The largest database of trusted experimental protocols

Hexanes

Hexanes are a group of saturated aliphatic hydrocarbons with the chemical formula C6H14.
These colorless, volatile liquids are commonly used as solvents in a variety of industries, including chemical synthesis, chromatography, and as components in gasoline and other fuels.
Hexanes exhibit low polarity, making them useful for extracting and purifying non-polar compounds.
Researchers often utilize hexanes in studies involving extraction, separation, and analysis techniques.
PubCompare.ai's AI-driven platform can help optimzie your hexanes-related protocols, ensuring greater reproducibility and accuracy in your research.
Leverag PubCompare.ai to easily locate and compare the best protocols from literature, pre-prints, and patents, taking the guesswork out of your studies and delivering reliable, high-quality results.

Most cited protocols related to «Hexanes»

Macrophages were routinely incubated at 5 × 106 cells/ml of PBS with Ca2+ and Mg2+ (PBS + Ca/Mg). In experiments where macrophages were treated in the presence of 0.5 mM EDTA and 20 µM BAPTA/AM, cells were incubated in PBS. Freshly grown pathogenic E. coli (serotype O6:K2:H1, except stated otherwise) or non-pathogenic E. coli JM-109 or E. coli BL21 strains were added at a ratio of 1:50 (macrophages:E. coli), and incubated at 37 °C for the indicated times. The supernatants were transferred to 2 ml of ice-cold methanol containing the deuterium-labeled internal standards d8-5S-HETE, d4-LTB4, d5-LXA4, d5-RvD2, and d4-PGE2 (500 pg, each) to facilitate quantification and sample recovery. Samples were kept at −20 °C for 60 min to allow protein precipitation and then centrifuged (1200 × g, 4 °C, 10 min). Solid-phase C18 cartridges were equilibrated with 6 ml methanol before the addition of 6 ml H2O. Next, 9 ml acidified H2O (pH 3.5, HCl) was added to the samples, and loaded onto the conditioned C18 columns that were washed once with 6 ml H2O, followed by 6 ml hexane. The products were eluted with 6 ml of methyl formate. Samples were brought to dryness using an evaporation system (TurboVap LV, Biotage) and immediately suspended in methanol–water (50/50 vol/vol) for LC–MS–MS automated injections.
The LC–MS–MS system employed was equipped with a Shimadzu LC-20AD HPLC and a Shimadzu SIL-20AC autoinjector (Shimadzu, Kyoto, Japan), coupled with a QTrap 5500 (ABSciex, Framingham, MA). An Eclipse Plus C18 column (100 × 4.6 mm × 1.8 μm; Agilent) was kept in a column oven maintained at 50 °C (ThermaSphere TS-130; Phenomenex, Torrance, CA), and LM were eluted with a mobile phase consisting of methanol–water–acetic acid of 55:45:0.01 (vol/vol/vol) that was ramped to 85:15:0.01 (vol/vol/vol) over 10 min and then to 98:2:0.01 (vol/vol/vol) for the next 8 min. This was subsequently maintained at 98:2:0.01 (vol/vol/vol) for 2 min, and the flow rate was maintained at 0.4 ml/min. The QTrap 5500 was operated in negative ionization mode using scheduled MRM coupled with information-dependent acquisition (IDA) and an enhanced product ion scan. The scheduled MRM window was 90 s, and each LM parameter was optimized individually.
To monitor each LM and their respective pathways, an MRM method was used with diagnostic ion fragments and identification using recently published criteria9 (link), including matching RT to synthetic and authentic materials and at least six diagnostic ions for each LM. Calibration curves were obtained for each using authentic compound mixtures and deuterium-labeled LM at 3.12, 6.25, 12.5, 25, 50, 100, and 200 pg (e.g., d8-5S-HETE, d4-LTB4, d5-LXA4, and d5-RvD2). Linear calibration curves were obtained for each LM, which gave r2 values of 0.98–0.99. Internal standard recoveries, interference of the matrix, and limit of detection (range of 20–220 fg for the QTrap 5500 in tissue and in biological matrix) were determined.
Full text: Click here
Publication 2018
1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid Acetic Acid Biopharmaceuticals Cells Cold Temperature Deuterium Diagnosis Dinoprostone Edetic Acid Escherichia coli Hexanes High-Performance Liquid Chromatographies Hydroxyeicosatetraenoic Acids Ions Leukotriene B4 lipoxin A4 Macrophage Methanol methyl formate Pathogenicity Proteins Radionuclide Imaging Strains Tandem Mass Spectrometry Tissues

