The largest database of trusted experimental protocols

Hematoxylin

Hematoxylin is a natural dye derived from the logwood tree that is widely used in histology and cytology as a nuclear stain.
It has a deep blue-purple color and binds to the negatively charged phosphate groups in DNA, allowing it to stain cell nuclei.
Hematoxylin staining is a fundamental technique in tissue preparation and analysis, providing crucial information about tissue morphology and cellular structure.
Researchers often need to optimize hematoxylin staining protocols to acheive consistent, reproducible, and accurate results.
PubCompare.ai can help by comparing hematoxylin staining protocols from the literature, preprints, and patents to identify the best methods and products for your research needs.

Most cited protocols related to «Hematoxylin»

The streptavidin alkaline phosphatase method was adapted to detect the viral antigen using a polyclonal anti-ZIKV antibody produced at the Evandro Chagas Institute2 (link). The biotin-streptavidin peroxidase method was used for immunostaining of tissues with antibodies specific for each marker studied. First, the tissue samples were deparaffinized in xylene and hydrated in a decreasing ethanol series (90%, 80%, and 70%). Endogenous peroxidase was blocked by incubating the sections in 3% hydrogen peroxide for 45 min. Antigen retrieval was performed by incubation in citrate buffer, pH 6.0, or EDTA, pH 9.0, for 20 min at 90 °C. Nonspecific proteins were blocked by incubating the sections in 10% skim milk for 30 min. The histological sections were then incubated overnight with the primary antibodies diluted in 1% bovine serum albumin (Supplementary Table S1). After this period, the slides were immersed in 1 × PBS and incubated with the secondary biotinylated antibody (LSAB, DakoCytomation) in an oven for 30 min at 37 °C. The slides were again immersed in 1X PBS and incubated with streptavidin peroxidase (LSAB, DakoCytomation) for 30 min at 37 °C. The reactions were developed with 0.03% diaminobenzidine and 3% hydrogen peroxide as the chromogen solution. After this step, the slides were washed in distilled water and counterstained with Harris hematoxylin for 1 min. Finally, the sections were dehydrated in an increasing ethanol series and cleared in xylene.
Full text: Click here
Publication 2018
Alkaline Phosphatase Antibodies Antibodies, Anti-Idiotypic Antigens Antigens, Viral azo rubin S Biotin Buffers Citrates Edetic Acid Ethanol Hematoxylin Immunoglobulins Milk, Cow's Peroxidase Peroxide, Hydrogen Peroxides Proteins Serum Albumin, Bovine Streptavidin Tissues Tritium Xylene Zika Virus
Preprocessing steps were applied as described above. QuPath’s Cell detection command was then used to identify cells across all cores based upon nuclear staining. This command additionally estimates the full extent of each cell based upon a constrained expansion of the nucleus region, and calculates up to 33 measurements of intensity and morphology, including nucleus area, circularity, staining intensity for hematoxylin and DAB, and nucleus/cell area ratio. Because not all of these measurements are expected to provide independent or useful information with regard to cell classification, a subset of 16 measurements was chosen empirically and supplemented for each cell by measuring the local density of cells, and taking a Gaussian-weighted sum of the corresponding measurements within neighboring cells using QuPath’s Add smoothed features command. A two-way random trees classifier was then interactively trained to distinguish tumor epithelial cells from all other detections (comprising non-epithelial cells, necrosis, or any artefacts misidentified as cells) and applied across all slides (see Supplementary Video 2). Intensity thresholds were set to further subclassify tumor cells as being negative, weak, moderate or strongly positive for p53 staining based upon mean nuclear DAB optical densities. An H-score was calculated for each tissue core by adding 3x% strongly stained tumor nuclei, 2x% moderately stained tumor nuclei, and 1x% weakly stained tumor nuclei32 (link), giving results in the range 0 (all tumor nuclei negative) to 300 (all tumor nuclei strongly positive).
