and products for their research.
This takes the guesswork out of the research process and enhances reproducibility.

Most cited protocols related to «Graphite»

Typically, flake graphite (10 g), KMnO4 (6 g) and K2FeO4 (4 g) as the oxidants, and boric acid (0.01 g) as a stabilizer were first dispersed in 100 mL of concentrated sulfuric acid in a vessel and stirred for 1.5 h at less than 5 °C. After the addition of another KMnO4 (5 g), the vessel was transferred into a water bath at about 35 °C and stirred for another 3 h to complete the deep oxidation. Next, as 250 mL of deionized water was slowly added, the temperature was adjusted to 95 °C and held for 15 minutes, when the diluted suspension turned brown, indicating the hydrolysis and absolute exfoliation of intercalated graphite oxide. Finally, this brown suspension was further treated with 12 mL H2O2 (30%) to reduce the residual oxidants and intermediates to soluble sulfate, then centrifuged at 10000 rpm for 20 min to remove the residual graphite, and washed with 1 mol/L HCl and deionized water repeatedly, producing the terminal GO (designated GO2). For comparison, another GO (designated GO1) was synthesized following Kovtyukhova improved Hummers method20 , except two of little modification: (1) the ingredients were adjusted slightly, as shown in Table S1; (2) both preoxidation and oxidation time was set at 4 hours.
Full text: Click here
Publication 2016
ARID1A protein, human Bath Blood Vessel boric acid Graphite Hydrolysis Oxidants Oxides Peroxide, Hydrogen potassium ferrate Sulfates, Inorganic sulfuric acid Tooth Exfoliation
Graphene and hBN are cleaved on 100 nm Si oxide thermally grown on standard 4 inch Si wafers. Natural graphite crystals (NaturGrafit GmbH) and hBN bulk crystals (HQgraphene) were mechanically exfoliated with Nitto Denko SWT 20+ die sawing tape. Oxidized silicon is treated in oxygen plasma for 3 min (PlasmaEtch PE-50, 300 mbar O2, 120 W), and the 2D material loaded tape is immediately applied to the silicon oxide surface. The tape is subsequently released from the surface by heating to 85 °C on a hot plate.
Full text: Click here
Publication 2016
Dietary Fiber Graphene Graphite Oxides Plasma Silicon Silicon Dioxide
To implement topology-based GSA using microarray data, we need first to convert pathways into gene networks, i.e. into a graphical structure in which a node represents a simple element like a gene/protein (14 (link)). In fact, whereas pathway nodes might consist of multiple entities such as protein complexes, gene family members and chemical compounds, microarrays measure each single element of complexes and gene family separately. Here, we used graphite (14 (link)), a Bioconductor package addressing these issues. In general, graphite takes pathway information from four different databases (Biocarta; KEGG, (15 (link)); NCI/Nature Pathway Interaction Database, (16 (link)); Reactome, (17 )) and this information is interpreted and opportunely coded by following specific biologically driven rules. Specifically, given a pathway structure, graphite converts it into a gene–gene network. We refer to the manual of the package for more information on the conversion.
Pathways may be cyclic or acyclic. The number of pathways with cycles is dependent either on the structure of the graph or on the number of genes in the array, but fortunately is quite small. Given that the graphical inference methods assume to have an acyclic graph we preventively eliminate self-loops and solve cycles removing the weakest edge of the cycle based on expression data (with minimum expression profile correlation between nodes) (see also (18 (link))).
Then, an acyclic gene network can be read as a Directed Acyclic Graph (DAG). Most inference methods for a DAG convert the network to an undirected cycle-free graph. Such conversion might require some or all of the following steps: moralization, triangulation, clique identification and junction tree construction. Briefly, moralization inserts an undirected edge between two nodes that have a child in common and then eliminates directions on the edges; triangulation inserts edges in the moralized graph so that in the moralized graph all cycles of size ≥4 have chords, where a chord is defined as an edge connecting two non-adjacent nodes of a cycle; clique identification identifies the cliques of the triangulated graph, i.e. the complete subgraphs having all their vertices joined by an edge; junction tree construction builds a new hyper-tree having cliques as nodes and satisfying the running intersection property according to which, for any cliques and in the tree, every clique on the path connecting and contains . As an example, consider the pathway Chronic myeloid leukemia (CML) from KEGG database, see Supplementary Figure S1.
Full text: Click here
Publication 2012
Child Debility Family Member Gene Components Gene Regulatory Networks Genes Graphite Leukemias, Chronic Granulocytic Microarray Analysis Proteins Staphylococcal Protein A Trees