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2008
1H NMR Acids Anabolism Carbon disulfide Chromatography Disulfides ethanethiol ethyl acetate Ethyl Ether Filtration Hexanes Iodine Polymerization Silica Gel Sodium sodium hydride sodium sulfate sodium thiosulfate Solvents trithiocarbonate
Macrophages were routinely incubated at 5 × 106 cells/ml of PBS with Ca2+ and Mg2+ (PBS + Ca/Mg). In experiments where macrophages were treated in the presence of 0.5 mM EDTA and 20 µM BAPTA/AM, cells were incubated in PBS. Freshly grown pathogenic E. coli (serotype O6:K2:H1, except stated otherwise) or non-pathogenic E. coli JM-109 or E. coli BL21 strains were added at a ratio of 1:50 (macrophages:E. coli), and incubated at 37 °C for the indicated times. The supernatants were transferred to 2 ml of ice-cold methanol containing the deuterium-labeled internal standards d8-5S-HETE, d4-LTB4, d5-LXA4, d5-RvD2, and d4-PGE2 (500 pg, each) to facilitate quantification and sample recovery. Samples were kept at −20 °C for 60 min to allow protein precipitation and then centrifuged (1200 × g, 4 °C, 10 min). Solid-phase C18 cartridges were equilibrated with 6 ml methanol before the addition of 6 ml H2O. Next, 9 ml acidified H2O (pH 3.5, HCl) was added to the samples, and loaded onto the conditioned C18 columns that were washed once with 6 ml H2O, followed by 6 ml hexane. The products were eluted with 6 ml of methyl formate. Samples were brought to dryness using an evaporation system (TurboVap LV, Biotage) and immediately suspended in methanol–water (50/50 vol/vol) for LC–MS–MS automated injections.
The LC–MS–MS system employed was equipped with a Shimadzu LC-20AD HPLC and a Shimadzu SIL-20AC autoinjector (Shimadzu, Kyoto, Japan), coupled with a QTrap 5500 (ABSciex, Framingham, MA). An Eclipse Plus C18 column (100 × 4.6 mm × 1.8 μm; Agilent) was kept in a column oven maintained at 50 °C (ThermaSphere TS-130; Phenomenex, Torrance, CA), and LM were eluted with a mobile phase consisting of methanol–water–acetic acid of 55:45:0.01 (vol/vol/vol) that was ramped to 85:15:0.01 (vol/vol/vol) over 10 min and then to 98:2:0.01 (vol/vol/vol) for the next 8 min. This was subsequently maintained at 98:2:0.01 (vol/vol/vol) for 2 min, and the flow rate was maintained at 0.4 ml/min. The QTrap 5500 was operated in negative ionization mode using scheduled MRM coupled with information-dependent acquisition (IDA) and an enhanced product ion scan. The scheduled MRM window was 90 s, and each LM parameter was optimized individually.
To monitor each LM and their respective pathways, an MRM method was used with diagnostic ion fragments and identification using recently published criteria9 (link), including matching RT to synthetic and authentic materials and at least six diagnostic ions for each LM. Calibration curves were obtained for each using authentic compound mixtures and deuterium-labeled LM at 3.12, 6.25, 12.5, 25, 50, 100, and 200 pg (e.g., d8-5S-HETE, d4-LTB4, d5-LXA4, and d5-RvD2). Linear calibration curves were obtained for each LM, which gave r2 values of 0.98–0.99. Internal standard recoveries, interference of the matrix, and limit of detection (range of 20–220 fg for the QTrap 5500 in tissue and in biological matrix) were determined.
Full text: Click here
Publication 2018
1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid Acetic Acid Biopharmaceuticals Cells Cold Temperature Deuterium Diagnosis Dinoprostone Edetic Acid Escherichia coli Hexanes High-Performance Liquid Chromatographies Hydroxyeicosatetraenoic Acids Ions Leukotriene B4 lipoxin A4 Macrophage Methanol methyl formate Pathogenicity Proteins Radionuclide Imaging Strains Tandem Mass Spectrometry Tissues