Full text: Click here
Publication 2017
Cell Nucleus Cells Debility Epithelial Cells Hematoxylin Necrosis Neoplasms Neoplasms, Epithelial Tissues Trees Vision
After the initial TMA preprocessing steps described above, analysis of CD3 and CD8 was performed using QuPath’s Simple tissue detection and Fast cell counts commands. Briefly, tissue was detected within each TMA core by thresholding a downsampled and smoothed image of the core, followed by cleanup of the resulting binary image by morphological operations. Individual cells were identified by separating stains using color deconvolution and identifying peaks in either the hematoxylin channel (CD3) or sum of the hematoxylin and DAB channels (CD8) after smoothing, and assigning these as positive or negative cells based upon the smoothed DAB channel information. The number of positive cells and area detected were used to calculate the average number of positive cells per mm2, and these results exported along with markup images showing the detected cells, for visual verification. The detection and export steps were fully automated using a batch processing script.
Full text: Click here
Publication 2017
Cells Hematoxylin Staining Tissues
Separate projects were created within QuPath for each biomarker, and the slide images imported to the corresponding projects. QuPath’s automated TMA dearrayer was applied in batch over all slides within each project to identify tissue cores. The resulting TMA grid was manually verified and amended where necessary, e.g. to adjust the locations of cores that were outside their expected position, or to remove cores where prominent artefacts were visible. Patient identifiers were then imported into QuPath for each core to assist alignment with survival data later. Additionally, stain vector (i.e. color) and background estimates were applied for each IHC analysis project to improve stain separation within QuPath using color deconvolution17 (link). This was achieved by selecting a representative area containing an area of background along with examples of strong hematoxylin and DAB staining, and applying QuPath’s Estimate stain vectors command to identify stain vectors within this region. The resulting vectors were then used for all images in the project.
Full text: Click here
Publication 2017
Biological Markers Cloning Vectors Hematoxylin Patients Stains Tissues
Formalin-fixed and paraffin-embedded tissue sections from invasive breast cancers were derived from the archive of the Department of Pathology, Seinäjoki Central Hospital. The study has been approved by the Scientific Committee of Seinäjoki Central Hospital, Finland. According to the Finnish national ethics committee regulations, informed consent was not considered necessary for this study. Immunohistochemical stainings of ER, PR, and Ki-67 tissue sections followed the recommended staining protocols [3 ]. The slides were stained using the BondMax staining robot (Leica Microsystems, Wetzlar, Germany). In brief, ER was detected using monoclonal antibody 6F11 (diluted 1:300, Leica Biosystems, Newcastle, UK), PR was detected using monoclonal antibody PgR636 (diluted 1:600, Leica Biosystems, Newcastle, UK), and Ki-67 was detected using monoclonal antibody MIB-1 (diluted 1:100, Dako, Carpinteria, CA, USA). Antigen retrieval was performed in Tris-EDTA buffer (pH 9, 100°C for 40 minutes). Bound antibodies were visualized using Bond Refine Detection kit (Leica Biosystems, Newcastle, UK). Immunoreaction was intensified using 0.5% copper sulfate (5 minutes). Hematoxylin counterstaining (1 minutes in ChemMate diluted 1:6, Dako, Carpinteria, CA, USA) was performed using PBS as bluing reagent. The samples were cleared with ethanol and xylene and mounted using standard procedures.
Full text: Click here
Publication 2010
Antibodies Antigens Edetic Acid Ethanol Ethics Committees Formalin Hematoxylin Ki-67 Antigen Malignant Neoplasm of Breast Monoclonal Antibodies Paraffin Embedding Sulfate, Copper Tissues Tromethamine Xylene