We conducted a population-based survey between March and June 2000, in three unions of Araihazar Upazila, Bangladesh—an area 25 km east of the capital city, Dhaka. The goal of this survey was to completely enumerate and characterize the tube wells and their users in the study area to create a sampling frame for recruiting participants into the HEALS cohort. From a 25-km2 area in Araihazar, water samples were collected from 5,967 contiguous tube wells, and their owners/caretakers were interviewed to obtain demographic characteristics on the 65,876 users of these wells. We selected this study area because of the wide variation in well-water As concentrations. A detailed description of the HEALS methodologies, including selection of the study area and population, is reported elsewhere (Ahsan et al. 2005 ).
For this population-based survey, six teams of trained male and female interviewers and well-water samplers went to every bari in the defined study area. A bari refers to a cluster of households that reside closely. Many individual households do not possess a tube well, but at least one well was present in each bari in this study area. After the identification of each well and its owner/caretaker within a bari, the field team performed the two major components of the survey. The first component was to collect water samples and geographic positioning system data for each well. Water samples were collected in acid-washed polyethylene bottles and were transported to Columbia University, where total As was measured by graphite-furnace atomic absorption spectrometry with a detection limit of 5 μg/L. A detailed description of the water sampling, processing, quality control, chemicals used, and analyses has been published elsewhere (Van Geen et al. 2002 (link)).
The second component was an in-person interview with the well owner/caretaker (or a close relative, if the owner/caretaker was not available) using a structured questionnaire. Sociodemographic characteristics, occupation of the head of the household, and respondent’s awareness of and possible solutions for the As problem were ascertained from one respondent (well owner/caretaker or close relative) for each well. Eighty-eight percent of respondents were the well owner/caretaker, and 12% were other close relatives living in the same household with the well owner/caretaker. Occupation of the head of the household was defined as the job where the person spent the most time working in the past year, indicative of the main source of household income for the past year. Although 57% of the interviewees were female, the head of the household was usually male.
Knowledge regarding the health risks of As was assessed by asking whether the respondent was aware of any adverse health effects from As in drinking water. Specifically, the respondents were asked the following question: “Are you aware that drinking As-contaminated water may cause adverse health effects?” The answers were recorded as “yes,” “no,” or “don’t know.” Answers of “no” and “don’t know” were combined into a single category for the purposes of this analysis. Those who answered “yes” were asked to further specify As-related diseases or adverse health effects. This was an open-ended question for which responses were subsequently categorized by the study physicians to simplify the analysis.
Study participants were also asked about options they were willing to take if As was found in their well. There were 11 mutually exclusive choices listed in the questionnaire: a) will not do anything, b) use dug-well water, c) use pond water, d) boil well/pond water, e) use rain water, f ) boil tube-well water, g) settle tube-well water, h) increase the depth of the well, i) use filter, j) switch well, and k) unknown. Five categories were created based on these 11 choices: do nothing, use surface water with or without treatments (combined be ), use existing well after treatment or increasing the depth (combined fi), switch to safe well, and unknown.
In addition, the well owners/caretakers or their close relatives were asked for information on the number of regular users of the tube well, as well as demographic and family characteristics of the users, in order to assess the As exposure distribution among the overall population in the study area.
Full text: Click here
Publication 2005
Acids Females Furuncles Graphite Head of Household Households Interviewers Males Physicians Polyethylene Rain Reading Frames Spectrophotometry, Atomic Absorption Wound Healing
hBN single crystals are grown under high pressure and high temperature, as detailed in ref. 80 (link). The graphite is first cleaved using adhesive tape. The Si + SiO2 substrate is then exposed to an oxygen plasma (100 W, 360 s). The surface of the tape is brought into contact with the SiO2 substrate, which is then placed on a hot plate at 100 °C for 2 min, before the tape is removed. Heating the substrate allows us to achieve large (>100 μm) SLG flakes, whereas flakes produced without heating are typically <50 μm in size, in agreement with findings of ref. 50 (link). For the exfoliation of hBN, no plasma treatment of the SiO2 surface is used, as we find this has no effect on the flakes’ lateral size. Polymer-contaminated samples are produced by first exfoliating SLG and subsequently depositing PMMA (8% in Anisole, 495 K molecular weight) via spin coating at 4000 rpm for 60 s. PMMA is then removed by acetone and isopropyl alcohol.
Full text: Click here
Publication 2018
Acetone anisole Fever Graphite Isopropyl Alcohol Oxygen Plasma Polymers Polymethyl Methacrylate Pressure Tooth Exfoliation