Commercially available reagents were ordered from Sigma-Aldrich and used without additional purification. The water and hexanes mixtures were prior distilled. Other solvents (analytical grade) were used without extra drying and purification. Solvents and volatile reagents were evaporated under reduced pressure. Reactions were performed in dry glass vessel under ambient conditions. Merck silica gel plates 60 F254 were applied for TLC (Thin Layer Chromatography) analysis. Crude mixture, after solvent evaporation, were purified by column chromatography on Merck silica gel 60/230–400 mesh, using an appropriate mixture of hexane and ethyl acetate as solvent. 1H- and 13C NMR (Nuclear Magnetic Resonance) spectra were recorded in Chloroform-d at Bruker 400 and Varian 500 MHz sepctrometer using TMS (Trimethyl Silane) as an internal standard. Chemical shifts were reported in parts per million (ppm) and referred to residual deuterated solvent signal; coupling constants (J) were noted in Hz. High-resolution mass spectra (HR-MS) were recorded on the Maldi SYNAPT G2-S HDMS (Waters) apparatus with a QqTOF analyzer.
Full text: Click here
Publication 2021
Blood Vessel Carbon-13 Magnetic Resonance Spectroscopy Chloroform Chromatography ethyl acetate Hexanes Magnetic Resonance Imaging Mass Spectrometry n-hexane Pressure Silanes Silica Gel Solvents Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Thin Layer Chromatography
For fatty acid analysis, adult nematodes were washed from plates and allowed to settle. The excess water was removed from the worm pellet and 1 ml of 2.5% methanolic H2SO4 was added and incubated at 80 °C for 1 h to generate fatty acid methyl esters, which were extracted by adding 1.5 ml water and 0.2 ml hexane. The hexane was sampled for determination of fatty acid composition by gas chromatography on an SP-2380 fused silica capillary column (Supelco, Bellefonte, Pennsylvania, United States) using an Agilent (Palo Alto, California, United States) 6890 series gas chromatograph [18 (link)].
For lipid analysis, about 0.5 ml of adult nematodes were collected in a glass tube and frozen. Lipids were extracted by incubation in (1:1) chloroform/methanol overnight at −20 °C. The samples were washed with 2.2 ml Hajra's solution (0.2M H3PO4, 1M KCl) and the chloroform phase containing the lipids was isolated. The silica gel HL plates (Analtech, Newark, Delaware, United States) were activated by incubation at 110 °C for 1 h and 15 min. The samples were loaded onto the thin layer chromatography plates along with lipid standards (Sigma, St. Louis, Missouri, United States). The plates were run with a 65:43:3:2.5 chloroform/methanol/water/acetic acid solvent mixture until the solvent front was three-fourths of the way up the plate. The plate was dried, a new solvent mixture of 80:20:2 hexane/diethyl ether/acetic acid was added, and the plate was run until the solvent front reached the top of the plate. The marker lanes were visualized using iodine vapor and the corresponding bands for triglycerides and individual phospholipids in the silica gel were scraped into individual tubes. To quantitate, 50 μg of 15:0 free fatty acid was added to each tube as an internal standard and fatty acid analysis was performed by gas chromatography as described above [22 (link)].
Full text: Click here
Publication 2006
Acetic Acid Adult Capillaries Chloroform Esters Ethyl Ether Fatty Acids Freezing Gas Chromatography Helminths Hexanes Iodine Lipids Methanol Nematoda Nonesterified Fatty Acids Phospholipids Silica Gel Silicon Dioxide Solvents Thin Layer Chromatography Triglycerides