Most recents protocols related to «Hematoxylin»

Authorizations for reporting these three cases were granted by the Eastern Ontario Regional Forensic Unit and the Laboratoire de Sciences Judiciaires et de Médecine Légale du Québec.
The sampling followed a relatively standardized protocol for all TBI cases: samples were collected from the cortex and underlying white matter of the pre-frontal gyrus, superior and middle frontal gyri, temporal pole, parietal and occipital lobes, deep frontal white matter, hippocampus, anterior and posterior corpus callosum with the cingula, lenticular nucleus, thalamus with the posterior limb of the internal capsule, midbrain, pons, medulla, cerebellar cortex and dentate nucleus. In some cases, gross pathology (e.g. contusions) mandated further sampling along with the dura and spinal cord if available. The number of available sections for these three cases was 26 for case1, and 24 for cases 2 and 3.
For the detection of ballooned neurons, all HE or HPS sections, including contusions, were screened at 200×.
Representative sections were stained with either hematoxylin–eosin (HE) or hematoxylin-phloxin-saffron (HPS). The following histochemical stains were used: iron, Luxol-periodic acid Schiff (Luxol-PAS) and Bielschowsky. The following antibodies were used for immunohistochemistry: glial fibrillary acidic protein (GFAP) (Leica, PA0026,ready to use), CD-68 (Leica, PA0073, ready to use), neurofilament 200 (NF200) (Leica, PA371, ready to use), beta-amyloid precursor-protein (β-APP) (Chemicon/Millipore, MAB348, 1/5000), αB-crystallin (EMD Millipore, MABN2552 1/1000), ubiquitin (Vector, 1/400), β-amyloid (Dako/Agilent, 1/100), tau protein (Thermo/Fisher, MN1020 1/2500), synaptophysin (Dako/Agilent, ready to use), TAR DNA binding protein 43 (TDP-43) ((Protein Tech, 10,782-2AP, 1/50), fused in sarcoma binding protein (FUS) (Protein tech, 60,160–1-1 g, 1/100), and p62 (BD Transduc, 1/25). In our index cases, the following were used for the evaluation of TAI: β-APP, GFAP, CD68 and NF200; for the neurodegenerative changes: αB-crystallin, NF200, ubiquitin, tau protein, synaptophysin, TDP-43, FUS were used.
For the characterization of the ballooned neurons only, two cases of fronto-temporal lobar degeneration, FTLD-Tau, were used as controls. One was a female aged 72 who presented with speech difficulties followed by neurocognitive decline and eye movement abnormalities raising the possibility of Richardson’s disorder. The other was a male aged 67 who presented with a primary non-fluent aphasia progressing to fronto-temporal demαentia. In both cases, the morphological findings were characteristic of a corticobasal degeneration.
Full text: Click here
Publication 2023
Amyloid beta-Protein Precursor Amyloid Proteins Antibodies Broca Aphasia Cloning Vectors Congenital Abnormality Contusions Corpus Callosum Cortex, Cerebellar Cortex, Cerebral Corticobasal Degeneration Crystallins Dura Mater Eosin Eye Abnormalities Eye Movements Frontotemporal Lobar Degeneration FUBP1 protein, human Glial Fibrillary Acidic Protein Hematoxylin Immunohistochemistry Internal Capsule Iron Males Medial Frontal Gyrus Medulla Oblongata Mesencephalon Movement Movement Disorders neurofilament protein H Neurons Nucleus, Dentate Nucleus, Lenticular Occipital Lobe Periodic Acid phloxine Pons Proteins protein TDP-43, human RNA-Binding Protein FUS Saffron Sarcoma Seahorses Speech Spinal Cord Staining Synaptophysin Temporal Lobe Thalamus Ubiquitin White Matter Woman
The paraffin-embedded tissue sections were subjected to dewaxing, rehydration, as well as antigen repair. Next, the tissue sections were incubated at 4 °C overnight with Ki67 (1:100, Cell Signaling Technology), MAPK6 (1:50, Abcam) and Caspase-7-specific antibody (1:500, Abcam) followed by 1-h incubation at 37 °C with the biotin-labeled secondary antibody. Lastly, the tissues were stained with DAB and hematoxylin.
Full text: Click here
Publication 2023
Antigens Biotin Caspase-7 Hematoxylin Immunoglobulins Paraffin Rehydration Tissues