Most recents protocols related to «Graphite»

Example 1

The effect of Tu on the electrochemical behavior of a chalcopyrite electrode was studied in a conventional 3-electrode glass-jacketed cell. A CuFeS2 electrode was using as working electrode, a saturated calomel electrode (SCE) was used as reference, and a graphite bar was used as counter-electrode. The CuFeS2 electrode was polished using 600 and 1200 grit carbide paper. All experiments were conducted at 25° C. using a controlled temperature water bath. The electrolyte composition was 500 mM H2SO4, 20 mM Fe2SO4 and 0-100 mM Tu. Before starting any measurement, solutions were bubbled with N2 for 30 minutes to reduce the concentration of dissolved 02. Open circuit potential (OCP) was recorded until changes of no more than 0.1 mV/min were observed. After a steady OCP value was observed, electrochemical impedance spectroscopy (EIS) was conducted at OCP using a 5 mV a.c. sinusoidal perturbation from 10 kHz to 10 mHz. Linear polarization resistance (LPR) tests were also conducted using a scan rate of 0.05 mV/s at ±15 mV from OCP.

Linear potential scans were conducted at electrode potentials ±15 mV from the OCP measured at each Tu concentration. All scans showed a linear behavior within the electrode potential range analyzed. An increase in the slope of the experimental plots was observed with increasing Tu concentration. The slope of these curves was used to estimate the value of the polarization resistance (Ret) at each concentration. These values were then used to estimate the values of the dissolution current density using equation 1:

i dissol RT nFR ct Eq . ( 1 )

FIG. 3 shows the effect of Tu on the dissolution current density and mixed potential of the CuFeS2 electrode, and indicates that a maximum dissolution current density was achieved when Tu concentration is 30 mM. Increasing Tu concentration to 100 mM resulted in a decrease in the current density and mixed potential of the CuFeS2 electrode. Moreover, after immersing the CuFeS2 electrode in the 100 mM Tu solution, a copper-like film was observed on the surface of the electrode, which film could only be removed by polishing the electrode with carbide paper.

FIG. 4 is a bar graph showing the effect of initial Tu or FDS concentration on the electrochemical dissolution of a chalcopyrite electrode in sulfuric acid solution at pH 2 and 25° C. A concentration of 10 mM Tu in the leach solution resulted in a six fold increase in dissolution rate compared to no Tu, and a concentration of 5 mM FDS resulted in a six fold increase relative to 10 mM Tu. A concentration of 10 mM Tu in leach solution also containing 40 mM Fe(III) resulted in a thirty fold increase in dissolution rate compared to 40 mM Fe(III) alone.

A column leach of different acid-cured copper ores was conducted with Tu added to the leach solution. A schematic description of the column setup is shown in FIG. 5. The column diameter was 8.84 cm, the column height was 21.6 cm, and the column stack height was 15.9 cm. The irrigation rate was 0.77 mL/min or 8 L/m2/h. The pregnant leach solution emitted from these columns was sampled for copper every 2 or 3 days using Atomic Absorption Spectroscopy (AAS).

The specific mineralogical composition of these ores are provided in Table 1. The Cu contents of Ore A, Ore B, and Ore C were 0.52%, 1.03%, and 1.22% w/w, respectively. Prior to leaching, ore was “acid cured” to neutralize the acid-consuming material present in the ore.

That is, the ore was mixed with a concentrated sulfuric acid solution composed of 80% concentrated sulfuric acid and 20% de-ionized water and allowed to sit for 72 hours. For one treatment using Ore C, Tu was added to the sulfuric acid curing solutions.

The initial composition of the leaching solutions included 2.2 g/L Fe (i.e. 40 mM, provided as ferric sulfate) and pH 2 for the control experiment, with or without 0.76 g/L Tu (i.e. 10 mM). The initial load of mineral in each column was 1.6 to 1.8 kg of ore. The superficial velocity of solution through the ore column was 7.4 L m−2 h−1. The pH was adjusted using diluted sulfuric acid. These two columns were maintained in an open-loop or open cycle configuration (i.e. no solution recycle) for the entire leaching period.

The results of leaching tests on the Ore A, Ore B and Ore C are shown in FIGS. 6, 7, and 8, respectively. The presence of Tu in the lixiviant clearly has a positive effect on the leaching of copper from the chalcopyrite. On average, the leaching rate in the presence of Tu was increased by a factor of 1.5 to 2.4 compared to the control tests in which the leach solutions did not contain Tu. As of the last time points depicted in FIGS. 6 to 8, copper extractions for columns containing Ore A, Ore B, and Ore C leached with a solution containing sulfuric acid and ferric sulfate alone, without added Tu, were 21.2% (after 198 days), 12.4% (after 50 days), and 40.6% (after 322 days), respectively. With 10 mM of added Tu, these extractions were 37.9%, 32.0%, and 72.3%, respectively.

Referring to FIG. 8, 2 mM Tu was added to the leach solution originally containing no Tu from day 322 onward, after which the leach rate increased sharply. From day 332 to day 448, the copper leached from this column increased from 40% to 58%, and rapid leaching was maintained throughout that period.

The averages for the last 7 days reported in FIG. 9 indicate that the leaching rate for acid-cured Ore C leached in the presence of 10 mM Tu is 3.3 times higher than for acid-cured Ore C leached in the absence of Tu, and 4.0 times higher than acid-cured and Tu-cured Ore C leached in the absence of Tu.

FIG. 10 shows the effect of Tu on solution potential. All potentials are reported against a Ag/AgCl (saturated) reference electrode. The solution potential of the leach solutions containing Tu was generally between 75 and 100 mV lower than the solution potential of leach solution that did not include Tu. Lower solution potentials are consistent with Tu working to prevent the passivation of chalcopyrite.

“Bottle roll” leaching experiments in the presence of various concentrations of Tu were conducted for coarse Ore A and Ore B. The tests were conducted using coarsely crushed (100% passing ½ inch) ore.