Most recents protocols related to «Hexanes»

Not available on PMC !

Example 53

[Figure (not displayed)]

4,8-Dichloroquinoline (50 mg, 0.25 mmol) was placed in a vial with dioxane (2 mL). Imidazole (68 mg, 1.0 mmol) was added and the reaction was heated to 130° C. for 16 h. Water (10 mL) was added to the reaction and then the organics were extracted into ethyl acetate (2×5 mL). The organic phase was dried (Na2SO4) and concentrated. The residue was purified by silica chromatography using 30-100% (EtOAc/Hexanes) to afford 8-chloro-4-(1H-imidazol-1-yl)quinoline as a solid (MS: [M+1]+ 230).

The following compounds are prepared essentially by the same method described above to prepare I-408.

MS
I-#Starting MaterialStructure[M + 1]+
I-409[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
274
I-410[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
196
I-411[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
210
I-412[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
274
I-413[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
196
I-414[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
274
I-415[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
274
I-416[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
214
I-417[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
226.1
I-418[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
275.0
I-419[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
2
I-420[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]
74.9

Full text: Click here
Patent 2024
Anabolism Chromatography dioxane ethyl acetate Hexanes imidazole quinoline Silicon Dioxide

Example 2

[Figure (not displayed)]

N-(2-chloro-4-(trifluoromethyl)phenyl)-2-(5-ethyl-2-morpholino-7-oxo-6-(piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-4(7H)-yl)acetamide (Intermediate B) (200 mg, 352 μmol) was suspended in DMF (5 mL). Perfluorophenyl 3-hydroxypicolinate (Intermediate CT) (215 mg, 703 μmol) and Et3N (97.0 μL, 703 μmol) were added and the RM was stirred at 70° C. for 3 hours. The RM was concentrated under reduced pressure. The crude product was first purified by column chromatography (Silica gel column: Silica 12 g, eluent DCM:MeOH 100:0 to 90:10). Then a second purification by reverse phase preparative HPLC (RP-HPLC acidic 9: 40 to 50% B in 2 min, 50 to 55% B in 10 min) afforded the title compound.

LC-MS: Rt=0.98 min; MS m/z [M+H]+ 690.6/692.6, m/z [M−H] 688.4/690.3; UPLC-MS 1

LC-MS: Rt=4.84 min; MS m/z [M+H]+ 690.2/692.2 m/z [M−H] 688.3/690.3; UPLC-MS 2

1H NMR (400 MHz, DMSO-d6) δ 10.37 (s, br, 1H), 10.34 (s, br, 1H), 8.05 (m, 2H), 7.96 (d, J=2.1 Hz, 1H), 7.72 (dd, J=2.1 Hz, 8.7 Hz, 1H), 7.28 (m, 2H), 5.21 (s, 2H), 4.53 (m, 1H), 3.66 (m, 4H), 3.46 (m, 3H), 3.38 (m, 4H), 3.20 (m, 1H), 2.92 (m, 3H), 2.76 (m, 1H), 2.58 (m, 1H), 1.16 (t, J=7.5 Hz, 3H)

Example 24

[Figure (not displayed)]

To the stirred solution of N-(2-chloro-6-(trifluoromethyl)pyridin-3-yl)-2-(5-ethyl-2-(4-methoxycyclohex-1-en-1-yl)-7-oxo-6-(piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-4(7H)-yl)acetamide (Intermediate Y) (300 mg, 504 μmol), 4-chloro-3-hydroxypicolinic acid (140 mg, 807 μmol), HOBt (136 mg, 1.01 mmol) and EDC.HCl (193 mg, 1.01 mmol) in DCM (20 mL) was added pyridine (122 μL, 1.51 mmol) at 0° C. The RM was stirred at RT for 16 hours. The RM was quenched with NaHCO3 and extracted with DCM. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by column chromatography (Silica gel column: Silica 4 g, eluent DCM:MeOH 100:0 to 98:2). The residue was purified by preparative chiral HPLC (instrument: Agilent 1200 series, with single quad mass spectrometer; column: LUX CELLULOSE-4, 250 mm×21.1 mm, 5.0 μm; eluent: A=hexane, B=0.1% HCOOH in EtOH; flow rate: 15 mL/min; detection: 210 nm; injection volume: 0.9 mL; gradient: isocratic: 50(A):50(B)).

Example 24a: The product containing fractions were concentrated at 40° C. and washed with n-pentane (5×10 mL), decanted and dried to give the title compound as an off-white solid—first eluting stereoisomer.

Chiral HPLC (C-HPLC 2): Rt=10.764 min

LC-MS: Rt=1.08 min; MS m/z [M+H]+ 750.5/752.5, m/z [M−H] 748.4/750.4; UPLC-MS 1

LC-MS: Rt=5.29 min; MS m/z [M+H]+ 750.2/752.2, m/z [M−H] 748.2/750.2; UPLC-MS 2

1H NMR (400 MHz, DMSO-d6) δ 10.68 (s, br, 2H), 8.56 (d, J=8.1 Hz, 1H), 7.98 (d, J=5.6 Hz, 1H), 7.94 (d, J=8.1 Hz, 1H), 7.50 (d, J=5.1 Hz, 1H), 6.72 (m, 1H), 5.34 (s, 2H), 4.53 (m, 1H), 3.52 (m, 4H), 3.28 (m, 4H), 2.98 (m, 3H), 2.80 (m, 1H), 2.63 (m, 1H), 2.55 (m, 1H), 2.46 (m, 1H), 2.16 (m, 2H), 1.95 (m, 1H), 1.68 (m, 1H), 1.17 (t, J=7.3 Hz, 3H)

Example 24b: The product containing fractions were concentrated at 40° C. and washed with n-pentane (5×10 mL), decanted and dried to give the title compound as an off-white solid—second eluting stereoisomer.