We selected three key proteins of the PI3K-Akt signaling pathway, including ErbB2, PIK3R1, and AKT3, to verify the pathway predictions. After dewaxing, the sections were subjected to antigen retrieval at high temperature and pressure for 3 min, washed with water, incubated with 3% hydrogen peroxide at room temperature for 10 min, washed again three times, and then placed in phosphate-buffered saline solution. We blocked the sections with 5% fetal bovine serum for 30 min, then added the first antibody for overnight incubation at 4 °C. The next day, the sections were washed three times, then incubated with a secondary antibody at room temperature for 30 min and washed three times. We then incubated the sections for 1–3 min with diaminobenzidine chromogenic solution, lightly stained the nuclei with hematoxylin, and differentiated the sections with 0.5% hydrochloric acid ethanol for 2 s. After three washes, the sections were dehydrated with graded alcohol, made transparent, and sealed with neutral gum. The antibodies used in the study were raised against CgA (dilution 1:1000, GT211407; Gene Tech, CHINA), SYP (dilution 1:1000, GT206507; Gene Tech), ErbB2 (dilution 1:1000, GT224507; Gene Tech), PIK3R1 (dilution 1:1000, ER64588; HUABIO), and AKT3 (dilution 1:1000, ER62638; HUABIO).
Based on the 2010 World Health Organization classification system, we examined two neuroendocrine biomarkers, CgA and SYP. Specimens in which CgA and/or SYP were present in 2–30% of immunoreactive cells were classified as NED [1 (link)]. All immunohistochemical sections were evaluated by two senior pathologists.
Full text: Click here
Publication 2023
AKT3 protein, human Antibodies Antigens azo rubin S Biological Markers Cell Nucleus Cells ERBB2 protein, human Ethanol Fetal Bovine Serum Fever Genes Hematoxylin Hydrochloric acid Immunoglobulins Neurosecretory Systems Pathologists Peroxide, Hydrogen Phosphates Phosphatidylinositol 3-Kinases Pressure Proteins Saline Solution Signal Transduction Technique, Dilution
The paraffin-embedded tissue sections were deparaffinized and rehydrated following standard procedures. Sections were incubated with 3% H2O2 to block endogenous peroxidase activity and antigen retrieval was performed in citrated buffer at 110 ℃, for 5 min in a pressure cooker. After the citrated buffer reached room temperature, the sections were removed and incubated overnight with the primary antibodies COL2A1 (1:200, bioss, bs-10589R) and SOX9 (1:1000, Abcam, Cat# ab185966) at 4 ℃, followed by incubation with an HRP conjugated secondary antibody (Beyotime Institute of Biotechnology, Inc., Nantong, China) for 2 h at room temperature. Peroxidase binding for both COL2A1 and SOX9 was visualized using diaminobenzidine. Then, the nuclei were counterstained with hematoxylin, while the slides were dehydrated, mounted, and analyzed with a light microscope. For the quantitative analysis, all positively stained cells, including those in the femoral condyle and tibial plateau area, on the articular surface per specimen were counted, and the percentage of positive cells was calculated using Image-Pro Plus 6.0.
Full text: Click here
Publication 2023
Antibodies Antigens Buffers Cardiac Arrest Cell Nucleus Condyle Femur Hematoxylin Immunoglobulins Joints Light Microscopy Paraffin Peroxidase Peroxide, Hydrogen Pressure SOX9 protein, human Tibia Tissues
All procedures were carried out at room temperature (RT) in the Veterinary Pathology Diagnostic Services laboratory at the University of Sydney. Slides were rinsed between steps and first, 4-µm thick sections were dewaxed and rehydrated (Table 1). After antigen retrieval, slides were incubated with the appropriate antibody: CDK4 was applied overnight at 4°C; VEGFR2, KIT, and PDGFR-β were applied for 60 min at RT. All antibodies used in our study were validated by the manufacturers and/or were used in studies by other researchers.4 (link),8 (link),9 (link),25 ,26 (link),29 (link),33 (link) Sections were incubated for 30 min with the appropriate secondary antibody using a horseradish peroxidase–labeled polymer system (EnVision). Each run included a set of positive and negative controls. Following chromogen application, slides were counterstained for 5 s in hematoxylin. Slides were then dehydrated through ethanol, cleared with xylene, and coverslipped.
Publication 2023
Antibodies Antigens azo rubin S Ethanol Hematoxylin Horseradish Peroxidase Immunoglobulins Platelet-Derived Growth Factor beta Receptor Polymers Vascular Endothelial Growth Factor Receptor-2 Xylene