Prior to leaching, the ore was cured using a procedure similar to what was performed on the ore used in the column leaching experiments. The ore was mixed with a concentrated sulfuric acid solution composed of 80% concentrated sulfuric acid and 20% de-ionized water and allowed to settle for 72 hours to neutralize the acid-consuming material present in the ore. For several experiments, different concentrations of Tu were added to the ore using the sulfuric acid curing solutions.

The bottles used for the experiments were 20 cm long and 12.5 cm in diameter. Each bottle was loaded with 180 g of cured ore and 420 g of leaching solution, filling up to around one third of the bottle's volume.

The leaching solution from each bottle was sampled at 2, 4, 6 and 8 hours, and then every 24 hours thereafter. Samples were analyzed using atomic absorption spectroscopy (AAS) for their copper content.

The conditions for the bottle roll experiments are listed in Table 2. Experiments #1 to #6 were conducted using only the original addition of Tu into the bottles. For experiments #7 to #11, Tu was added every 24 hours to re-establish the Tu concentration.

A positive effect of Tu on copper leaching was observed. For the coarse ore experiments, a plateau was not observed until after 80 to 120 hours. Tu was added periodically to the coarse ore experiments, yielding positive results on copper dissolution.

The effect of different concentrations of Tu in the leach solution on the leaching of coarse ore (experiments #1 to #11 as described in Table 2) is shown in FIGS. 11 and 10.

For ore B, Tu was periodically added every 24 hours to re-establish the thioruea concentration in the system and thus better emulate the conditions in the column leach experiments. As may be observed from FIG. 9, 8 mM and 10 mM Tu yielded higher copper dissolution results than the other Tu concentrations tested for ore A. A plateau in dissolution is not observed until after approximately 120 hours, which varied with Tu concentration as shown in FIG. 11.

TABLE 1
MineralIdeal FormulaOre AOre BOre C
ActinoliteCa2(Mg,Fe2+)5Si8O22(OH)21.8
BiotiteK(Mg,Fe2+)3AlSi3O10(OH)24.2
CalciteCaCO319.3 
ChalcopyriteCuFeS2 1.43.52.6
Clinochlore(Mg,Fe2+)5Al(Si3Al)O10(OH)815.0 
DiopsideCaMgSi2O63.5
GalenaPbS0.1
GypsumCaSO42H2O1.2
Hematiteα-Fe2O30.2
K-feldsparKAlSi3O817.910.8 
KaoliniteAl2Si2O5(OH)4 2.32.3
MagnetiteFe3O40.8
MolybdeniteMoS2<0.1
MuscoviteKAl2AlSi3O10(OH)221.96.041.6 
PlagioclaseNaAlSi3O8—CaAlSi2O813.625.4 
PyriteFeS2 2.38.0
QuartzSiO240.08.344.4 
RutileTiO2 0.50.9
SideriteFe2+CO30.1
Total100  100  100  

As may be observed from FIG. 12, 5 mM Tu yielded higher copper dissolution results than the other Tu concentrations tested for ore B. As with ore A, a plateau in dissolution is not observed until after approximately 80 to 120 hours, which varied with Tu concentration as shown in FIG. 12. Periodic addition of Tu resulted in increased copper dissolutions and produced a delay in the dissolution plateau.

Interestingly, solutions containing 100 mM Tu did not appear to be much more effective on copper extraction than those containing no Tu, and even worse at some time points. This is consistent with the results of Deschenes and Ghali, which reported that solutions containing 200 mM Tu (i.e. 15 g/L) did not improve copper extraction from chalcopyrite. Tu is less stable at high concentrations and decomposes. Accordingly, it is possible that, when initial Tu concentrations are somewhat higher than 30 mM, sufficient elemental sulfur may be produced by decomposition of Tu to form a film on the chalcopyrite mineral and thereby assist in its passivation. It is also possible that, at high Tu dosages, some copper precipitates from solution (e.g. see FIG. 17) to account for some of the low extraction results.

Full text: Click here
Patent 2024
Acids actinolite Bath biotite Calcite calomel Carbonate, Calcium Cells chalcopyrite Chemoradiotherapy Copper Dielectric Spectroscopy diopside Electrolytes factor A feldspar ferric sulfate ferrous disulfide galena Graphite Gypsum hematite Kaolinite Magnetite Minerals muscovite Oxide, Ferrosoferric plagioclase Quartz Radionuclide Imaging Recycling rutile siderite Sinusoidal Beds Spectrophotometry, Atomic Absorption Suby's G solution Sulfur sulfuric acid TU-100

Example 1

95 g of manganese (purity: 99.95%; purchased from Taewon Scientific Co., Ltd.) and 5 g of high-purity graphite (purity: 99.5%; purchased from Taewon Scientific Co., Ltd.) were placed in a water-cooled copper crucible of an argon plasma arc melting apparatus (manufactured by Labold AG, Germany, Model: vacuum arc melting furnace Model LK6/45), and melted at 2,000 K under an argon atmosphere. The melt was cooled to room temperature at a cooling rate of 104 K/min to obtain an alloy ingot. The alloy ingot was crushed to a particle size of 1 mm or less by hand grinding. Thereafter, the obtained powders were magnetically separated using a Nd-based magnet to remove impurities repeatedly, and the Mn4C magnetic powders were collected. The collected Mn4C magnetic powders were subjected to X-ray diffraction (XRD) analysis (measurement system: D/MAX-2500 V/PO, Rigaku; measurement condition: Cu—Kα ray) and energy-dispersive X-ray spectroscopy (EDS) using FE-SEM (Field Emission Scanning Electron Microscope, MIRA3 LM).