Chiral HPLC (C-HPLC 2): Rt=18.800 min

LC-MS: Rt=1.08 min; MS m/z [M+H]+ 750.1/752.1, m/z [M−H] 748.2/750.2; UPLC-MS 1

LC-MS: Rt=5.30 min; MS m/z [M+H]+ 750.1/752.1, m/z [M−H] 748.2/750.2; UPLC-MS 2

1H NMR (400 MHz, DMSO-d6) δ 10.83 (s, br, 1H), 10.55 (s, br, 1H), 8.56 (d, J=8.2 Hz, 1H), 8.06 (d, J=5.3 Hz, 1H), 7.92 (d, J=8.2 Hz, 1H), 7.55 (d, J=5.3 Hz, 1H), 6.72 (m, 1H), 5.35 (s, 2H), 4.54 (m, 1H), 3.54 (m, 4H), 3.28 (m, 3H), 3.25 (m, 1H), 2.99 (m, 3H), 2.81 (m, 1H), 2.62 (m, 1H), 2.41 (m, 2H), 2.16 (m, 2H), 1.96 (m, 1H), 1.66 (m, 1H), 1.18 (t, J=7.3 Hz, 3H)

Example 25

[Figure (not displayed)]

N-(2-chloro-6-(trifluoromethyl)pyridin-3-yl)-2-(5-ethyl-2-(4-methoxycyclohex-1-en-1-yl)-7-oxo-6-(piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-4(7H)-yl)acetamide.HCl (Intermediate Y) (120 mg, 190 μmol) and DIPEA (166 μL, 950 μmol) were dissolved in DCM (5 mL) and then 3-hydroxypicolinoyl chloride (Intermediate CV) (59.9 mg, 380 μmol) was added at 0° C. and stirred for 2 hours. 3-hydroxypicolinoyl chloride (Intermediate CV) (59.9 mg, 380 μmol) was added again and the reaction was continued under stirring for 12 hours. The RM was diluted with DCM and washed with water and aq NaHCO3 (2×20 mL), washed with water and brine, dried over Na2SO4, filtered and concentrated. The crude product was combined with another experiment and purified by column chromatography (Silica gel column: Silica 4 g, eluent DCM:MeOH 100:0 to 99:1) then further purified by reverse phase preparative HPLC (RP-HPLC acidic 10: 40 to 50% B in 2 min, 50 to 60% B in 8 min) to give the title compound as an off-white solid.

The racemate was purified by preparative chiral HPLC (instrument: Agilent 1200 series, with single quad mass spectrometer; column: CELLULOSE-4, 250 mm×21.2 mm; eluent: A=hexane, B=0.1% HCOOH in MeOH:EtOH 1:1; flow rate: 20 mL/min; detection: 210 nm; injection volume: 0.9 mL; gradient: isocratic 60(A):40(B)).

Example 25a: First eluting stereoisomer, off-white solid.

Chiral HPLC (C-HPLC 1): Rt=10.070 min

LC-MS: Rt=0.98 min; MS m/z [M+H]+ 716.5/718.6, m/z [M−H] 714.3/716.3; UPLC-MS 1

LC-MS: Rt=4.76 min; MS m/z [M+H]+ 716.2/718.2, m/z [M−H] 714.2/716.2; UPLC-MS 2

1H NMR (400 MHz, DMSO-d6) δ 10.46 (s, br, 2H), 8.56 (d, J=8.5 Hz, 1H), 8.05 (m, 1H), 7.90 (d, J=8.4 Hz, 1H), 7.28 (m, 2H), 6.72 (m, 1H), 5.30 (s, 2H), 4.54 (m, 1H), 3.47 (m, 4H), 3.27 (s, 3H), 3.21 (m, 1H), 2.96 (m, 3H), 2.79 (m, 1H), 2.59 (m, 3H), 2.43 (m, 1H), 2.14 (m, 1H), 1.95 (m, 1H), 1.67 (m, 1H), 1.17 (t, J=7.2 Hz, 3H)

Example 25b: Second eluting stereoisomer, off-white solid.