Top products related to «Hematoxylin»

Sourced in United States, Germany, China, Japan, United Kingdom, Macao, India, Denmark, Australia, France, Italy, Sao Tome and Principe, Poland, Israel, Spain, Sweden, Brazil, Canada
Hematoxylin is a natural dye extracted from the wood of the Logwood tree (Haematoxylum campechianum). It is a commonly used stain in histology and microscopy for the staining of cell nuclei, providing a deep blue-purple color. Hematoxylin is considered a progressive stain, requiring the use of a mordant, such as aluminum salts, to create the desired staining effect.
Sourced in United States, Japan, Germany, United Kingdom, China, Hungary, Singapore, Canada, Switzerland
Image-Pro Plus 6.0 is a comprehensive image analysis software package designed for scientific and industrial applications. It provides a wide range of tools for image capture, enhancement, measurement, analysis, and reporting.
Sourced in United States, Denmark, United Kingdom, Germany, Japan, Canada, China, France, Belgium, Netherlands, Poland
The DAB (3,3'-Diaminobenzidine) product from Agilent Technologies is a chromogenic substrate used in immunohistochemistry and immunocytochemistry applications. It provides a brown precipitate at the site of the antigen-antibody reaction, allowing for the visualization and localization of target proteins or antigens in biological samples.
Sourced in United States, United Kingdom, Canada, Germany, France, Japan, Switzerland
The Vectastain Elite ABC kit is a specialized laboratory equipment used for the detection and visualization of target proteins or antigens in biological samples. It utilizes an avidin-biotin complex (ABC) system to amplify the signal, enabling researchers to achieve high sensitivity and consistent results in their immunohistochemical or immunocytochemical analyses.
Sourced in Japan, United States, Germany, Italy, Denmark, United Kingdom, Canada, France, China, Australia, Austria, Portugal, Belgium, Panama, Spain, Switzerland, Sweden, Poland
The BX51 microscope is an optical microscope designed for a variety of laboratory applications. It features a modular design and offers various illumination and observation methods to accommodate different sample types and research needs.
Sourced in United States, Canada, United Kingdom, Germany, Japan, France
The Vectastain ABC kit is a product by Vector Laboratories that is used for the detection of specific target antigens in tissue or cell samples. The kit includes reagents necessary for the avidin-biotin complex (ABC) method of immunohistochemistry. The core function of the Vectastain ABC kit is to provide a reliable and sensitive tool for the visualization of target molecules within a sample.
Sourced in United States, Germany, United Kingdom, Italy, China, Japan, Canada, Sao Tome and Principe, Denmark, France, Macao, Australia, Spain, Switzerland
3,3'-diaminobenzidine is a chemical compound commonly used as a chromogenic substrate in various laboratory techniques, such as immunohistochemistry and enzyme-linked immunosorbent assays (ELISA). It is a sensitive and specific reagent that can be used to detect the presence of target proteins or enzymes in biological samples.
Sourced in United States, Canada, Japan, Germany, United Kingdom, Gabon, China
Permount is a mounting medium used in microscopy to permanently mount specimens on glass slides. It is a solvent-based, xylene-containing solution that dries to form a clear, resinous film, securing the specimen in place and providing optical clarity for microscopic examination.
Sourced in United States, Germany, China, Japan, United Kingdom, Sao Tome and Principe, Italy, Macao, Australia, France, Switzerland, Spain, India, Poland, Canada
Oil Red O is a fat-soluble dye used in histology and cell biology for the staining of neutral lipids, such as triglycerides and cholesterol esters. It is a useful tool for the identification and visualization of lipid-rich structures in cells and tissues.
Sourced in United States, United Kingdom, Canada, Japan, Germany, France
DAB (3,3'-Diaminobenzidine) is a chromogenic substrate used in histochemical and immunohistochemical techniques. It produces a brown precipitate upon reaction with peroxidase enzymes, enabling visualization of target antigens or molecules in biological samples.

More about "Hematoxylin"

Hematoxylin is a fundamental stain used in histology and cytology to visualize cell nuclei.
This natural dye, derived from the logwood tree, binds to the negatively charged phosphate groups in DNA, allowing it to selectively stain cell nuclei with a deep blue-purple color.
Hematoxylin staining is a crucial technique in tissue preparation and analysis, providing crucial information about tissue morphology and cellular structure.
Researchers often need to optimize hematoxylin staining protocols to achieve consistent, reproducible, and accurate results.
PubCompare.ai can help by comparing hematoxylin staining protocols from the literature, preprints, and patents to identify the best methods and products for your research needs.
By leveraging AI-driven comparisons, you can streamline your hematoxylin experimentation and improve the quality of your findings.
In addition to hematoxylin, related stains and techniques like Image-Pro Plus 6.0, DAB, Vectastain Elite ABC kit, BX51 microscope, Vectastain ABC kit, 3,3′-diaminobenzidine, Permount, and Oil Red O may also be useful in your tissue analysis and microscopy work.
Exploring the synergies between these tools and hematoxylin staining can help you achive more accurate and insightful results in your research.