FIGS. 2(a) and 2 (b) show an X-ray diffraction pattern and an energy-dispersive X-ray spectroscopy graph of the Mn4C magnetic material produced according to Example 1 of the present disclosure, respectively.

As can be seen in FIG. 2(a), the Mn4C magnetic material showed diffraction peaks of (111), (200), (220), (311) and (222) crystal planes at 2θ values of 40°, 48°, 69°, 82° and 88°, respectively, in the XRD analysis. Thus, it can be seen that the XRD patterns of the Mn4C magnetic material produced according to Example 1 are well consistent with the patterns of the cubic perovskite Mn4C. In addition, the Mn4C magnetic material shows several very weak diffraction peaks that can correspond to Mn23C6 and Mn. That is, the diffraction peak intensity at 2θ values of 43° and 44°, which correspond to Mn and Mn23C6 impurities, is as very low as about 2.5% of the diffraction intensity of the peak corresponding to the (111) plane. Through this, it can be seen that the powders obtained in Example 1 have high-purity Mn4C phase. The lattice parameter of the Mn4C is estimated to be about 3.8682 Å.

FIG. 2(b) shows the results of analyzing the atomic ratio of Mn:C in the powder by EDS. The atomic ratio of Mn:C is 80.62:19.38, which is very close to 4:1 within the experimental uncertainties. Thus, it can be seen that the powder is also confirmed to be Mn4C.

The M-T curve of the field aligned Mn4C powder obtained in Example 1 was measured under an applied field of 4 T and at a temperature ranging from 50 K to 400 K. Meanwhile, the M-T curve of the randomly oriented Mn4C powder was measured under an applied field of 1 T. The Curie temperature of Mn4C was measured under 10 mT while decreasing temperature from 930 K at a rate of 20 K/min.

FIGS. 3(a) to 3(c) show the M-T curves of the Mn4C magnetic material, produced according to Example 1 of the present disclosure, under magnetic fields of 4 T, 1 T, and 10 mT, respectively.

FIG. 3 shows magnetization-temperature (M-T) curves indicating the results of measuring the temperature-dependent magnetization intensity of the Mn4C magnetic material, produced in Example 1, using the vibrating sample magnetometer (VSM) mode of Physical Property Measurement System (PPMS®) (Quantum Design Inc.).

According to the Néel theory, the ferrimagnets that contain nonequivalent substructures of magnetic ions may have a number of unusual forms of M-T curves below the Curie temperature, depending on the distribution of magnetic ions between the substructures and on the relative value of the molecular field coefficients. The anomalous M-T curves of Mn4C, as shown in FIG. 3(a), can be explained to some extent by the Néel's P-type ferrimagnetism, which appears when the sublattice with smaller moment is thermally disturbed more easily. For Mn4C with two sublattices of MnI and MnII, as shown in FIG. 1, the MnI sublattice might have smaller moment.

FIG. 3(a) shows the temperature dependence of magnetization of the Mn4C magnetic material produced in Example 1. The magnetization of Mn4C measured at 4.2K is 6.22 Am2/kg (4 T), corresponding to 0.258μB per unit cell. The magnetization of the Mn4C magnetic material varies little at temperatures below 50 K, and is quite different from that of most magnetic materials, which undergo a magnetization deterioration with increasing temperature due to thermal agitation. Furthermore, the magnetization of the Mn4C magnetic material increases linearly with increasing temperature at temperatures above 50 K. The linear fitting of the magnetization of Mn4C at 4 T within the temperature range of 100 K to 400 K can be written as M=0.0072T+5.6788, where M and T are expressed in Am2/kg and K, respectively. Thus, the temperature coefficient of magnetization of Mn4C is estimated to be about ˜2.99*10−4μB/K per unit cell. The mechanisms of the anomalous thermomagnetic behaviors of Mn4C may be related to the magnetization competition of the two ferromagnetic sublattices (MnI and MnII) as shown in FIG. 1.

FIG. 3(b) shows the M-T curves of the Mn4C powders at temperatures within the range of 300 K to 930 K under 1 T. The linear magnetization increment stops at 590 K, above which the magnetization of Mn4C starts to decrease slowly first and then sharply at a temperature of about 860 K. The slow magnetization decrement at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by further heat-treatment of Mn4C as described below.

According to one embodiment of the present disclosure, the saturation magnetization of Mn4C increases linearly with increasing temperature within the range of 50 K to 590 K and remains stable at temperatures below 50 K. The increases in anomalous magnetization of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which are partially oxidized into the manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is about 870 K. The positive temperature coefficient (about 0.0072 Am2/kgK) of magnetization in Mn4C is potentially important in controlling the thermodynamics of magnetization in magnetic materials.