Chiral HPLC (C-HPLC 1): Rt=16.023 min

LC-MS: Rt=0.96 min; MS m/z [M+H]+ 716.3/718.3, m/z [M−H] 714.3/716.3; UPLC-MS 1

LC-MS: Rt=4.77 min; MS m/z [M+H]+ 716.2/718.2, m/z [M−H] 714.2/716.2; UPLC-MS 2

1H NMR (400 MHz, DMSO-d6) δ 10.39 (s, br, 2H), 8.56 (d, J=8.0 Hz, 1H), 8.06 (m, 1H), 7.93 (d, J=8.1 Hz, 1H), 7.28 (m, 2H), 6.72 (m, 1H), 5.32 (s, 2H), 4.54 (m, 1H), 3.46 (m, 4H), 3.27 (s, 3H), 3.20 (m, 1H), 2.96 (m, 3H), 2.79 (m, 1H), 2.59 (m, 3H), 2.41 (m, 1H), 2.14 (m, 1H), 1.95 (m, 1H), 1.68 (m, 1H), 1.17 (t, J=7.1 Hz, 3H)

Full text: Click here
Patent 2024
1-hydroxybenzotriazole 1H NMR acetamide Acids Bicarbonate, Sodium Bicyclo Compounds brine Cellulose Chlorides Chromatography DIPEA Ethanol H 718 Hexanes High-Performance Liquid Chromatographies Morpholinos pentane Piperazine Pressure pyridine Silica Gel Silicon Dioxide Stereoisomers Sulfoxide, Dimethyl Tandem Mass Spectrometry

Example 14

[Figure (not displayed)]

To a solution of trans-1-(−4-(4-hydroxy-phenoxy)cyclohexyl)-3-(4-(trifluoromethoxy)phenyl)urea (104 mg, 0.25 mmol) in DCM (5 mL) was added acetyl chloride (71 mg, 0.90 mmol) and pyridine (23 mg, 0.29 mmol). After 30 minutes, additional pyridine (60 mg) and acetyl chloride (40 mg) were added. After an hour, the reaction mixture was diluted with EtOAc, extracted 3 times with K2CO3 (1M), dried over MgSO4 and evaporated. The resulting mixture was purified by flash chromatography over a gradient of 1:1 Hexanes:EtOAc to 100% EtOAc. The product was recrystallized in Hex:EtOAc to give a light brown solid (21 mg, 0.05 mmol, 20% yield). MP=204.1-209.0° C. (206.2° C.) 1H NMR (400 MHz, DMSO-d6) δ 8.51 (s, 1H), 7.47 (d, J=9.0 Hz, 2H), 7.21 (d, J=8.7 Hz, 2H), 6.98 (q, J=9.0 Hz, 4H), 6.19 (d, J=7.6 Hz, 1H), 4.34-4.26 (b, 1H), 3.56-3.48 (b, 1H), 2.23 (s, 3H), 2.03 (d, J=12.3 Hz, 2H), 1.92 (d, J=12.7 Hz, 2H), 1.46 (q, J=11.6 Hz, 2H), 1.34 (q/=11.7 Hz, 2H).

Full text: Click here
Patent 2024
1H NMR acetyl chloride Chromatography Hexanes Light phenyl acetate potassium carbonate pyridine Sulfate, Magnesium Sulfoxide, Dimethyl Urea

Example 94

[Figure (not displayed)]

To a solution of tert-butyl 3-(1′-carbamoylspiro[chromane-2,4′-piperidine]-6-yl)indole-1-carboxylate (0.072 g, 0.16 mmol) in DCM (2 mL) was added hydrogen chloride (4 mol/L) in 1,4-dioxane (2.0 mL, 8.0 mmol) dropwise. The reaction was stirred overnight, concentrated, then dried under vacuum. Silica gel chromatography on the ISCO (0 to 100% (25% 20:1:1 EtOH:NH4OH:H2O—75% EtOAc)—100 to 0% hexanes; 40 g column) yielded the desired compound as an off-white solid (0.0330 g, 59%). Analysis: LCMS m/z=362 (M+1); 1H NMR (400 MHz, DMSO-d6) δ: 11.20 (d, J=1.5 Hz, 1H), 7.81 (d, J=8.0 Hz, 1H), 7.52 (d, J=2.5 Hz, 1H), 7.41 (d, J=8.0 Hz, 1H), 7.39-7.34 (m, 2H), 7.16-7.09 (m, 1H), 7.09-7.02 (m, 1H), 6.88-6.81 (m, 1H), 5.95 (s, 2H), 3.69 (d, J=13.3 Hz, 2H), 3.20-3.09 (m, 2H), 2.81 (t, J=6.7 Hz, 2H), 1.82 (t, J=6.8 Hz, 2H), 1.69 (d, J=13.6 Hz, 2H), 1.59-1.47 (m, 2H).

