Avoiding small-volume, bead-based SPRI cleanups of each sample is an effective way of reducing loss and increasing assay sensitivity. Lysing single cells in a guanidine thiocyanate buffer necessitates SPRI cleanup due to the protein denaturing effects of the compound, which will affect downstream reactions, like reverse transcription. Multiple alternative lysis buffers exist that address this. The Ambion Single Cell Lysis buffer (Life technologies, #4458235), often used for single-cell RT-PCR, only requires the addition of a stop solution to inactivate its lytic activity before subsequent reactions. A hypotonic lysis buffer with small amounts of RNase-inhibitor and surfactant, as described in Smart-seq2, is the preferred buffer due to the lack of a need for a post-lysis cleanup or the addition of a stop solution prior to reverse transcription. However, the optimal lysis strategy will depend on the experimental system being analyzed.
Smart-seq2 takes additional steps to minimize sample loss during library construction. The reverse transcription is improved by the addition of betaine and additional magnesium chloride to the reaction mix and by the use of a template-switch oligonucleotide with one locked nucleic acid (LNA) riboguanosine base. These improvements assist in the hybridization between the template-switch oligonucleotide and the cDNA product, thereby increasing the probability of successfully introducing a second PCR adapter onto the cDNA product (see