The Curie temperature Te of Mn4C is measured to be about 870 K, as shown in FIG. 3(c). Therefore, the sharp magnetization decrement of Mn4C at temperatures above 860 K is ascribed to both the decomposition of Mn4C and the temperature near the Tc of Mn4C.

FIG. 4 is a graph showing the magnetic hysteresis loops of the Mn4C magnetic material, produced according to Example 1 of the present disclosure, at 4.2 K, 200 K and 400 K. The magnetic hysteresis loops were measured by using the PPMS system (Quantum Design) under a magnetic field of 7 T while the temperature was changed from 4 K to 400 K.

As shown in FIG. 4, the positive temperature coefficient of magnetization was further proved by the magnetic hysteresis loops of Mn4C as shown in FIG. 4. The Mn4C shows a much higher magnetization at 400 K than that at 4.2 K. Moreover, the remanent magnetization of Mn4C varies little with temperature and is Δ3.5 Am2/kg within the temperature range of 4.2 K to 400 K. The constant remanent magnetization of Mn4C within a wide temperature range indicates the high stability of magnetization against thermal agitation. The coercivities of Mn4C at 4.2 K, 200 K, and 400 K were 75 mT, 43 mT, and 33 mT, respectively.

The magnetic properties of Mn4C measured are different from the previous theoretical results. A corner MnI moment of 3.85μB antiparallel to three face-centered MnII moments of 1.23μB in Mn4C was expected at 77 K. The net moment per unit cell was estimated to be 0.16μB. In the above experiment, the net moment in pure Mn4C at 77 K is 0.26μB/unit cell, which is much larger than that expected by Takei et al. It was reported that the total magnetic moment of Mn4C was calculated to be about 1μB, which is almost four times larger than the 0.258μB per unit cell measured at 4.2 K, as shown in FIG. 4.

FIG. 5 is an enlarged view of the temperature-dependent XRD patterns of the Mn4C magnetic material produced according to Example 1 of the present disclosure.

The thermomagnetic behaviors of Mn4C are related to the variation in the lattice parameters of Mn4C with temperature. It is known that the distance of near-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms. Ferromagnetic coupling of Mn atoms is possible only when the Mn—Mn distance is large enough. FIG. 5 shows the diffraction peaks of the (111) and (200) planes of Mn4C at temperatures from 16 K to 300 K. With increasing temperature, both (111) and (200) peaks of Mn4C shifted to a lower degree at temperatures between 50 K and 300 K, indicating an enlarged distance of Mn—Mn atoms in Mn4C. No peak shift is obviously observed for Mn4C at temperatures below 50 K. The distance of nearest-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms and thus has a large effect on the magnetic properties of the compounds.

Thus, it can be seen that the abnormal increase in magnetization of Mn4C with increasing temperature occurs due to the variation in the lattice parameters of Mn4C with temperature.

The powder produced in Example 1 was annealed in vacuum for 1 hour at each of 700 K and 923 K, and then subjected to X-ray spectroscopy, and the results thereof are shown in FIG. 6.

The magnetization reduction of Mn4C at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by the XRD patterns of the powders after annealing Mn4C at elevated temperatures. FIG. 6 shows the structural evolution of Mn4C at elevated temperatures. When Mn4C is annealed at 700 K, a small fraction of Mn4C decomposes into a small amount of Mn23C6 and Mn. The presence of manganosite is ascribed to the spontaneous oxidation of the Mn precipitated from Mn4C when exposed to air after annealing. The fraction of Mn23C6 was enhanced significantly for Mn4C annealed at 923 K, as shown in FIG. 6.

These results prove that the metastable Mn4C decomposes into stable Mn23C6 at temperatures above 590 K. The presence of Mn4C in the powder annealed at 923 K indicates a limited decomposition rate of Mn4C, from which the Tc of Mn4C can be measured. Both Mn23C6 and Mn are weak paramagnets at ambient temperature and elevated temperatures. Therefore, the magnetic transition of the Mn4C magnetic material at 870 K is ascribed to the Curie point of the ferrimagnetic Mn4C.

The Mn4C shows a constant magnetization of 0.258μB per unit cell below 50 K and a linear increment of magnetization with increasing temperature within the range of 50 K to 590 K, above which Mn23C6 precipitates from Mn4C. The anomalous M-T curves of Mn4C can be considered in terms of the Néel's P-type ferrimagnetism.