Full text: Click here
Patent 2024
1H NMR Chromatography dioxane Ethanol Gel Chromatography Hexanes Hydrochloric acid indole Lincomycin piperidine Silica Gel Silicon Dioxide Sulfoxide, Dimethyl TERT protein, human Vacuum

Example 40

[Figure (not displayed)]

To a solution of compound 101 (5.96 g, 35.9 mmol, 1.0 eq.) in anhydrous dichloromethane (200 mL) was added Ac2O (3.2 mL, 33.9 mmol, 2.0 eq.) and HNO3 (65%-68%, 3.5 mL, 50.79 mmol, 3.0 eq.) at room temperature. The mixture was stirred at room temperature for 30 min, and TLC analysis showed that the reaction was completed. The reaction solution was washed with water (3×200 mL), and the aqueous layer was back-extracted with dichloromethane (3×100 mL). The combined dichloromethane solution was washed with brine, dried over anhydrous Na2SO4, filtered, concentrated and purified by SiO2 column chromatography (5:1 hexanes/EtOAc) to give compound 102 as a yellow solid (4.18 g, 72% yield). 1H NMR (500 MHz, CDCl3) δ 10.49 (s, 1H), 7.89 (s, 1H), 7.44 (d, J=8.4 Hz, 1H), 7.09 (d, J=8.6 Hz, 1H), 4.32 (d, J=8.3 Hz, 1H), 4.12 (dd, J=14.0, 7.0 Hz, 2H), 3.80 (s, 1H), 2.76 (dd, J=13.0, 6.8 Hz, 2H), 2.59 (s, 1H), 1.88 (s, 1H), 1.37 (t, J=8.7 Hz, 9H), 1.25 (dd, J=13.5, 6.9 Hz, 4H), 1.16 (t, J=8.0 Hz, 3H). MS ESI m/z calcd for C19H28NaN2O7 [M+Na]+ 419.19, found 419.17.

Full text: Click here
Patent 2024
1H NMR Anabolism brine Chromatography Hexanes Methylene Chloride

Top products related to «Hexanes»

Sourced in Germany, United States, United Kingdom, Italy, India, Spain, France, Brazil, Ireland, Sao Tome and Principe, Canada, Japan, Poland, Australia, Portugal, China, Denmark, Belgium, Macao, Switzerland
Hexane is a colorless, flammable liquid used in various laboratory applications. It is a saturated hydrocarbon with the chemical formula C6H14. Hexane is commonly used as a solvent, extraction agent, and cleaning agent in scientific and industrial settings.
Sourced in Germany, United States, Italy, India, United Kingdom, China, France, Poland, Spain, Switzerland, Australia, Canada, Sao Tome and Principe, Brazil, Ireland, Japan, Belgium, Portugal, Singapore, Macao, Malaysia, Czechia, Mexico, Indonesia, Chile, Denmark, Sweden, Bulgaria, Netherlands, Finland, Hungary, Austria, Israel, Norway, Egypt, Argentina, Greece, Kenya, Thailand, Pakistan
Methanol is a clear, colorless, and flammable liquid that is widely used in various industrial and laboratory applications. It serves as a solvent, fuel, and chemical intermediate. Methanol has a simple chemical formula of CH3OH and a boiling point of 64.7°C. It is a versatile compound that is widely used in the production of other chemicals, as well as in the fuel industry.
Sourced in United States, United Kingdom, Canada, Germany, France, Belgium, China, New Zealand, Ireland
Hexane is a colorless, flammable liquid used as a solvent in various laboratory applications. It has a low boiling point and is commonly used for extraction, purification, and cleaning purposes in research and analytical settings.
Sourced in Germany, United States, Italy, India, China, United Kingdom, France, Poland, Spain, Switzerland, Australia, Canada, Brazil, Sao Tome and Principe, Ireland, Belgium, Macao, Japan, Singapore, Mexico, Austria, Czechia, Bulgaria, Hungary, Egypt, Denmark, Chile, Malaysia, Israel, Croatia, Portugal, New Zealand, Romania, Norway, Sweden, Indonesia
Acetonitrile is a colorless, volatile, flammable liquid. It is a commonly used solvent in various analytical and chemical applications, including liquid chromatography, gas chromatography, and other laboratory procedures. Acetonitrile is known for its high polarity and ability to dissolve a wide range of organic compounds.
Sourced in United States, Germany, China, Italy, Japan, France, India, Spain, Sao Tome and Principe, United Kingdom, Sweden, Poland, Australia, Austria, Singapore, Canada, Switzerland, Ireland, Brazil, Saudi Arabia
Oleic acid is a long-chain monounsaturated fatty acid commonly used in various laboratory applications. It is a colorless to light-yellow liquid with a characteristic odor. Oleic acid is widely utilized as a component in various laboratory reagents and formulations, often serving as a surfactant or emulsifier.
Sourced in United States, Germany, United Kingdom, India, Italy, Spain, France, Canada, Switzerland, China, Australia, Brazil, Poland, Ireland, Sao Tome and Principe, Chile, Japan, Belgium, Portugal, Netherlands, Macao, Singapore, Sweden, Czechia, Cameroon, Austria, Pakistan, Indonesia, Israel, Malaysia, Norway, Mexico, Hungary, New Zealand, Argentina
Chloroform is a colorless, volatile liquid with a characteristic sweet odor. It is a commonly used solvent in a variety of laboratory applications, including extraction, purification, and sample preparation processes. Chloroform has a high density and is immiscible with water, making it a useful solvent for a range of organic compounds.
Sourced in United States, United Kingdom, China, Germany, Belgium, Canada, France, India, Australia, Portugal, Spain, New Zealand, Ireland, Sweden, Italy, Denmark, Poland, Malaysia, Switzerland, Macao, Sao Tome and Principe, Bulgaria
Methanol is a colorless, volatile, and flammable liquid chemical compound. It is commonly used as a solvent, fuel, and feedstock in various industrial processes.
Sourced in Germany, United States, United Kingdom, Italy, India, France, China, Australia, Spain, Canada, Switzerland, Japan, Brazil, Poland, Sao Tome and Principe, Singapore, Chile, Malaysia, Belgium, Macao, Mexico, Ireland, Sweden, Indonesia, Pakistan, Romania, Czechia, Denmark, Hungary, Egypt, Israel, Portugal, Taiwan, Province of China, Austria, Thailand
Ethanol is a clear, colorless liquid chemical compound commonly used in laboratory settings. It is a key component in various scientific applications, serving as a solvent, disinfectant, and fuel source. Ethanol has a molecular formula of C2H6O and a range of industrial and research uses.
Sourced in United States, Germany, Italy, Spain, France, India, China, Poland, Australia, United Kingdom, Sao Tome and Principe, Brazil, Chile, Ireland, Canada, Singapore, Switzerland, Malaysia, Portugal, Mexico, Hungary, New Zealand, Belgium, Czechia, Macao, Hong Kong, Sweden, Argentina, Cameroon, Japan, Slovakia, Serbia
Gallic acid is a naturally occurring organic compound that can be used as a laboratory reagent. It is a white to light tan crystalline solid with the chemical formula C6H2(OH)3COOH. Gallic acid is commonly used in various analytical and research applications.
Sourced in Germany, United States, India, United Kingdom, Italy, China, Spain, France, Australia, Canada, Poland, Switzerland, Singapore, Belgium, Sao Tome and Principe, Ireland, Sweden, Brazil, Israel, Mexico, Macao, Chile, Japan, Hungary, Malaysia, Denmark, Portugal, Indonesia, Netherlands, Czechia, Finland, Austria, Romania, Pakistan, Cameroon, Egypt, Greece, Bulgaria, Norway, Colombia, New Zealand, Lithuania
Sodium hydroxide is a chemical compound with the formula NaOH. It is a white, odorless, crystalline solid that is highly soluble in water and is a strong base. It is commonly used in various laboratory applications as a reagent.

More about "Hexanes"

Hexanes, also known as n-hexane or isohexane, are a family of saturated aliphatic hydrocarbons with the molecular formula C6H14.
These colorless, volatile liquids are commonly used as solvents in a variety of industries, including chemical synthesis, chromatography, and as components in gasoline and other fuels.
Hexanes exhibit low polarity, making them useful for extracting and purifying non-polar compounds, such as lipids, oils, and waxes.
Researchers often utilize hexanes in studies involving extraction, separation, and analysis techniques.
Hexanes can be used in conjunction with other solvents like methanol, acetonitrile, chloroform, and ethanol to facilitate the extraction and purification of a wide range of compounds, including fatty acids like oleic acid, phenolic compounds like gallic acid, and even inorganic substances like sodium hydroxide.
The AI-driven platform PubCompare.ai can help optimize your hexanes-related protocols, ensuring greater reproducibility and accuracy in your research.
This tool allows you to easily locate and compare the best protocols from literature, pre-prints, and patents, taking the guesswork out of your studies and delivering reliable, high-quality results.
Leverag PubCompare.ai to streamline your research processes and unlock new insights in your hexanes-focused investigations.