Full text: Click here
Patent 2024
Alloys Argon Atmosphere Biological Evolution Cells Copper Cuboid Bone Debility Energy Dispersive X Ray Spectroscopy Face Fever fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether Graphite Ions Magnetic Fields Manganese perovskite Physical Processes Plasma Powder Radiography Scanning Electron Microscopy Spectrum Analysis Vacuum Vision X-Ray Diffraction

Example 4

3D design software and 3D drawing software were used to construct a 3D cylinder model with a diameter of 40 mm and a height of 15 mm, which was converted into an STL file and imported into SLM building software. The model was auto-sliced by the software and imported into an SLM printing system. After heating the substrate to 150° C., the René 104 nickel-based superalloy powder was added to a powder supply tank and then laid. Argon was introduced into the working chamber until the oxygen content was less than 0.1%. Then the printing procedure was carried out, and the steps of laying the powder and scanning the powder by laser were repeated until the printing was completed to obtain a cylinder.

The René 104 nickel-based superalloy powder has a particle size of 15-53 μm, a D10 of 17.5 μm, a D50 of 29.3 μm, and a D90 of 46.9 μm.

The process parameters for SLM are as follows: a laser power of 250 W, a spot diameter of 0.12 mm, a scanning speed of 500 mm/s, a scanning pitch of 0.12 mm, and a thickness of the laid powder layer being 0.03 mm.

The scanning strategy for SLM is a stripe scanning strategy. In the stripe scanning strategy, a layer-by-layer scanning method from bottom to top is adopted, the laser scanning direction is rotated by 67° between adjacent layers, the stripe width is 5 mm, and the overlap between stripes is 0.10 mm. (no contour+solid scanning method is adopted)

The stress relief annealing parameters are as follows: a temperature of 420° C. held for 90 min, and cooling within the furnace.

The SPS parameters are as follows: a graphite mold with a diameter of 40 mm, a heating rate of 60° C./min, a cooling rate of 60° C./min, a sintering pressure of 45 MPa, and a sintering temperature of 1020° C. held for 15 min.

Before and after post-treatments of the fabricated parts, the densities are 98.34% and 99.02%, respectively, and the mechanical properties at room temperature are 987 MPa and 1065 MPa.

Full text: Click here
Patent 2024
Argon ARID1A protein, human Fungus, Filamentous Graphite Nickel Oxygen Powder Pressure
Not available on PMC !

Example 2

A nuclear reactor core is formed from a series of molybdenum tubes containing a mixture of uranium fluoride and sodium fluoride. The uranium is enriched in U235 isotope. The tubes are located in channels in graphite blocks and a coolant liquid passes downwards through the channel between the graphite and the tube.

FIG. 3 shows an arrangement in which the bulbs 301 of the passive reactor control devices are located below the fuel tubes, i.e. below the fuel salt 310, and the stems 302 extend up between the graphite moderators 320 and the fuel salt 310.

Full text: Click here
Patent 2024
Fluorides Graphite Isotopes Medical Devices Molybdenum Plant Bulb Sodium Chloride Sodium Fluoride Stem, Plant Uranium

Example 3

W0.9O2.6:Cr0.23:C0.14:H0.01:N0.01 cathode EC material was synthesized from three targets, W, Cr and Graphite, in Ar/CH4/N2/O2 atmosphere by PDC reactive magnetron co-sputtering onto a Glass/FTO substrate at a room temperature. Thickness of the EC layer was 350-1000 nm. Sputtering pressure was 10 mT, and total gas flow was 80 sccm with 24 sccm of O2 and 6 sccm of N2. Post-annealing was performed in a muffle oven at 450° C. in air atmosphere. Optical, electrochemical and dynamic switching measurements were performed in a liquid cell. The obtained EC material had almost black color in the colored state and still showed a good switching time in PC-LiClO4 electrolyte (approximately 60 seconds for the colored state and 90 seconds for the uncolored state) at 2.0V with LiFePO4 counter electrode. Maximum transmittance in the visible range was approximately 65% in the uncolored state and less than 1% in the colored state. The sputtered film had a brown tint after post-annealing (in the uncolored state) and this color stay almost the same after a number of intercalation/deintercalation cycles.

Full text: Click here
Patent 2024
Atmosphere Cells Electrolytes Graphite LiFePO4 lithium perchlorate Neoplasm Metastasis Pressure Vision

Top products related to «Graphite»

Sourced in United States, Germany, India, United Kingdom, Poland, Spain, Switzerland, Malaysia, Brazil, Sao Tome and Principe
Graphite powder is a fine, black, crystalline powder made from pure carbon. It is a versatile material with various industrial applications, serving as a crucial component in numerous laboratory equipment and processes.
Sourced in Germany, United States, United Kingdom, India, Italy, France, Spain, Australia, China, Poland, Switzerland, Canada, Ireland, Japan, Singapore, Sao Tome and Principe, Malaysia, Brazil, Hungary, Chile, Belgium, Denmark, Macao, Mexico, Sweden, Indonesia, Romania, Czechia, Egypt, Austria, Portugal, Netherlands, Greece, Panama, Kenya, Finland, Israel, Hong Kong, New Zealand, Norway
Hydrochloric acid is a commonly used laboratory reagent. It is a clear, colorless, and highly corrosive liquid with a pungent odor. Hydrochloric acid is an aqueous solution of hydrogen chloride gas.
Sourced in United States, Germany, India, United Kingdom, Malaysia, Singapore, Switzerland, Canada, Australia, Mexico, Italy
Potassium permanganate is a chemical compound used in laboratory settings. It is a strong oxidizing agent with a deep purple color. Potassium permanganate is commonly used in various analytical and experimental procedures, but its specific applications should be determined by the intended use and relevant safety protocols.
Sourced in Germany, United States, Italy, France, India, United Kingdom, Canada, Switzerland, Spain, Australia, Poland, Mexico, Singapore, Malaysia, Chile, Belgium, Ireland, Sweden, Hungary, Brazil, China
Sulfuric acid is a highly corrosive, colorless, and dense liquid chemical compound. It is widely used in various industrial processes and laboratory settings due to its strong oxidizing properties and ability to act as a dehydrating agent.
Sourced in United States, Germany, India, United Kingdom, Spain, Italy, China, Canada, Poland, Switzerland, France, Brazil, Australia, Belgium, Sao Tome and Principe, Singapore, Malaysia, Japan, Macao, New Zealand, Hungary, Czechia, Nigeria, Portugal, Ireland, Cameroon, Thailand
Hydrogen peroxide is a clear, colorless liquid chemical compound with the formula H2O2. It is a common laboratory reagent used for its oxidizing properties.
Sourced in Germany, United States, India, United Kingdom, Italy, China, Spain, France, Australia, Canada, Poland, Switzerland, Singapore, Belgium, Sao Tome and Principe, Ireland, Sweden, Brazil, Israel, Mexico, Macao, Chile, Japan, Hungary, Malaysia, Denmark, Portugal, Indonesia, Netherlands, Czechia, Finland, Austria, Romania, Pakistan, Cameroon, Egypt, Greece, Bulgaria, Norway, Colombia, New Zealand, Lithuania
Sodium hydroxide is a chemical compound with the formula NaOH. It is a white, odorless, crystalline solid that is highly soluble in water and is a strong base. It is commonly used in various laboratory applications as a reagent.
Sourced in United States, Germany, India, Spain, Australia, China
Potassium permanganate (KMnO4) is a chemical compound commonly used as a laboratory reagent. It is a strong oxidizing agent that can be used in various analytical and purification processes. The core function of KMnO4 is to serve as an oxidizing agent, providing a controlled and consistent source of oxygen for chemical reactions and analyses.
Sourced in Germany, United States, Spain, India, United Kingdom, Switzerland, China, Italy, Brazil, Malaysia, Poland
H2SO4, commonly known as sulfuric acid, is a versatile laboratory reagent. It is a clear, colorless, and dense liquid with a high boiling point. H2SO4 is a strong mineral acid that is widely used in various scientific applications due to its chemical properties.
Sourced in Germany, United States, United Kingdom, Italy, India, France, China, Australia, Spain, Canada, Switzerland, Japan, Brazil, Poland, Sao Tome and Principe, Singapore, Chile, Malaysia, Belgium, Macao, Mexico, Ireland, Sweden, Indonesia, Pakistan, Romania, Czechia, Denmark, Hungary, Egypt, Israel, Portugal, Taiwan, Province of China, Austria, Thailand
Ethanol is a clear, colorless liquid chemical compound commonly used in laboratory settings. It is a key component in various scientific applications, serving as a solvent, disinfectant, and fuel source. Ethanol has a molecular formula of C2H6O and a range of industrial and research uses.
Sourced in United States, Germany, India, Italy, United Kingdom, Singapore, Switzerland, Spain, France, China, Canada, Japan, Australia
Sodium nitrate is an inorganic compound with the chemical formula NaNO3. It is a crystalline solid that is commonly used as a laboratory reagent and in various industrial applications.

More about "Graphite"

Graphite is a naturally occurring, soft, black allotrope of carbon that is renowned for its exceptional electrical conductivity.
This remarkable material has a unique crystalline structure that enables the seamless transfer of electrons, making it a valuable asset in a wide range of electronic and energy storage applications.
Beyond its electronic properties, graphite is also widely used as a lubricant, refractory material, and in the production of pencils.
Its versatility and unique characteristics have captured the attention of researchers and scientists across various disciplines.
When it comes to the research and development of graphite-based products and technologies, the ability to efficiently locate and compare relevant protocols from the literature, preprints, and patents is crucial.
PubCompare.ai's AI-driven platform offers a powerful solution for this task, empowering researchers to effortlessly discover and evaluate the best protocols and products for their specific needs.
The platform's advanced algorithms and data-driven comparisons take the guesswork out of the research process, enhancing reproducibility and streamlining the discovery of innovative graphite-based solutions.
Researchers can leverage PubCompare.ai's tools to explore a wide range of graphite-related topics, including graphite powder, hydrochloric acid, potassium permanganate, sulfuric acid, hydrogen peroxide, sodium hydroxide, KMnO4, H2SO4, ethanol, and sodium nitrate, among others.
By utilizing PubCompare.ai's intuitive and user-friendly platform, researchers can unlock new insights, accelerate their progress, and drive the advancement of graphite-based technologies, ultimately contributing to a more sustainable and efficient future.